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All real Lie algebras of dimension up to 8 that admit a nontrivial Levi decomposition are 
found. 

I. INTRODUCTION 

The central problem arising in the theory of real Lie 
algebras is determination of all nonisomorphic algebras. The 
class of semisimple algebras has been determined long ago by 
Cartan. Up to now, only some results on solvable algebras 
are known. 1-7 The aim of the present paper is to investigate 
algebras of a third group, namely the semidirect sums of 
semisimple and solvable algebras. 

Our motivation is applications to cosmology. We hope, 
however, that the usefulness of the knowledge of algebras in 
other physical contexts is evident.l! As far as the (1 + 3)­
dimensional cosmological problem is concerned, algebras of 
nine Bianchi types that classify homogeneous space-times 
that are solutions to the Einstein field equations9 are impor­
tant. Recently, multidimensional cosmologies have also 
been proposed. 10 Therefore, it becomes necessary to extend 
the Bianchi classification of the real three-dimensional Lie 
algebras to a more general case of larger dimension and to 
face the problem of evaluating the structure constants for all 
nonisomorphic algebras. The knowledge of the algebras im­
plies a classification of the homogeneous cosmological mod­
els. Furthermore, the field equations can be written down 
directly in terms of scale factors and in terms of the structure 
constants of the Killing vector algebras. II 

In the following, we sketch the method of computing 
algebras that are the semi direct sums of the solvable and 
semisimple algebras. We apply this method to algebras of 
dimensions up to 8. There is one five-dimensional algebra 
and four six-dimensional algebras, summarized in Table I. 
Tables II and III provide seven algebras of dimension 7 and 
22 algebras of dimension 8, respectively. These algebras lead 
naturally to a class of cosmological models that we discuss 
elsewhere. 12 

II. THE SEMIDIRECT SUMS 

As far as the notation and method is concerned we fol­
low our previous work. 13 We shall use the symbol N&S for a 
semi direct sum, writing the ideal N first, and the subalgebra 
Ssecond. 

We endow the semidirect sum with a Lie algebra struc­
ture by using [ , ] Nand [ , ] s in each of these subalge­
bras. For Lie brackets between these two subalgebras, we set 

[e;oeJ]=R(ej)*eJ, ejES, eJEN, (1) 

where R is a linear mapping, R(ej ): N3eJ .... R(ej )*eJEN. 
For the linear subspaces Nand S of the algebra L = N&S, 
the following relations hold: 

[N,N] eN, [S,S] es, [N,S] eN, (2) 

dimL = dimN + dimS. (3) 

Furthermore, from the Jacobi identity, it follows that R (ej ) 

is a derivation of N: 

R(e;)*[eJ,eK ] = [R(e;)*eJ,eK ] + [eJ,R(ej)*eK ]. (4) 

The set {R (e;)} forms a Lie algebra itself, called the deriva­
tion algebra, and the homomorphism of S into the derivation 
algebra, S3ej .... R (ej ), must bea representation of the semi­
simple algebra S by real matrices. It is clear that the zero­
matrix representation of S, acting in N, is a derivation of N. 
This representation reduces the semidirect sum N&S to the 
ordinary direct sum NED S. 

The fundamental Levi-Malcev theorem 14 says that, for 
an arbitrary Lie algebra L with the radical N, a semisimple 
subalgebra S exists such that 

L = N&S. (5) 

The semisimple subalgebra S is called the Levi factor. Conse­
quently, Lie algebras fall into the following three categories: 
the semisimple algebras, the solvable algebras, and the semi­
direct sums of solvable and semisimple algebras. 

III. A CLASS OF SEMIDIRECT SUMS 

Now, we shall determine all real Lie algebras L = N&S 
such that dim L,8 and the semidirect sum is nontrivial: 
N :;60, S :;60, and &:;6 til. 

We start with a semisimple algebraS, dim S < 8. To ex­
tend this algebra we proceed in the following way. The com­
mutation rules of [S,S] type are known: 

(6) 

Let n = dim N. One is looking only for n-dimensional repre­
sentations of S. These representations are n X n matrices that 
determine the commutators of [N,S] type, as defined in Eq. 
( 1 ). Then, we make use of ( 4) and we calculate the radicals 
N. Finally, to simplify the form of the radical, we perform 
suitable transformations of its basis elements. 

There are three simple algebras of dimension less than 8: 
three-dimensional so(3) and sl(2,R), and six-dimensional 
so(3,1). To show how the method works let us consider the 
algebra L = N&so( 3), dim N = 4. The algebra soC 3) with 
the basis {el,e2,e3 } is defined by the nonvanishing structure 
constants 

C 3
12 =I, C 2

31 =I, C 1
23 =1. (7) 

Since so ( 3) has the adjoint representation by 3 X 3 matrices, 
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TABLE I. Real Lie algebras of dimensions 5 and 6 that admit a nontrivial Levi decomposition. 

The representation of the Levi 
Levi factor that defines 

Name decomposition the semidirect sum 

L 5., 2L, ITsl( 2,R) D'/2 

L 6., 3L,ITso(3) ad so(3) 

L 6•2 A3., ITsI(2,R) DI/2 eDO 

3L,ITsI(2,R) 

TABLE II. Real Lie algebras of dimension 7 that admit a nontrivial Levi decomposition. 

2140 

Name 

L~.3 

L
"

• 

Levi 
decomposition 

4L,ITso(3) 

A !:~ ITsi (2,R ) 
p=/oO 

A !.9ITsI(2,R) 

A !:~ ITsl( 2,R) 

4L, ITsl( 2,R) 

4L,ITsI(2,R) 
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The representation of the Levi 
factor that defines 
the semidirect sum 

ad so(3) eDo 

Nonzero structure constants 

e\2 = 2, e3
13 = - 2, e'23 = 1, 

C·,. = 1, e·2, = 1, e\. = 1, 
e'" = - I 

e\2 = 1, e 231 = 1, e'23 = 1, 
C·" = 1, e·2• = - 1, e'3. = 1, 
e',.= -1,e·2.=I,e·,,=-1 

e 2
12 =2,e3

13 = -2,e'23=I, 
C·,. = 1, e·2, = 1, e\. = 1, 
e'" = - 1, C·., = 1 

e 2'2 = 2, e3'3 = - 2, e'23 = 1, 
C·,. = 1, e·2, = 1, e'3. = 1, 
e',,= -1, 
e\. = 1, e',. = 1 

e 2'2 = 2, e\3 = - 2, e'23 = 1, 
e\. = 2, e·2, = 2, e'3. = 1, 
e"t. = - 2, e'2. = 1, e·3, = 2 

Nonzero structure constants 

e 3'2 = 1, e 23, = 1, e'23 = I, 
C·" = 1, e·2• = - 1, e\. = 1, 
es,. = - 1, e·2• = 1, e'3, = - 1, 
e'" = 1, e's, = 1, e·., = 1 

e3
'2 = 1, e 2

3 , = I, e '23 = 1, 
e". =!, e'2. =~, e·3• =!, 
e"t, =!, e·2, = -!, e\, = -!, 
e',. = -!, e'2• =!, e'3• = -!, 
e',,= -!,e·21 = -~,e'31=! 

e 2'2 = 2, e 3
13 = - 2, e'23 = I, 

e.,. = 1, e'2, = 1, e'3. = 1, 
e'" = - 1, 
e" 7 = 1, e'" = 1, e·., = p 

e 2'2 = 2, e\3 = - 2, e'23 = 1, 
C',. = 1, e\, = 1, e'3. = 1, 
es,5 = - 1, 
e·'5 = 1, 
e·'7 = 1, e551 = 1, e·.7 = 2 

e 2'2 = 2, e3'3 = - 2, e'23 = 1, 
C',. = 2, e·25 = 2, e53• = 1, 
e 6

'6 = - 2, e52• = 1, e·3, = 2, 
e'., = 1, e's7 = 1, e·., = 1 

e 2'2 = 2, e\3 = - 2, e'23 = 1, 
C',. = 3, e·2, = 3, e\. = 1, 
e5" = 1, e52• = 2, e035 = 2, 
e·'6 = - 1, e·21 = 1, e'36 = 3, 
e 7

17 = -3, 

e\2 = 2, e3
13 = - 2, e'23 = 1, 

C·,. = 1, e'25 = 1, e'3. = 1, 
e',,= -1, 
e6'6 = 1, e621 = 1, e\6 = 1, 
e ' 17 =-l. 
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TABLE III. Real Lie algebras of dimension 8 that admit a nontrivial Levi decomposition. 
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Name 

LK, 

L~.4 

LM 
•• 1 

LK. 

LP09 .. ' 

L~.IO 

Levi 
decomposition 

A lYEtso(3) 

P#O 

As .• Etso(3) 

A H'Etso(3) 

A ~:ffEtso( 3 ) 

5L,Etso(3) 

As .• Etsl (2,R) 

A ~:~qEtsl( 2,R) 

pq'l=O 

A l:t'/PEtsl(2,R) 

P#O 
A l .• Etsl(2,R) 

p=O 

A l:1\qEtsl (2,R) 

q#O 

A ~:f. Etsl(2,R) 

P'I=O 
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The representation of the Levi 
factor that defines 
the semidirect sum 

adso(3) $2Do 

Nonzero structure constants 

C\2 = I, C2
31 = I, C'2' = I, 

C",s = I, C 6
2• = - I, C S,. = I, 

CS,6 = - I, C'26 = I, C',s = - I, 
C'.s = I, C S

S8 = I, C66S = I, 
C"s = P 

C"2 = I, C\, = I, C'2' = I, 
C ' ,. =~, C S

2• =!, C 6,. =!, 
C",s =~, C'2S = -!, C\s = -!, 
C S'6= -!,C' 26 =!,C"6= -!, 
C' I1 = _~,C621= -~,C\'=~' 
C S

• S = I, C·61 = - I 

C"2 = I, C 2
31 = I, C'2' = I, 

C ' ,. =!, Cs,. =!, C 6
,. =!, 

C 6,S=!'C'2S = -!,C' ,s= -!, 
CS,6= -!, C'26=~' C\6 = -!, 
C'" = -!, C 6

21 = -~, C\, =!, 
C'.s = I, CSss = I, C66S = I, C". = I 

C\2 = I, C 2
31 = I, C'2' = I, 

C ' ,. =!, c s 2. =!, C 6
,. =!, 

C 6,s =!, C'2S = -!, C ' ,s = -!, 
C S'6 = -!, C ' 26 =!, C"6 = -~, 
C' I1 = -!,C6

21 = -!,CS,,=~ 
C' •• = P, C 6

• S = - I, 
CSSs=p,C\s= -I, 
C'6S = I, C66S = P, 
C S

, • = I, C"8 = P 

C"2 = I, C2
31 = I, C'2' = I, 

C ' ,. =!, C 6
2• =~, C

S,. = 2, 
C 6,s = -!, C ' 2S =!, C',s = - 2, 
CS,6 = 2, C'26 = - 2, C\6 = I, 
C 8

'6 = - I, C 5
21 = - 2, C 6" = - I, 

C' I1 = -2,C·21 = -I, 
C 6'8 = 3, C ' 28 = 3 

C2
12 = 2, C'13 = - 2, C'2' = I, 

C',. = I, C"s = I, C\. = I, 
Cs's = - I, 
C 8

• s = I, C 8
61 = I 

C 2'2 = 2, C'13 = - 2, C'2' = I, 
C',. = I, C'2S = I, C S,. = I, 
CS,s = - I, 
C" 8 = I, C S

S8 = I, C 6•8 = p, 
C ' ,• = q 

C"2 = 2, C'13 = - 2, C'2' = I, 
C',. = I, C'2S = I, C\. = I, 
CS'S = - I, 
C'.8= I,C s

s8 = I,C 6
6.=p, 

C 6
'8 = 1, C"8 = P 

C 2'2 = 2, C'13 = - 2, C'2' = I, 
C',. = I, C'2S = I, C S,. = I, 
Cs's= -I, 
C'.s = I, C\s = I, C66S = p, 
C ' 68 = - q, C6,S = q, C',S = P 

C 2'2 = 2, C\, = - 2, C'2' = I, 
C',. = I, C'2S = I, C\. = I, 
Cs's= -I, 
C'.s = I, CSss = I, C 6

68 = 2, 
C"s = p, C 6

• S = I, 
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TABLE III. (Continued.) 

Name 

L~.'3 

L •. ,. 

L •. " 

L •. '6 

Levi 
decomposition 

A ~.'O Etsl (2,R) 

A k~·PEtsI(2,R) 

p¥-O 

As .• Etsl( 2,R) 

E= ± 1 

A ~." EtsI(2,R) 

A ~:~PEtsi (2,R) 

- 1<:;p<I 

A ~:'i'fEtsl( 2,R) 

p>O 
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The representation of the Levi 
factor that defines 
the semidirect sum Nonzero structure constants 

C2'2 = 2, C'13 = - 2, C'23 = I, 
C 4

'4 = I, C 4 ,s = I, C S
,. = I, 

Cs's= -I, 
C" 8 = I, C S S. = I, C6

68 = 2, 
C 6

'8 = I, C',. = 2, C 6
• S = I 

C 2
'2 = 2, C 3

13 = - 2, C'n = I, 
C',. = 2, C'2S = 2, C\. = I, 
C6'6 = - 2, C'26 = I, C63S = 2, 
C"8 = I, C's8 = 1, C\. = I, 
C"8=P 

C 2'2 = 2, C 3
13 = - 2, C'23 = I, 

C',. = I, C'2S = I, CS
3• = I, 

C S ,,= -I, 
C 6'6 = I, C 6

2, = I, C'36 = I, 
C'I7= -1, 
C·.s = I, C·6 , = E 

C 2
'2 = 2, C 3

13 = - 2, C'n = I, 
C',. = I, C'2S = I, C S

34 = I, 
CS,s= -I, 
C6'6 = I, C6

2, = I, C\6 = I, 
C'I7= -I, 
C'68 = I, C"8 = I 

C 2'2=2,C3
13 = -2,C'23=1, 

C',. = I, C'2S = I, C'3. = I, 
C'IS= -I, 
C 6'6 = I, C 6

2, = I, C"6 = I, 
C'I7= -I, 
C'68 = I, C"R = 1, C'6 , = I 

C"2=2,C3
13 = -2,C'23=1, 

C',. = I, C'2, = I, C'3. = I, 
C',,= -I, 
C\6 = I, C 6

2, = I, C\6 = I, 
C'I7= -I, 
C' •• = I, C's. = I, C'68 = I, 
C6

68 = I, C',. = I, C',. = I, 

C 2
'2 = 2, C'13 = - 2, C'n = I, 

C',. = I, C", = I, C\. = I, 
C',,=-I, 
C\6 = I, C 6

2, = I, C\6 = I, 
C'I7= -I, 
C' •• = I,C"8= I,C 6

68 =p, 
C"8 = P 

C 2
'2 = 2, C'13 = - 2, C'n = I, 

C',. = I, C 4
2S = I, C'34 = I, 

C'" = -I, 
C6'6 = I, C6

2, = I, C\6 = I, 
C'I7= -I, 
C' •• = p, C 6

' 8 = - I, 
C's. = p, C',. = - I, 
C'6• = I, C 6

68 = p, 
Cs,. = I, C"8 = P 

C"2 = 2, C 3
13 = - 2, C'2' = I, 

C',. = 3, C'2, = 3, C',. = I, 
C'" = I, C'26 = 2, C 6,s = 2, 
C 6'6= -I,C6

2,=I,C'36=3, 
C'I7 = - 3, 
C·., = I,C·s6 = -3 
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TABLE III. (Continued.) 

Name 

L •. 20 

L •. 2 , 

L •. 22 

Levi 
decomposition 

A ~yEt-sl(2,R) 

5L,Et-sI(2,R) 

5LEt-sI(2,R) 

we can define R = ad so(3) $ [0], 

R(e,) ~(~ 
0 0 

u' 
0 -1 
1 0 
0 0 

R(e,) ~e 
0 1 

U' 
0 0 

-1 0 0 
0 0 0 

R(e,) ~~ 
-1 0 

~ 0 0 
0 0 o . 
0 0 0 

The representation of the Levi 
factor that defines 
the semidirect sum Nonzero structure constants 

C 2'2=2,C 3'3= -2,C'23=1, 
C',.= 3, C'25 = 3, C\.= 1, 
C 5'5 = 1, C 5

26 = 2, C 6
35 = 2, 

C 6'6 = - 1, C 6
27 = 1, C 7

36 = 3, 
C 7

17 = -3, 
C' •• = 1, C 5

58 = 1, C 6
6• = I, 

C 7
78 = 1 

C 2'2 = 2, C\3 = - 2, C'23 = 1, 
C',. = 4, C'25 = 4, C\. = 1, 
CS,5 = 2, C 5

26 = 3, C 6
35 = 2, 

C 7
17 = - 2, C 6

27 = 2, C 7
36 = 3, 

C·,. = - 4, C"8 = I,-C·37 = 4 

C 2'2 = 2, C 3
13 = - 2, C'23 = 1, 

C',. = 2, C'25 = 2, C\. = 1, 
C 6'6 = - 2, C 5

26 = 1, C 6
35 = 2, 

C 7
17 = 1, C 7

28 = 1, C·37 = 1, 
C·,.= -1 

where {e4 ,eS,e6,e7 } are the basis elements of N. With the help 
ofJacobi identity (4) we find that the four-dimensional solv­
able algebra N is either Abelian or a solvable algebra given by 
the following nonzero commutators: 

[eJ ,e7 ] = eJ , J = 4,5,6. (9) 

This is the algebra A !:; in the list by Patera et al.6 Hence we 
distinguish two types of algebras defined by Eqs. (7), (8) 
and (7)-(9), respectively, 

L7 = L) $(3L)&so(3») = L) $L6,) 

and 

L7,) =A!:;&so(3). 

The term L"j denotes an r-dimensional algebra ofjth type, 
and nL; an Abelian n-dimensional algebra. 

This, via relation (1), implies the following commutation 
relations: 

In all other cases we proceed analogously, The results 
are given in Tables I-III in which we present radicals, Levi 
factors, representations of Levi's factors determining semi­
direct sums, and all nonzero structure constants. The follow­
ing notation is used. The term A" j denotes an r-dimensional 
solvable algebra of the jth type; for commutation relations 
see Ref. 6. The term D J denotes the real representation of 
sl(2,R) and is taken in its standard form, 

[e),esl = + e6 , [e2,e4 1 = - e6 , [e3,e4 1 = + es, 

e,-C 2J-2 
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2J 
o 

(8) 

2J-I 
o 

o 
2 0 

2J 
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The terms R4 and R5 denote the four-dimensional and five-dimensional (respectively) real irreducible representations of 
so(3), 

r 
0 0 

~l) r 
_1 0 

~l} 
2 

_ 0 0 -~ 1 0 0 - 2 

e
1

- ~ 1 0 o ' e
2

- ~ 0 0 2 

0 0 0 0 1 
2 

0 0 -2 0 -2 
0 2 0 0 0 

e1 -
_1 0 0 e2 - 0 0 2 

! 0 0 0 ! 0 
0 -1 0 0 0 

where {e1,e2,e3 } forms a basis for so(3). In the names of 
some algebras the superscripts are given to specify the val­
ue(s) of continuous parameters on which the algebra de­
pends. 
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Superposition formulas are derived expressing the general solution of several different systems 
of nonlinear ordinary differential equations in terms of a fundamental set of particular 
solutions. The equations, as well as the superposition formulas, are induced by the action of the 
exceptional Lie group G2 (complex or real) on a homogeneous space G2/G, where GCG2 is a 
maximal subgroup of G2. When G is either parabolic, or simple, three particular solutions are 
needed. When G is SL(2,C) XSL(2,C) (or one of its real forms), then two particular solutions 
suffice. 

I. INTRODUCTION 

The present paper is the third (and last) in a series '·
2 

devoted to systems of nonlinear ordinary differential equa­
tions with superposition formulas, based on the Cartan ex­
ceptional Lie group G2. The firse (further referred to as I) 
was devoted to a study of subalgebras of the real and com­
plex forms of the algebra g2 and their matrix realizations. 
The nonlinear equations were derived in the second paper2 
(further referred to as II). In this paper we present the actu­
al nonlinear superposition formulas. 

We recall that a system of n first-order ordinary differ­
ential equations (ODE's) 

Y = 1)(y,t), Y,1)EF n
, IER, F = R or C, (1.1) 

is said to allow a nonlinear superposition formula, if its gen­
eral solution can be expressed functionally in terms of a finite 
number m of particular solutions, and n significant con­
stants, 

( 1.2) 

If such a formula exists, then the set {Y1(t), .. ,Ym (t)} is 
called a fundamental set of solutions. 

Lie and Scheffers3 have characterized all such equations 
and proven that they must have the form 

r 

y(I) = L Zd/)~k (y) , (1.3 ) 
k=1 

where the coefficients ~k (y) are such that the vector fields 

n a 
X k = L S't(y) - (1.4) 

1'= 1 ayl' 

generate a finite-dimensional Lie algebra L. 
It was recently shown4 that indecomposable systems of 

nonlinear differential equations with superposition formulas 
are associated with transitive primitive Lie algebras.4 Relat-

a) Present address: Centre de Recherches Mathematiques, Universite de 
Montreal, C.P. 6128, Succ. A, Montreal, Quebec H3C 317, Canada. 

ed papers were devoted to equations based on the classical 
Lie groups and their maximal subgroups.5-8 For the motiva­
tion of our interest in superposition formulas and applica­
tions we refer to earlier papers. 1.2.4-11 For an extension of the 
approach from Lie algebras to Lie superalgebras, see Ref. 12. 
For applications to the study of nonlinear wave equations see 
Ref. 13 and references therein. The relation between nonlin­
ear ODE's with superposition formulas and Backlund trans­
formations is discussed, e.g., by Chau. '4. '5 Such systems of 
first-order ODE's can be used to integrate interesting sec­
ond-order ODE's. 16.17 

The right-hand side of Eq. (1.3) can, for I fixed, be 
viewed as an element of the Lie algebra L [with a basis 
(1.4) ]. As time I varies, the right-hand side of Eq. (1.3) 
describes a curve in this Lie algebra. 

The solutions of the equations can in turn be written in 
the form6.7 

y(t) = G(I)yo , ( 1.5) 

where Yo is a constant vector and G(t) is a path in the Lie 
group G, corresponding to the Lie algebra L. In order to 
obtain the superposition formula (1.2) explicitly, we pro­
ceed as follows. 

(i) Construct the model of the homogeneous space 
G IGo-M for which the infinitesimal group action is given 
by the vector fields (1.4). Here G is the connected compo­
nent of the Lie group corresponding to the Lie algebra L of 
Lie's theorem, Go is the subgroup leaving the origin invar­
iant. The Lie algebra Lo C L corresponding to Go is the subal­
gebra of vector fields (1.4), vanishing at the origin. Choose 
some parametrization of the group G and write the formula 
for the (in general nonlinear) action of G on M. This is for­
mula (1.5). 

(ii) Reconstruct the path G(t) in the group G. To do 
this we take m solutions of Eqs. (1.3) and write (1.5) for 
them; 

Yk (t) = G(t)Yko' k = 1, ... ,m . ( 1.6) 
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We must then solve Eqs. (1.6) for the matrix elements of 
G (t) (in the chosen parametrization). The set of algebraic 
equations (1.6) will determine G(t) uniquely if the isotropy 
subgroup of G leaving the initial conditions invariant is only 
the identity group. In other words, Y 1 (t), ... ,y m (t) will be a 
fundamental set of solutions if the equations 

Yk (0) = G(t)YkO' k = 1, ... ,m , 
imply 

G(t) = Id, 

( 1.7) 

where Id is the identity transformation on M [and Y k (0) are 
viewed as m points on M). Once G(t) is completely deter­
mined in terms of the solutions Y k (t), formula (1. 5) is the 
required superposition formula. 

Each solution Y k (I), together with its initial condition 
value Yk (0), when substituted into (1.6), provides n alge­
braic equations for the matrix elements gik (t) of G (t). Since 
the dimension of the Lie group G is by assumption 
dim G = r, we need at least r equations to determine G(t). 
Hence we obtain a lower limit on the number of solutions m 
in a fundamental set, namely, 

nm';Pr. ( 1.8) 

In the case of the G2 groups we have r = 14 and n = 5 
for the case of maximal parabolic subgroups, n = 6 for sim­
ple SL(3,C) type subgroups, and n = 8 for semisimple sub­
groups like SL(2,C) ® SL(2,C). We shall see that we have 
m = 3 in the first three cases and m = 2 in the last. Thus the 
inequality ( 1.8) comes as close as possible to being saturated 
and the system of algebraic equations (1.6) is only slightly 
overdetermined. 

The actual task of reconstructing the group element can 
be viewed as a problem in algebraic geometry. Thus we can 
consider the general element of G2 (C) to be represented by a 
matrix G(t)EC7X7

• The 49 matrix elements gik 

(i,k = 1, ... ,7) are subject to 28 orthogonality relations 
[since we have G2(C)EO(7,C»), seven relations expressing 
the invariance of three-index tensor T, and n' m relations 
obtained from ( 1.6). The 35 + n' m surfaces in C7 x 7 , corre­
sponding to these relations, must intersect in precisely one 
point (for any fixed t). 

The reconstruction procedure in all cases treated in this 
paper will be essentially the same. The equations to be solved 
are nonlinear; however, it is always possible to solve them in 
two steps. In the first step we solve all the equations that are 
linear in some of the matrix elements gik and express these 
elements in terms of known solutions and one or more re­
maining matrix elements. The second step is nonlinear and 
consists either of solving a nonlinear algebraic equation for 
one remaining matrix element, or of finding the eigenvalues 
and eigenvectors of some given matrix. 

The final results and the calculations involved can be 
quite cumbersome. In these cases we shall only outline the 
results here and refer for details to Ref. 18. 

The paper is organized as follows. In Sec. II we obtain 
the superposition formulas related to the two different maxi­
mal parabolic subgroups of the complex group G2(C) and 
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also of the noncompact real group G~c (R). The simple sub­
group SL(3,C) CG2(C), as well as the corresponding real 
forms, are treated in Sec. III. Section IV is devoted to the 
case of the semisimple subgroup SL(2,C) ® SL(2,C), and 
also to the corresponding real forms. 

II. SUPERPOSITION FORMULA RELATED TO MAXIMAL 
PARABOLIC SUBGROUPS 

The complex Lie algebra g2(C) has two different maxi­
mal parabolic subalgebras, denoted Pa, and Pa2 in I and II. 
Both of them are nine dimensional. The homogeneous 
spaces G 2 (C)IPa, and G 2 (C)IPa2 (Pa, are the correspond­
ing maximal parabolic subgroups) are hence five dimension­
al. 

The nonlinear equations corresponding to the action of 
G2(C) on G2 (C)IPa, are a set of five coupled complex con­
formal Riccati equations [see II, Eq. (2.11) ). These are spe­
cial cases of the conformal Riccati equations corresponding 
to the action ofO(7,C) on the homogeneous space O(7,C)/ 
PI (see I and II). For the G2(C)1 Pa2 space we have obtained 
a set of five coupled equations in which the right-hand sides 
are polynomials of order 4 in the dependent variables [see II, 
Eq. (2.22»). 

The homogeneous spaces G 2 (C)IPa, (i = 1,2) in these 
two cases are Grassmannians of isotropic i planes in C7 Xi. 

The group G2(C) is realized as a subgroup ofO(7,C), leav­
ing a certain third rank tensor T invariant. 

When discussing parabolic subgroups Pa" it is conven­
ient to use a realization in which G2(C) is realized as a group 
of matrices GEC7 x 7 satisfying 

G TJG = J, gab T bed = Tamngmcgnd , 

(J)ab = 0a.8.a' a,b,c,m,n = 1, ... ,7, 

T bed = - Tbdc == ( Tb ) cd , 

(T1)14= - (1I.j2)(T1)S6=i, 

(T2h4 = (l/.j2)( T2)S7 = i, 

(T3)34 = - (l/.j2)( T3)67 = i, 

( T4) 17 = (T4 h6 = (T4) 3S = - i , 

(T5)45 = - (1I.j2)( Ts) 12 = i , 
(T6)46 = (1I.j2) (T6) 13 = i, 

(T7)47 = - (1I.j2)( T7)23 = i 
(the superscript T denotes transposition). 

(2.1a) 

(2.1b) 

(2.2) 

In keeping with II we shall use both homogeneous and 
affine coordinates to parametrize the Grassmannians 
G 2 (C)IPa, . In homogeneous coordinates we have 

t ~ ~~. X, ,x,ee'''. x,ee" - '" xo. i ~ 1.2. 

(2.3) 

sTJs=O 

and two points 5 I and 5 coincide if 
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s' = SH, HeGL(i,C). (2.4) 

In affine coordinates the redundancy (2.4) is removed 
and we have 

7J = (~:). 
ZI=XIX3-leCXi, Z2=X~3-leC7-2i)Xi, (2.5) 

ZPi + JiZ I = -Z[J7_ 2i Z 2 

(Jp, eCP,xP, and it has l's on the antidiagonal and O's else­
where). 

In homogeneous coordinates we write the superposition 
formula (1.5) as 

(

XI (t») (Gil (t) GI2 (t) GI3(t») 81 (0») 
X 2(t) = G21 (t) G22 (t) G23 (t) X2(0), 

X3(t) G31 (t) G32 (t) G33 (t) 3(0) 

(2.6) 

where the nonlinearity is introduced by the condition (2.4). 
In (2.6) Gab (t) is a complex matrix of the appropriate di­
mension (1 <a,b<3). 

In affine coordinates the superposition formula is non­
linear, namely, 

ZI(t) = [GIIZI(O) + GI2Z2(0) + G13 ] 

X [G31Z 1 (0) + G32Z 2 (0) + G33 ] -I, 
(2.7) 

Z2(t) = [G2IZ I(0) + G22Z 2(0) + G23 ] 

X [G31Z 1 (0) + G32Z 2 (0) + G33 ] -I , 

where the constant matrices ZI (0), Z2(0) are related to the 
initial conditions. 

We recall that the equations are written in affine coordi­
nates and that knowing a solution means knowing its affine 
coordinates. From them we can get the homogeneous co­
ordinates up to the ambiguity given by (2.4). 

Each solution has five independent components and 
hence, when substituted into (2.6) or (2.7), provides five 
equations for the 14 independent components of the G2(C) 
group elements gik. Since we have 3 X 5 > 14, at least three 
solutions are needed to obtain gik uniquely and we shall 
show below that indeed three generically chosen solutions 
are sufficient, both for the case of Pa, and Pa2 . 

A. The G2(C)IPa, equations 

The maximal parabolic subgroup Pa, of G2 (C) leaves a 
one-dimensionallightlike vector space invariant. The Grass­
mannian consists of isotropic one-planes in C7X I. 

1. A fundamental set of solutIons 

It is convenient to perform most ofthe reasoning in ho­
mogeneous coordinates. In this case we have XI,x3eC, 
X2eC' x I . Let us assume that we know (up to a non vanishing 
scalar factor) the homogeneous coordinates of three solu­
tions u(t), v(t), and w(t). Out of these solutions we can 
form four G2(C) invariants, namely the scalar products 

(u,v) = uTJv, (u,w) = uTJw, (v,w) = vTJw, 

and the trilinear product 

S = TJuvw = Tabc (JU)aVbWc . 
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(2.8) 

(2.9) 

We proceed to establish the conditions to be imposed on 
the initial conditions u(O), v(O), and w(O) for their joint 
isotropy subgroup ofG2(C) to be the identity group. Thus 
the conditions . 

Gu(O) = A.u(O), Gv(O) = JLv(O), Gw(O) = vw(O) , 

A.,JL,veC, A.,JL,v,lO, (2.10) 

should imply 

G = pI, peC, p,lO. (2.11 ) 

With no loss of generality we can, in view of transitivity, 
choose 

U(O)=(OOOOOOl)Ta , a,lO. (2.12) 

The first of conditions (2.10) determines all off-diagonal 
elements in the last column ofG to beg,; = 0,; = 1, ... ,6. The 
orthogonality condition in (2.1 ) then yields g Ii = 0, 
j = 2, ... ,6, and also gllg77 = 1. Combining these results with 
the invariance of Tin (2.1) [choosing, e.g., c = 7 in (2.1) ], 
we obtain further restrictions on gik. Finally, the isotropy 
group of u(O) in (2.12) consists ofG2(C) matrices, satisfy­
ing 

g,; = 0, ; = 1, ... ,6, gllg77 = 1 , 

gij =0, j=2, ... ,6, (2.13) 

g42 = g52 = g62 = 0 , g43 = g53 = g63 = 0 . 

Now let us choose the initial condition for the second solu­
tion to be 

v(O) = (lOOOOOO)TP, P,lO. (2.14) 

Two constant vectors U and v on the Grassmannian can be 
transformed into u(O) and v(O) as long as their scalar prod­
uct satisfies 

(u,v) = (u(O),v(O») = ap,lO. (2.15) 

Imposing the second of conditions (2.10), and using orthog-
onality as well as the invariance of the tensor T, we find that 
the isotropy group of the pair {u(O),v(O)} consists ofmatri-
ces of the form 

gil 0 0 0 0 0 0 
0 g22 g23 0 0 0 0 
0 g32 g33 0 0 0 0 

G= 0 0 0 1 0 0 0 
0 0 0 0 gllg22 - gllg23 0 
0 0 0 0 - gllg32 gllg33 0 
0 0 0 0 0 0 gIll 

(2.16) 

with 

(2.17) 

We take the initial condition for the third solution in the 
general form 

(2.18) 

The matrix G of (2.16) will leave (2.18) invariant (up 
to a factor A. ,l 0) if the remaining matrix elements g ik satisfy 
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(A - gil )w, (0) = 0, (A - l)w4 (0) = 0, 

(A - gii')w7 (0) = 0, 

(g22 - A)W2(0) + g23W3(0) = 0, 

g32W2(0) + (g33 - A)W3(0) = 0, 

(g2zgll - A)W5(0) - gllg23W6(0) = 0, 

- gllg32W5(0) + (gllg33 - A)W6(0) = O. 

(2.19) 

These conditions will imply thatgik = {jik' i.e., G = 1, if 
and only if the components of w(O) satisfy 

w4 (0) #0, {WI (0),w7(0)}#{0,0}, 
(2.20) 

W2(0)W6(0) + W3(0)W5(0) #0. 
The invariants (2.8) and (2.9) for our choice of initial 

vectors are 

(u(O),v(O» = a/3, (u(O),w(O») = ayw,(O) , 

(v(O),w(O») =/3yw7(0), S= ia/3yw4 (0) . 
(2.2Ia) 

Moreover, the isotropy condition w T (O)Jw(O) = 0 im­
plies 

W2(0)W6(0) + W3(0)W5(0) 

= -w,(0)w7(0) -!~(O) 
= (1I2a2/32r)[S2 

- 2(u(0),v(0) )(u(O),w(O) )(v(O) ,w(O»)]. (2.2Ib) 

We arrive at the following result. 
Theorem 1: A fundamental set of solutions of the system 

of nonlinear ordinary differential equations associated with 
the action ofG2 (C) on G 2 (C)IPa, consists of any three par­
ticular solutions u, v, and w satisfying the following condi­
tions. 

(i) At leasttwo of the scalar products (u,v), (u,w), and 
(v,w) are nonzero. 

(ii) S= T(Ju)vw#O. 
(iii) S2 - 2(u,v) (u,w) (v,w) #0. 

These conditions must be satisfied by the initial data at t = 0 
to obtain a local superposition formula and for all t for a 
global one. • 

2. The superposition formula 

In order to tum (2.7) into a superposition formula we 
must now express all the matrix elements gik (t) in terms of 
three particular solutions, say u(t), v(t), and w(t), satisfy­
ing the conditions of Theorem 1. 

The construction follows the outline presented in the 
Introduction and parallels the scheme used in the proof of 
Theorem 1. 

Using two solutions, say u(t) and v(t), orthogonality 
and the invariance of the tensor T, we express all elements 
gik linearly in terms of g" and gab with a,b = 2,3. We also 
obtain one nonlinear relation between the remaining five ele­
ments. The third solution w(t) is then substituted into (2.7). 
This provides six more equations: from four of them we ex­
press gab (a,b = 2,3) in terms of g II' still only solving linear 
equations. One more equation then provides a quartic equa­
tion for gil (t). This equation has four different roots, but 
only one of them satisfies the obligatory relation g" (0) = 1. 
For all details and the final formulas see Ref. 18. 
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B. The G2(C)IPu • equations 

The group Paz leaves a two-dimensional completely iso­
tropic subspace ofC7 invariant. The corresponding homoge­
neous space G 2 (C)IPaz is a subspace of the Grassmannian 
of isotropic two-planes in CX2. We shall proceed as in the 
case of Pa " remembering, however, that, e.g., the homoge­
neous coordinates S of (2.3) parametrize a matrix in C7 x 2 • 

1. A fundamental set of solutions 

We shall again need three particular solutions. We 
choose the initial conditions for the first two in the form 

u(O) = (O,O,I)Ta(O), v(O) = (l,O,O)T/3(O) , 

a(O),/3(O)EGL(2,C) . (2.22) 

The requirement that a G2 (C) matrix [as in (2.6)] 
should stabilize u(O) and v(O) implies 

GI3 = 0, G23 = 0, G2, = 0, G3• = o. (2.23) 

Invoking the invariance ofthe tensor T, we find, element by 
element, that 

(2.24) 

and that the general element of the isotropy group of the two 
initial condition sets u(O), v(O) of (2.22) is 

g5~66 -g5~67 0 0 0 0 0 

-g5~76 g5~77 0 0 0 0 0 
0 0 g33 0 0 0 0 

G= 0 0 0 0 0 0 
0 0 0 0 g55 0 0 
0 0 0 0 0 g66 g67 

0 0 0 0 0 g76 g77 
(2.25) 

with 

g55(g6~77 - g67g76) = 1, g3~55 = 1 . 

Let us choose the initial conditions for the third solution to 
be 

w(O) = (:~~~~) y(O), y(0)EGL(2,C). 
w3 (O) 

(2.26) 

We shall also denote the two columns in w(O) by wa, (0) and 
W a2 (0), a = 1, ... ,7. 

Using the three initial conditions "bivectors" we can 
form the following bilinear G 2 (C) invariants 

U
T(O)J7V(O) = a T(O)Jz/3(O) , 

U
T(O)J7W(O) = a T(O)J2w.(O)y(O) , 

VT(O)J7W(O) = /3 T(O)J2W3 (O)y(O) . 

(2.27) 

(2.28) 

From the stabilization Gw(O) = w(O)H, HEGL(2,C), we 
get 

Gllw.(O) = w.(O)H, 

(go~3 0 ~ ) w2(O) = w
2
(O)H , 

o g55 

G33W3(O) = w3 (O)H. 
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This system of 14 equations will imply that the point 
isotropy group of the three initial conditions is G = 1, if and 
only if det WI (0) #0 or det w3(0) #0 and 

DI =W31 (0)W42 (0) - W32 (0)W41 (0) #0, 

D 2=W31 (0)W52 (0) - wdO)w51 (0) #0, 

D3=W41 (0)W52 (0) - W42 (0)W51 (0) #0. 

In fact, suppose that det w3 (0) #0, then H = W 3-
1(0) 

XG33W3(0) and 

e~' : g~) w,(O) - w,(O)w,- '(O)G"w,(O) ~ 0, 

(2.30) 

which is a linear system of six equations for g33' g55' g66' g67' 
g76' g77 with the unique solution 

(2.31 ) 

To put all the conditions above in an invariant form that does 
not depend on the specific choice of u, v, and w, we note that 
we can construct certain invariants (not necessarily all inde­
pendent), such as 

Sijk = TabcJaa,ua,;VbjWCk , 

S ijk = TabcJaa,ua,;WbjWck , 

a,b,c = 1, ... ,7, i,j,k = 1,2, 

Sijk = TabcJaa,va,;WbjWck' 

(2.32a) 

(2.32b) 

(2.32c) 

Let us choose u, v, and W in the simple form 
U = (001) T, v = (100) T, and W = (l,w2 (0),I)T. Thejusti­
fication of this choice is that the non vanishing invariants in 
(2.32) are given only in terms of w2 (0) as 

Sl2l = iUJ41 (0) , 

S122 = iUJ42 (0) , 

S i 12 = - Sl21 + .j2iUJ51 (0) , 

S ~12 = - S122 + .j2iUJ52 (0) , 

S i'12 = .j2iUJ31 (0) + Sl2l , 

S;12 = .j2iUJ32 (0) - S122' 

(2.33 ) 

We sum up all the results ofthis subsection as the following 
theorem. 

Theorem 2: A fundamental set of solutions of the equa­
tions associated with the action of G 2 (C) on G 2 (C)IP

a2 

consists of three particular solutions u, v, W with initial con­
ditions satisfying the following. 

(i) At least two of the determinants det(u(O),w(O»), 

det(u(O),v(O»), det(v(O),w(O») are nonzero. 

(ii) (S ;'12 - Sl2l )Sl2l - (S ;'12 + S122)Sl2l #0, 

- (S;12 +S122)(Si12 +Sl2l)#O, 

Sl2l (S il2 - S122) - S122(S i12 + Sl2l) #0. 

2. The superposition formula 

The procedure of reconstructing G(t)EG2 (C) is very 
similar to the one described for Pal' Indeed, using two solu-
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tions u(t) and v(t), orthogonality, and the invariance of the 
tensor T, we express all the elements g;k of G(t) linearly in 
terms of g55 and gab with a,b = 6,7. The third solution gives 
all the remaining information: the gab (a,b = 6,7) are then 
expressed linearly in terms of g55 and g55 (t) satisfies a cubic 
equation which admits only one solution such that 
g55(0) = 1. For all details see again Ref. 18. 

C. Discussion of real cases G~C(IR)/Pa, and G~C(IR)IPa2 

These cases are completely analogous to the complex 
cases above, except that all the entries have to be real. We 
also have to consider a tensor T' = - iTin order to have a 
tensor with all real entries. The fact that the field of complex 
numbers C is algebraically closed, did not play any role 
above, so the transition to lR poses no difficulty. The nota­
tions are the same as in I and II, i.e., G~c(lR) is the noncom­
pact real form ofG2 (C). 

III. SUPERPOSITION FORMULAS RELATED TO 
MAXIMAL SIMPLE SUBGROUPS 

This section is devoted to the ODE's related to the ac­
tion of G2 (C) on the space G 2 (C)/SL(3,C), G~(lR) on 
G~(lR)/SU(3), G~c(lR) on G~c(lR)/SL(3,lR) and 
G~c (lR) ISU (2,1 ). The subgroups are of (complex, or real) 
dimension 8. We are hence dealing with six-dimensional ho­
mogeneous spaces and with systems of six equations in each 
case. The equations spelled out in Ref. 2 are all special cases 
of projective Riccati equations. 

We again use a representation of G 2 (C) as a subgroup of 
0(7,C); however, the matrix J in (2.1a) is chosen to be the 
identity matrix 17 when studying G 2 (C) or G~(lR). When 
considering the noncompact real form G~c(lR), we choose 
J = J 4.3 = diag(1, 1, 1,1, - 1, - 1, - 1). The invariant ten­
sor T is completely antisymmetric in this realization and in 
agreement with (2.12) ofI we take 

TI27 = T I54 = TI63 = T 235 = T 264 = T374 = T576 = 1 
(3.1) 

(all components not related to these by permutations, van­
ish). 

We can again write the superposition formula in the 
form (2.6) or (2.7). However, for G 2 (C) we shall now have 

XI,x3EC3XI, X 2EC1XI
, 

(3.2a) 

XiXI +XJX2 +XjX3 = 1, (3.2b) 

and the six components (ZI,Z2) are all independent. 
Each solution of the equation provides six equations for 

the 14 independent components of G(t). Since we have 
3 X 6 > 14, we shall again need at least three solutions to re­
construct G(t) and again three will be sufficient. 

A. The G2(C)/SL(3,C) equations 
,. Fundamental set of solutions 

We choose the first known solution u(t) to satisfy the 
initial condition 

u(O) = (000 1 000) T (3.3 ) 
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[satisfying (3.2b) for t = 0 and hence for all t]. The isotropy 
group of u (0) is characterized by the condition 

Gu(O) =AU(O), AEC, A #0. (3.4) 

This implies gi4 = 0 for i = 1,2,3,5,6,7. Orthogonality of G, 
i.e., GT G = I further implies g4i = 0, i = 1,2,3,5,6,7, and 
i44 = 1. Invariance of the tensor T can be used to relate 
columns 5, 6, and 7 of G to columns 1,2,3, and 4, 

gi5 = - Tijkgjlgk4' 

gi6 = - TijkgJ2gk4' gr7 = - Tijkgj3gk4 . 
(3.5) 

Explicitly we find that the general form of an element of 
the isotropy group of (3.3) is 

(

Gtt 0 
G= 0 g44 

G31 0 

(3.6) 

We choose the second solution to satisfy the initial con­
dition 

gtt 0 0 0 0 0 

0 g22 -gllg4~32 0 0 -g~62 

0 g32 g"g4~22 0 0 -g4~72 

G= 0 0 0 g44 0 0 

0 0 0 0 g"g44 0 

0 g62 gttg4~72 0 0 g4~22 

0 gn - gttg4~62 0 0 g4~32 

gt, = 1, i44 = 1, (g44 - g I' ) cos a = 0 . 

Thus four elements in the second column, as well as the 
signs of g II and g44' remain to be pinned down. Notice that if 
we choose a#1T/2, we already haveg44 = gIl' 

Let us choose a third solution w(t) that satisfies the 
general initial condition 

w(O) = (w, (0),w2(0), ... ,w7 (0) )T, 
(3.10) 

W(O)TW(O) = 1. 

We can form four invariants out ofthe vectors u(O), v(O), 

and w(O), namely, 

and 

(u(O),v(O») = cos a, (u(O),w(O») = w4(0), 

(v(O),w(O») = sin a w, (0) + cos a w4(0) (3.11 ) 

(3.12) 

The requirement that G of (3.8) should stabilize w(O), i.e., 
Gw(O) = AW(O) implies 

(gtt - A)WI(O) = 0, (g44 - A)W4(0) = 0, 

Thus if we require that 

ws(O) #0 
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(3.13) 

(3.14 ) 

v(O) = (sin a,O,O,cos a,O,O,O)T, O<a<1T. (3.7) 

Clearly we have V(0)2 = 1, (u(O),v(O») = u(O) TV(O) 

= cos a. The requirement that Gin (3.6) should belong to 
the isotropy group of v(O), as well as of u(O), imposes 
further restrictions. Thus Gv(O) = AV(O), AEC, A #0 im­
plies 

gll=A, (g44-A)cosa=0, 

g21 =g31 =gsl =g61 =g71 =0. 

Orthogonality of G implies 

gtl = 1, gli = 0, i = 2,3,5,6,7 . 

Further relations are obtained from the invariance of the 
tensor T: 

Finally, an element of the simultaneous isotropy group 
of u(O) and v(O) has the form 

0 

- g'lgn 

gttg62 

0 (3.8) 

0 

-g'lg32 

gttg22 

(3.9) 

and that at least two of the relations 

w,(O)#O, w4(0) #0, or cosa#O (3.15) 

hold, we obtain 

gtt = g44 = 1 = A . (3.16) 

Furthermore, the condition Gw(O) = w(O) yields 

CO) w2(0) w7 (0) - w.(O)) 
w2(0) - w3 (0) - w6(0) - W7(0) 

w6(0) - w7 (0) w2(0) w3 (0) 

w7(0) w6(0) - w3 (0) w2 (0) 

C-') X g32 = o. 
g62 

gn 

The determinant of this system is 

D = [W2(0)2 + W3(0)2 + W6(0)2 + W7(0)2]2. 

Ifw(O) is such that 

D#O, 

(3.17 ) 

(3.18) 

(3.19) 

then (3.17) implies g22 = 1, g32 = g62 = g72 = O. The iso-
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tropy group of u(O), v(O), and w(O) is thus the identity 
group. 

We arrive at the following theorem. 
Theorem 3: A fundamental set of solutions of the non­

linear ODE's associated with the action of G2 (C) on 
G2 (C)/SL(3,C) consists of three particular solutions u(t), 
v(t), and w(t). When theirinitialconditions u(O), v(O), and 
w(O) are given in homogeneous coordinates, they must, in 
addition to the obvious conditions u2 = v2 = w2 = 1, satisfy 
the following. 

(i) At least two of the scalar product (u,v), (u,w), 
(v,w) are nonzero. 

(ii) S = Tuvwi=O . 
(iii) 1 - (U,V)2 - (U,W)2 - (V,W)2 

+ 2(u,v)(v,w)(w,u) - S2i=0. • 
Comments: (1) Conditions (i)-(iii) are generic ones 

and they must be imposed on the initial conditions at t = o. 
(2) Conditions (i) are an invariant formulation of 

(3.15). Condition (ii) in view of (3.12) assures both 
sin ai=O and that (3.14) holds [i.e., guarantees that u(O), 
v(O), and w(O) are linearly independent]. Condition (iii) is 
an invariant rewriting of (3.19). 

(3) The equations are written in affine coordinates and 
hence so are the solutions, which have six components. The 
seventh component in homogeneous coordinates is calculat­
ed, up to an irrelevant sign, from the normalization condi­
tions (e.g., u2 = 1). 

( 4) The invariance of the scalar products and Sunder 
G2 (C) implies that these expressions are time independent, 
e.g., S(t) = S(O). 

2. The superposition formula 

In this (and only this) case we present the final superpo­
sition formula explicitly, though we drop most of the deriva­
tion. We choose three particular solutions of the nonlinear 
ODE's in such a manner as to satisfy the conditions of 
Theorem 3. These solutions are given in affine coordinates 
and we denote them as 

f.t(t) = (f.t;.f.ta) T, v(t) = (v;.va) T, w(t) = (wj,wa ) T, 

; = 1,2,3, a = 5,6,7. (3.20) 

We define their norm squared by, e.g., 
~2 = f.t~ + f.t~ + f.t~ + f.t~ + f.t~ + f.t~ . In homogeneous co­
ordinates we have 

u(t) ~ C}(t). v(t) ~ (1)P(t). 

w(t) ~ C}(f) · (3.21) 

where a, p, and r are not known. We make a specific choice 
of initial conditions, so as to minimize algebraic complica­
tions, namely, 

u(O) = (000 1 000 )T, v(O) = (1!~)(1 00 1000)T, 

w(O) =! (1101 1 OO)T, (3.22) 

satisfying 
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U(0)2 = V(0)2 = W(0)2 = 1 . (3.23a) 

Since relation (3.2a) must hold for all times t, we also have 

(~2 + l)a2 = 1, (v2 + I)P2 = 1, (00
2 + 1)y2 = 1. 

(3.23b) 

The superposition formula can be written in affine co­
ordinates as 

S' = ~J= Igij (t)Sj (0) + ~~ = sgja (t)lla (0) + gj4 (t) 

I ~J= I g4j (t)Sj (0) + ~~ = Sg4a (t)lla (0) + g44(t) , 

;=1,2,3, 
(3.24) 

~J= I gaj (t)Sj (0) + ~r= Sgab (t)llb (0) + ga4 (t) 
lla = 3 7 ' 

~j= Ig4j (t)Sj (0) + ~b = Sg4b (t)1lb (0) + g44(t) 

a=5,6,7. 

Following the outline presented in the Introduction, we 
obtain 

x( 1 W _ 1 v ) 
WOO + 1 p wv+l p 

1 + 2 Tal-'v TvPr TI-'pu vpvpf.trf.tu , 
(wv + I) 

ga4 = (~2 + 1)- 1/2f.ta , (3.25) 

gas = [lI(wv + I)] Taprf.tpvr ' 

1 1 
ga6 = 1 Taprf.tpwr + 1 TaPr vpf.tr 

WOO + wv + 
( 2 1) -1/2 1 T T - ~ + al-'p I-'Pr vpf.trf.tp , 

wv+l 
~2 + 1 

ga7 = TaPr vpwr 
(wv + I)(WOO + 1) 

1 
+ TaPrf.tpwr 

WOO + 1 

B. The G~(lR)/SU(3) equations 

(~2+1)-1/2 

(wv + 1) 

The equations, solutions, and superposition formulas 
coincide with those given above for G2 (C)/SL(3,C), except 
that all entries are real [in the superposition formulas 
(3.24), etc.]. 
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C. The G~C(IR)/SL(3,1R) equations 

Instead of the metric given by the identity matrix 17 , we 
use the metric 14,3 = diag( 1,1,1,1, - 1, - 1, - 1,). We 
must hence transform the G 2 invariant tensor T. Within 
G 2 (C) the appropriate transformation is 

14 ,3 = H TI7H, T' = H - I THH, 

H = diag( 1,1,1,I,i,i,i). (3.26) 

Introducing the matrices T j = - TTEC7X7, such that 
(Tj)jk = Tijk' (i,j,k = 1'00.,7), we find that (3.26) implies 
T; = iTj for j = 1,2,3,4 and Tic = - iI4 ,3 Tk (k = 5,6,7). 
For G~c(R) it is preferable to use a real tensor, so we put 
Til = - iT', and obtain 

T;' = Tj, j = 1'00',4, T;: = - 14•3 Tk (k = 5,6,7) . 
(3.27) 

All the results obtained for G 2 (C)/SL(3,C) can now be 
carried over to G~c (R) ISL( 3,R), except that the equations, 
solutions, and matrix elements gjk are now real. All scalar 
products must be interpreted in terms of the appropriate 
metric, e.g., (Jl,v) = f-lIVI + f-l2V2 + f-l3V3 - f-l5V5 - f-l6V6 
- f-l7V7 and the tensor Tis replaced by Til as in (3.27). The 

three fundamental solutions can be chosen as in (3.20) and 
(3.21) [i.e., we have, e.g., u2 (t) = 1]. 

D. The G~C(IR)/SU(2, 1) equations 

The group SU (2,1) leaves a negative length vector in 
R7X 

I invariant, hence G~c(R)/SU(2, 1) is realized, in ho­
mogeneous coordinates, in terms of vectors XEIR 7 x I , satisfy­
ing, e.g., x2 = x T I 4.3 X = - 1. The fundamental set of solu­
tions must be chosen appropriately. Without proof we state 
the theorem that is an adaptation of Theorem 3 and is proved 
in a similar manner. 

Theorem 4: A fundamental set of solutions of the non­
linear ODE's associated with the action of G~c(R) on 
G~c(R)/SU(2,1) consists of three particular solutions 
u(t), v(t), and w(t). In homogeneous coordinates we 
choose the initial conditions to satisfy u2 = v2 = w2 = - 1, 
and the following invariant conditions. 

(i) At least two of the scalar products (u,v), (u,w), 
and (v,w) are nonvanishing. 

(ii) S = Til (/4.3 u)vw#O. 
(iii) - 1 + (U,V)2 + (U,W)2 + (V,W)2 

+ 2(u,v) (u,w) (v,w) + S2#0. • 
An example of a suitable choice replacing (3.22) is 

u(O) = (000000 1)T, 

v(O) = (l//i) (000010 1)T, (3.28) 

w(O) = ! (1 000 1 1 1) T. 

The superposition formula can be derived in exactly the 
same manner as in the complex case and will be very similar. 
We do not present it here. 

IV. SUPERPOSITION FORMULAS RELATED TO 
MAXIMAL SEMISIMPLE SUBGROUPS 

The spaces to be considered in this section are 
G 2 (C)/[SL(2,C) XSL(2,C)], Gi(R)/[SU(2) XSU(2)], 
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G~c(R)/[SU(2) X SU(2)], and G~C(R)/[SU(1, 1) 
X SU ( 1,1 ) ]. We make use of the metric 17 in the first two 
cases, 14 ,3 in the last two. The dimension of these spaces is 
d = 8 (complex in the first case, real in the other three). We 
are hence dealing with eight equations and each solution has 
eight independent components. Since we have 2 X 8 > 14, 
two solutions provide more than enough equations for 
gjk (t). We shall show that in this case a fundamental set of 
solutions consists of just two solutions. 

In homogeneous coordinates each solution is written as 
a "trivector" uEF7X3 (F= C or F= R): 

u-u = uH, HEGL(3,F), XIX3EF3X3, X2EF!X3, 

(4.1 ) 

where u and u represent the same point in the homogeneous 
space. The redundancy inherent in ( 4.1 ) is removed by using 
affine coordinates 

W I =XIX 3-
1, W2=X~3-1. (4.2) 

We can choose the normalization to be such that we 
have u T u = I, i.e., 

A. The G2(C)/[SL(2,C)X SL(2,C)] equations 
1. A fundamental set of solutions 

(4.3) 

With no loss of generality we choose the first known 
solution u (t) to satisfy the initial condition 

u(O) ~G) (4.4 ) 

G22=g44EiC. (4.5) 

We shall also use the notation 

G = {gjk}' i,k = 1'00.,7, (4.6) 

thus, e.g., the matrix elements of GI3 are gjk with i = 1,2,3, 
k = 5,6,7. 

The isotropy group of u(O) consists of matrices 
GEG2 (C) satisfying 

Gu(O) = u(O)H, HEGL(3,C), (4.7) 

which implies 

GI3 =0, G23 =0, H=G33 · 

Orthogonality GT G = 17 further implies 

G31 = 0, G32 = 0 , 

G ~ Gil + G [. G21 = 13 , G r; G I2 + G Jz G22 = 1 , 

G ~ G22 + G i; G12 = 0, G j; G33 = 13 . 
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The invariance of tensor T makes it possible to express 
columns 1, 2, and 3 in terms of columns 4, 5, 6, and 7: 

gal = - Taefge4gf5' 
(4.10) 

ga2 = - Taefge4gf6' ga3 = - Taefge4gf7 • 

Using (3.1) to make (4.10) explicit, we find that the iso­
tropy group of u(O) in (4.4) consists of matrices of the form 

0) o , 
G33 

(4.11a) 

with 

( 

0 g34 

R = -g34 0 

g24 -g14 

Gi2GIZ+i44 = 1, GLG3_,=I3 • (4.1Ib) 

Thus G depends on six independent parameters: three in G33, 

three in G12• 

We take the initial data for the second solution vet) in 
the form 

v(O) ~G} 
vT(O)v(O) = 13, det Y #0, 

X,YEC3X3
, detX #0. (4.12) 

The joint isotropy group of u(O) and v(O) consists ofmatri­
ces of the form (4.11) satisfying Gv(O) = v(O)H, 
HEGL(3,C), i.e., such that 

(g44I3 - R)G33X' = X'G33, 

X'=Xy- l
, G'{;G33X'=0. (4.13 ) 

From (4.13) we find G12 = 0 and thus 

G I2 = 0, R = 0, g44 = 1 . (4.14) 

The as yet unspecified orthogonal matrix G33 satisfies 

G33X' =X'G33 • (4.15) 

Let us now decompose X' into its symmetric and anti­
symmetric parts, 

X' =S+A, S=ST, A = -A T, (4.16) 

where, with no loss of generality, we can assume that S is 
diagonal. If all three eigenvalues of S are different and if at 
least two of the matrix elements a 12' a 13' a23 of A are nonzero, 
then (4.15) implies 

( 4.17) 

By continuity we can impose A = 1, and thus the isotropy 
group of the two initial data trivectors u(O) and v(O) is the 
identity group. 

We thus arrive at the following theorem. 
Theorem 5: A fundamental set of solutions of the non­

linear ODE's associated with the action of G2 (C) on 
G 2 (C)/[SL(2,C) ® SL(2,C)] consists of two solutions u(t) 
and v(t), satisfying certain independence conditions. In ho­
mogeneous coordinates the two solutions can be chosen to 
correspond to the initial conditions 
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u(O) ~GJ v(O) ~m, 
X,YEC3X3

, detX #0, det Y#O, (4.18 ) 

~ ~), 
-y A3 

(

AI 
Xy- I = -a 

-p 
where at least two of the numbers a, p, yare nonzero and 
AI #A2 #A3 #A I • • 

Comments: (i) The initial conditions (4.18) are not the 
most general ones possible for a fundamental set of solutions. 
A trivial generalization is obtained by applying an arbitrary 
constant G 2 (C) transformation to u(O) and v(O) as given in 
(4.18 ). 

(ii) The conditions on u(O) and v(O) could be formulat­
ed in an invariant manner, e.g., by requiring uTu = vTv = I, 
det u T v#O and imposing conditions on the quantity 
Sa.ik = TabcUbiUck (a,b,c = 1, ... ,7; i,k = 1,2,3), but we shall 
not go into this here. 

2. The superposition formula 

the superposition formula, in terms of affine coordi­
nates, is 

WI(t) = [GIl WI(O) + G I2 W2(0) + GJ3] 

X [G3I WI (0) + G32 W2(O) + G33]-I, 

W2(t) = [G21 WI (0) + G22 W2 (O) + G23 ] 
( 4.19) 

X [G31 WI (0) + G32 W2 (O) + G33 ] -I, 

wheretheGik are as in (4.5). The constant matrices W1(0), 
W2 (0) in (4.19) provide the initial conditions of Theorem 5. 

The reconstruction of the elements of Gik (t) follows the 
outline presented in the Introduction. In fact, using the two 
particular solutions WI (t) and W2 (t), orthogonality and in­
variance of the tensor T, all the submatrices Gik can be ex­
pressed linearly in terms of G33 (t). The equation satisfied by 
G33 (t) is of the form 

( 4.20) 

where Yis completely known in terms of the particular solu­
tions and can be solved to determine uniquely G33 by using 
the condition G33 (0) = 13 , For details see again Ref. 18. 

B. Discussion of the real cases 

The equations related to the compact space 
G~(R)/[SU(2) XSU(2)] coincide with those for the com­
plex case, except that all coefficients and solutions are real. 
The same holds for the superposition formulas: they coin­
cide with (4.20). 

The G~c(R)/[SU(2) xSU(2)] equations require a 
very slight modification with the respect to the complex 
case: the tensor Tshould be replaced by T" as in (3.27),I7 by 
14•3 • 

The G~c(R)/[SU(1,I)XSU(1,1)] case is somewhat 
different, in that homogeneous coordinates are introduced 
as 
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(4.21) 

Affine coordinates are 

WI =Xly-I, W2 =X2y-l, det Y:;;ofO. (4.22) 

Again the tensor T" is used instead of T, the metric is 
14,3' The reconstruction of the group element GeG~C(R) 
must take the different subdivision of u into account, but 
proceeds along lines analogous to the complex case. 

V. CONCLUSIONS 

One conclusion to be drawn from this paper is that 
methods developed for obtaining nonlinear ODE's with su­
perposition formulas, as well as the superposition formulas 
themselves, can be generalized from the classical Lie groups, 
to the exceptional simple Lie groups. In the present series we 
have treated the exceptional group G2 (C) as well as its two 
real forms, G~(R) and G~c(R). The ODE's correspond to 
the action of the group G2 on G 2IG, where G is some maxi­
mal subgroup of G2• If G is parabolic or simple, the superpo­
sition formulas uses three particular solutions to express the 
general one. If G is semisimple, but not simple, two particu­
lar solutions suffice. 

In our overall discussion of nonlinear ODE's with su­
perposition formulas, some results are basis independent, 
others depend on a choice of coordinates. If we are given a 
system of equations of the type (1.3), we can immediately 
read off the vector fields X k of (1.4) and determine whether 
they generate a finite dimensional Lie algebra. If they do, 
then this algebra L is determined in a nonambiguous man­
ner, as is the subalgebra Lo of vector fields vanishing at some 
chosen origin. The Lie algebras Land Lo then determine the 
Lie groups G and GoCG, which completely specify the 
manifold M-GIGo and the action (1.5) ofGandM. 

Our approach is a complementary one. We choose a pair 
of Lie algebras Land Lo such that they determine a transitive 
primitive Lie algebra, in order to obtain an indecomposable 
system of equations. 4 Once the choice is made the groups G 
and Go, as well as the homogeneous space M - GIGo, are 
completely determined. This determines the number of 
equations n = dim G - dim Go. The number of solutions m 
that constitute a fundamental set is also invariantly defined. 

The actual form of the considered equations depends on 
a choice of coordinates in M, and is highly nonunique. To see 
this, let Gbe SL(2,R) and Go its two-dimensional affine sub­
group. The usual coordinates on GIGo in this case lead to the 
vector fields 

{
d d 2d} 
dy'Y dy'Y dy 

and hence to the Riccati equation 

yet) = ZI (t) + Z2(t)y + Z3(t)y2 . 
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This equation represents an infinite class of equations, asso­
ciated with the same GIGo and obtained by putting 
y = </leu), where </l is any locally invertible function. For in­
stance, choosingy = tan (u/2), we obtain a "disguised" Ric­
cati equation 

u(t) = ZI + Z3 + (ZI - Z3)COS u + Z2 sin u. 

Similarly, each of the equations treated in this series, 
where we put G = G2 and Go runs through maximal sub­
groups of G 2' represents an infinite class of equations, each 
member of which corresponds to a chosen coordinate sys­
tem. 

A final comment is that for G2 (C) we have discussed 
four nonequivalent systems of equations, namely, (2.11), 
(2.22), (3.9), and (4.7) ofIl (with constraints discussed in 
II). The equations corresponding to the maximal parabolic 
subalgebra Pal have quadratic nonlinearities and are a spe­
cial case of equations associated with the space 
0(7,C)/SIM(5,C), whereSIM(5,C) is a maximal parabolic 
subalgebra ofO(7,C) (see I and II). However, for the gen­
eral 0(7,C) equations we would need six solutions to obtain 
a superposition formula, whereas for G2 we need only three. 

The G 2 (C)IP
a2 

equations have quartic nonlinearities 
whereas the corresponding 0(7,C)/OPT(5,C) equations 
have quadratic ones. Moreover, the number of equations is 
five and seven, respectively. 

The G2 (C)/SL(3,C) equations have quadratic nonlin­
earities and are a special case ofO(7,C)/0(6,C) equations, 
which are in turn a special case of projective Riccati equa­
tions for SL(7,C)! Aff(n,C). The number of solutions in a 
fundamental set is m = 7, m = 4, and m = 3 for SL(7,C), 
0(7,C), and G2 (C), respectively. 

Finally, for G2 (C)/[SL(2,C) ® SL(2,C)] we have 
eight equations with non polynomial nonlinearities. The em­
bedding into 0(7,C) gives 12 equations, associated with the 
space 0(7,C)/[0(4,C) ®0(3,C)], and the nonlinearities 
are quadratic. 
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In the paper, first-order partial differential equations are studied on superspace; the key point 
is the use of a suitable generalization of the Cartan-Kahler integration theorem on superspace. 
By means of this result, it is possible to investigate the characteristic fields and the structure of 
the solutions. 

I. INTRODUCTION 

The aim of this contribution is, first of all, to show how 
the Cartan-Kahler integration theorem 1 can be useful in 
studying particular topics in the framework of supermani­
fold theory. 

Among these, we mention the problem of partial differ­
ential equations on superspace (we say superspace since the 
treatment is essentially local). On the other hand, since the 
Cartan-Kahler integration theorem is well suited to study 
the extensions of an integral manifold to another one of 
greater dimension, we see applications to the so-called 
rheonomy problem.z Finally, in this framework we can 
study initial data problems, thus proceeding toward the 
characterization of an evolution problem in some general­
ized sense. 

As a final remark, we wish to point out that the tech­
niques studied here for first-order partial differential equa­
tions can be fruitfully used for a large class of physically 
interesting systems of partial differential equations. 

The main techniques used to study such superspace 
problems are essentially the following. 

(a) The superfield expansion in powers of the odd (J 
coordinates is 

f(x,(J) = 2.JJl-(x){}Jl-
Jl-

= f", (x) + J;I) (x){} 1 + ... + J;1 ..... n) (J I ... (J n. 

This technique, by transforming the problem of finding a 
superspace function into one of determining a set of func­
tions of even coordinates, is very powerful, but it only par­
tially solves our problem and does not clarify the structure of 
the solutions. 

(b) There are Banach analysis techniques that are spe­
cialized by taking into account the structure of the sheaf of 
supersmooth functions; in this framework we find the gener­
alized version of the Frobenius theorem. 3 These results are 
applicable only in same cases. 

(c) Finally, in this paper we show how a suitable gener­
alization of the Cartan-Kahler integration theorem4 can be 
used for this scope. 

Let us sum up the main advantages of this last tech­
nique. 

(i) The method is of practical use. The solutions are 

explicitly found by using the Cauchy-Kowalewsky theorem; 
this technique requires only the existence of algebraic opera­
tions already well defined in view of the Banach algebra 
structure of the ground exterior algebra of the superspace. 

(ii) There is a deep linkage with the problem of extend­
ing a given integral manifold to another of greater dimen­
sion; this result thus furnishes a generalization of the Cauchy 
evolution problem. 

(iii) Following this method one can try to extend the 
remarkable theory of Guillemin for an overdetermined dif­
ferential system.5 Briefly, this author was able to decompose 
a system of partial differential equations into (under)deter­
mined operators that satisfy suitable commutation relations; 
the so-called Guillemin's normal form arises. 

Further results on this topic were obtained by Gold­
schmidt, Quillen, Spencer, and Sternberg. A very good de­
finition of characteristic vectors for differential systems was 
given. Even though in this paper we shall consider only first­
order partial differential equations, this fact is also very use­
ful in supermanifold theory.5 

The limits of this analysis are (i) only the local behavior 
of the solutions can be studied; (ii) we are not able to exit 
from the framework of superanalytic functions [however, 
recent developments in this direction seem to give ideas for 
solving this problem (Yang5) ]; (iii) it is often difficult to get 
an explicit formula for the complete integral; and (iv) there 
are cases in which the Cartan-Kahler theorem cannot be 
applied; these, of course, cannot be discussed. 

Concerning the definition of supers pace, in this paper 
we use an infinitely generated exterior algebra, namely a 
Banach Grassmann algebra Q,6 playing the role of the basic 
structure to construct the superspace. This algebra is a real, 
Zz-graded commutative Banach algebra Q satisfying the fol­
lowing properties. 

(a) Given Q = Qo~ QI with Qo = R~ Qh; denote by a: 

Qo - R the body map. 
(b) For each continuous Qo linear map! Qr - Qs there 

exists a unique element VEQr+ s such thatf(u) = vu, for all 
UEQr· 

These properties are satisfied by BOO , the inductive limit 
for L- 00 of the Grassman algebras BL over RL. 

Now we construct the vector superspace, vss for short, 
as the Banach Qo module Qm.n = (Qo) m X ( Q I) n. Even if we 
are not interested in a complete construction of supermani-
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folds we have to specify the sheaf offunctions we shall con­
sider. A functionf Q m,n ..... Q m,n will be called supersmooth if 
it is Coo and if its Frechet differential is Qo linear: 

Dfx (ph) = pDfx (h), 

for each xeQ m,n, heQ m,n, andpeQo. 
A supersmooth function is called superanalytic (sa for 

short) if it is analytic, too. A vector xeom,m will be denoted 
with x = x A = (xi,rr), i = l, ... ,m, a = l, ... ,n, A 
= l, ... ,m + n. In the literature there are different defini­

tions of superspace7 related to different choices of the alge­
bra Q and of the sheaf offunctions used. In my opinion, the 
results obtained here would also be true when adopting these 
different definitions. 

II. THE MAIN THEOREMS 

First of all, analyze the problem in the classical frame­
work of real analysis. Consider the following first-order dif­
ferential equation on a real n-dimensional vector space V: 

F(xi,f/J, af/J.) = 0, i = l, ... ,n. 
ax' 

(2.1) 

Following Cartan we construct the differentiable ideal I: 

F(xi,f/J,Pi) = 0, 

dxi aF +df/J aF +dpi aF =0, 
ax' af/J api 

(2.2) 

df/J - dXPi = 0, dxi /\ dpi = O. 

We have considered both zero-forms wIO), one-forms aP), and 
two-forms W(2 ) on the vector bundle 1T: E ..... V whose standard 
fiber 1T- I (Xi) is isomorphic to R X V*. 

Definition 2.1: A solution of the differential ideal I is a 
section r of E satisfying r* 1= O. 

Let 1T s: S ..... U be a reduced vector subbundle of 1T: E ..... V 
with the same standard fiber R X V. Also let u = dim U, and 
let i: S ..... E and i': U ..... V be the related homomorphisms. 

Definition 2.2: A u-dimensional integral manifold of the 
differentiable ideal I is a section u of the vector subbundle S 
S.t. u*i* 1= O. 

Let us sum up the main ideas of Cartan's technique by 
means of the following steps. 

Step 1: Choose a point qeE such that F(q) = 0 and 
where the rank So of the algebraic system WI I) is locally con­
stant. Then determine a vector veTqE, 

(
.a a a) V= a'-i+b-+Ci- , 
ax af/J api q 

satisfying the algebraic system v J wI I) = O. The related rep­
resentative matrix A is 

o 
Let so(q) be the rank of A and So (q) be the rank of the 
incomplete A matrix, that is, the matrix A ' obtained by eras­
ing the first n columns: 

A'=(OI 0) 
aFlai . 
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Now, we can find the vector v with arbitrary components 
1T. veT1T(q) V if so(q) = So (q)<dim E - 1. If, furthermore, 
such ranks are locally constant, then there exists a one-di­
mensional integral manifold i l (s) of I s.t. i(O) = q and (d I 
ds)il(s)ls=o =V. 

Step 2: Find a vector ueTq E solving the polar system 

uJwll)=O, uJ (vJwI2» =0. (2.3) 

Let so(q) + Sl (q,v) and So (q) + s; (q,v) be the ranks of the 
related matrices A I and A ; , respectively; then 

We find the vector u if So + Sl = So + s; <dim E - 2. If, fur­
thermore, the integral element U /\ v is regular I (see 2.4), 
then there exists a two-dimensional integral manifold i2 (s,t) 
S.t. equations 

i2 (s,0) =il(s), :/2 (s,t) 1.=0,1=0 =U hold. 

Definition 2.3: A point qeE is called a zero-dimensional 
integral element if F(q) = O. A k-dimensional plane 
l:k = (q,u l /\'" /\ Uk), qeE, uieTqE, l<i<k, is called a k­
dimensional integral element if (i) F(q) = 0, (ii) Ui J wO) 

= 0, (iii) Ui /\ uj J aP) = 0, for all i,j = l, ... ,k. 
Denote by 0 k(q) the set of k-dimensional integral ele­

ments. 
Definition 2.4: A k-dimensional integral element l:k is 

called regular if: (i) for k = 0, q = l:o has a neighborhood N 
S.t. So is constant in NnOo(N); and (ii) for k>l, 
so(x) + Sl (x,v l) + ... + sdx,vl, ... ,vd is locally constant 
in a suitable neighborhood of (q,ul"",Uk ) nd (q) and l:k 
contains at least one regular (k - 1 )-dimensional integral 
element. 

A k-dimensional integral element l:k is called ordinary 
if it contains at least one (k - 1) -dimensional regular ele­
ment. 

Denote Rk (q) the set of k-dimensional regular integral 
elements in qeE. 

Remark 8. ~. It is easy to show that the vectors UI"",Uk 
give rise to a regular integral element if S(q,ul, ... ,Ur ), 
l<r<k, are chosen s.t. so(q), SI(q,UI), ... ,sr(q,ul, ... ,ur ) as­
suming the maximum values in 0' (q). 

Definition 2.5: A differential system is called involutive 
if it admits an ordinary integral element l:m for which 
1T.l:m = T1Tq M. 

In other words, the equations yielding the ordinary ele­
ment l:m = (q,u l /\ ... /\ um) do not give any constraints 
between the Ui J dx k 

, i,k = 1 , ... ,m, components. This is true 
if, by denoting with So (q), s; (q,u l ), ... the reduced char­
acters, we have sr(q,ul, ... ,ur ) = s; (q,UI'''''Ur ), for 
O<r<n - 1. 

In this paper no study will be done to understand if a 
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given system is involutive or not. 1,5 

The procedure of Steps 1 and 2 can be iterated. 
Theorem 2.1 (Cartan-Kahler theorem): Given an ana­

lytic differential system, a k-dimensional analytic integral 
manifold Nk and a point qeNk S.t. the integral element l:k 
= TqNk is regular, if So = so, ... ,Sk = sic and So + Sl 

+ ... + Sk <dim E - (k + I), then there exists, in a neigh­
borhood of q, a (k + 1)-dimensional integral manifold 
Nk+ 1 s.t.NkCNk+ l • 

The condition on the ranks SO"",Sk has the following 
meaning: if it is verified, we surely can find an ordinary inte­
gral element l:k + I containing l:k' 

In other words, an involutive system admits m-dimen­
sional integral manifolds. 

The proof of the Cartan-Kahler theorem can be found 
in Refs. 1 and 9: the main idea is to use So + '" + Sk equa­
tions to reorganize the system in a Cauchy Kowalewsky 
form; successively, after having found the solutions of these 
equations, one can easily check that the remaining equations 
are also automatically verified. In supermanifold theory, 
there are further difficulties, "residual constraints," which 
will be clarified in the following. 

If a given integral element (q,u l /\ . " /\ Uk) is not regu­
lar, singular solutions can arise; more precisely, we have the 
following definition. 

Definition 2.6: A section r: V --E is a k-singular solu­
tion if (i) it is a solution, and (ii) every k-dimensional vector 
subspace of its tangent space Tp r is, for each per, a nonre­
gular integral element. 

Concerning characteristic fields in Ref. 8 we find the 
following definition. 

Definition 2. 7 A vector field Xer( TE) is called charac­
teristic if X J ICI. The importance of characterisic fields is 
suggested by the following classical result. 

Theorem 2.21
,8,9: The characteristic fields furnish a p­

dimensional completely integrable differential system; 
moreover, if i , ... ,y p are independent first-order integrals, 
then there exists a differential system l:, equivalent to the 
previous one (that is, with the same solutions), which is 
constructed only with the differentials d/ , ... ,dyP and with 
coefficients that depend only on y' , ... ,y p • 

Following this suggestion, also in superspace theory, we 
have the following theorem. 

Theorem 2.3: The characteristic fields yield a complete­
ly integrable Frobenius system. 

Proof: If X, Yare characteristic fields and CJJEl, we have 

.!.t' xm = X J dm + d(X J m)e/. 

The formula 

[X,Y] J m =.!.t' y(X J m) - .!.t' x( Y J m) 

completes the proof. 0 
Theorem 2.4: If N is an integrable manifold of I, we can 

generate a higher-dimensional integral manifold N' by draw­
ing N along the integral lines of the characteristic fields. 

To generalize the Cartan-Kahler theorem to superman­
ifold theory, we have to consider the following theorems. 

Theorem 2.510
: A gl(m,n) matrix, that is, a matrix of the 

type 
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A=(~ ~), 
where a I,a~ eQo and a~ ,a'/eQ I' is nonsingular if and only if its 
body matrix B = <T(A) is also. 

In the following the numbers SO, ••• ,sk will denote the 
ranks of the related body matrices. In view of this theorem, 
the matrix B controls the invertibility of A but is not able to 
exclude the presence of further constraints in the algebraic 
system described by A, which can happen if the rank is not 
maximal. These constraints will be called residual con­
straints of the first type. 

Theorem 2.6 (superspace Cauchy-Kowalewsky 
theorem): E, W, G denote some vector superspaces and let 
(i) x be a coordinate in E, ye Wand aeG, and (ii) F and p be 
supersmooth and analytic functions (for short SA, Le., su­
peranalytic). The system 

aa(x,y) 
ax = F(x,y,a(x,y),Dya(x,y»), 

a(O,y) = p(y) 
(2.4) 

admits one and only one solution if x is an even coordinate; if 
x is an odd one it admits a solution if and only if the "total" 
derivative dF / dx = 0, that is, a "residual constraint" of the 
second type. 

Proof: If x is even the proof can be found in Ref. 4 where 
x is assumed to belong to an even vss E. The main idea is to 
reconstruct the classical majorant method in the case in 
which the variable x is real; subsequently, by a suitable 
change of variables one gets the proof. 

If x is odd, one directly gets 

a(x,y) = p(y) + xF(O,y,p(y),Dyp(y») + 0. 

On the other hand, substitution in Eq. (2.4) yields 

F(O,y,a(O,y),Dya(O,y») = F(x,y,a(x,y),Dya(x,y»), 

which completes the proof. 
Theorem 2.7 (the generalized Cartan-Kahler integra­

tion theorem): Let Nh be an (h - 1) integral supermanifold 
of a closed superanalytical ideal I defined on an analytic 
supervector bundle 1r: E -- V. Suppose that, in qeN the space 
l:h _ I = Tq (Nh ) is a regular integral element and that there 
exists an integral tangent vector v s.t. l:h = l:h _ , Ell v is an 
h-dimensional integral element. Now, if <T1r. v (the body of 
the components of 1r. v) independent of l:h _, and there are 
no residual constraints of the first type, there exists a local 
neighborhood U of q in E where there is an h-dimensional 
integral manifold Nh containing Nh _ , . On the contrary, if 
1r. v is odd, Nh exists if no residual constaint is found. 

In Sec. III we shall clarify the matter of residuals in the 
case of first-order differential equations. The presence of re­
sidual constraints does not mean that, in general, a given 
integration cannot be performed; it only means that the Car­
tan-Kahler theorem cannot be used. 

III. FIRST-ORDER PARTIAL DIFFERENTIAL 
EQUATIONS ON SUPERSPACE 

A first-order partial differential equation on a vss is of 
the type 
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(3.1 ) 

where A = 1, ... ,m + n, XAEQ m.n, CPEQo. 
Following Cartan we construct the differentiable ideal I: 

F(xA,cp,PA) = 0, 

dxA aF + dcp aF + dPA aF = 0, 
axA acp apA 

(3.2) 

dcp - dxA PA = 0, dxA I\dPA = O. 

Forms m(O),m( l),m(2) are defined on the sv bundle 1r: E -+ ~.n 

whose standard fiber 1r- 1 (xA 
) is isomorphic to QoX ~.n • 

Step 1: Choose a point qEE such that F(q) = 0 and the 
rank of the algebraic system mO

) is locally constant. Deter­
mine a vector vETqE, 

v=(aA~+b~+CA~) , 
a~ acp apA q 

satisfying the system v J m(1) = O. The representative matrix 
is 

-Pa 

aF aF 
aoa + Pa acp 

o 

If So = s~ = 2 we find a vector v with arbitrary compo­
nents 1r.v (e.g., 1r.V = alax l ) and there exists a one-di­
mensional integral manifold i l (s) of I S.t. i(O) = q and (d I 
ds)il (s) Is = 0 = v. 

Step 2: Find a vector uETqE solving the polar system 
[Eq. (2.3)]. Let So + Sl be the rank of the related representa­
tive matrix u(A I ), where 

( -p, 
-Pa 0 

o ) aF aF aF aF 
0 

aF aF 
AI = axi +Pi acp aoa + Pa acp ai apa . 

Ci Ca 0 -ai -aa 

Suppose thats l = s; = 1, and So + sl<dim E - 2. We can find u and choose 1r. U = a lax2. If, furthermore, this integral 
element is regular, then there exists a two-dimensional integral manifold i2(s,t) S.t. 

i2(s,0) = il(s), dd i2(s,t)ls=01=0 = U. 
t . 

This procedure can be iterated: the step number k allows us to extend a k-dimensional integral manifold ik to a (k + 1)­
dimensional one i k + I if (i) the rank 

so(q) + ... + Sk (q,ul,· .. ,Uk ) = s~ (q) + ... + S;" (q,ul, ... ,Uk ) 

is locally constant, (ii) we find an integral vector Uk + I (Uk + I ETqE but 1r. Uk + I EJ:1r. Tqik ) S.t. extends Tqik to a (k + 1)­
dimensional regular integral element, and (iii) no residual constraints are present. 

Theorem 3.1: Let FEQo and u( aF I api ) # 0 for all i = 1 , ... ,m. The Cartan-Kahler integration procedure can be used to get 
an m-dimensional integral manifold. 

Proof: The ranks SI'''''Sm _ I are 1 and no residual constraints exist; this is clear if one looks at the matrix related to the 
ik -ik + I extension (k<m): 

-PI -P2'" -Pm - Pm + I - Pm + 2 ••• - Pm +" 0"'0 0"·0 

aF aF aF + aF 
axi + Pi acp aXa Pa acp 

Ak = -CIO"'O 0"'0 

0- C20' ··0 0···0 

0···0 - CkO"'O 0"'0 

where 

k is not summed, and the last term exists since u(aF I 
aPk ) #0, for all k = 1, ... ,m. 

The structure of the linear system that arises allows us to 

2159 J. Math. Phys., Vol. 29, No. 10, October 1988 

0 
aF aF 

api aPa 

0 10· ...... ·0 0'''0 

0 01 ........ 0 0"'0 

° 0·· ·010· "0 0 .. ·0 

formulate the extension problem by means of a Cauchy­
Kowalewsky system. Actually, other equations are present 
in the requirement that a (k + i)-dimensional manifold 
i k + I exists; however, these are identically verified in view of 
the initial data and ofthe Cauchy-Kowalewsky system. 0 

In this case the problem of residual constraints could 
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arise only when performing extensions in the odd sector. 
Theorem 3.2: The characteristic fields of Eq. (3.1), 

when restricted to a qeE, make any regular k-dimensional 
integral element into a nonregular (k + 1) -dimensional one. 

Proof: An explicit calculation shows that the character­
istic fields obtained by following Definition 2.4 are given by 
the expression 

a a a 
X= 1I-+b-+cA --, 

axA a¢ apA 

where, by introducing a suitable form {3, 

aF {3 1 A VA =--(-), 
apA 

cA = - (aF + PA aF){3 
axA a¢ 

hold. On the other hand, the same expression is obtained if 
one searches the vectors which make any regular k-dimen­
sional regular element into a nonregular (k + 1 )-dimen­
sional one. 0 

This result clarifies the link between characteristic fields 
and nonextendible integral manifolds. 

Theorem 3.3: The differential equation (3.1) admits 
characteristic tangent fields if and only if Fis a homogeneous 
element. In such a case, if FEQo then {3EQo; if FEQI then 
{3EQI' The motion induced by X satisfies the Hamilton-Ja-

A = ( -Px 
-4px 

-Po 

-4po +4a ° 
By setting q = (O,O,O,O,!,l,O,a,O) and 

v 1 =(± aA~+b~+ ±CB~) 
A = 1 axA a¢ B = I ap B q' 

we have the constraints 

cobi equation written here when, e.g., FEQo: 

dx
A 

= aF (_ l)A{3, 
dt apA 

dPA = _ (aF +p aF){3. 
dt axA A a¢ 

Theorem 3.4: Equation (3.1) has no singular solutions 
of dimension n;;.2. It has n = 1 ones only if F is homogen­
eous and in this case the singular integral manifolds are the 
characteristic lines. 

IV. EXAMPLES 

Let 

F(x,y,O,S,¢,Px ,Py,PO'PG) 

= p~ - 4¢ + Po + 40a - a = 0, (4.1 ) 

where x,yeQo, O,SEQI' ¢EQo, and a is a fixed element of QI' 
The ideal I is 

d¢-dxp_x -dypy -dOpo -dSPs =0, 

2 dpx Px - 4 dx Px - 4 dO Po + dpo + 4 dO a = 0, 

dx 1\ dpx + dy 1\ dpy + dO 1\ dpo + dS 1\ dPG = 0. 
(4.2) 

The equation v I J w( II = ° is represented by the matrix 

° ° ° 1 

0) ° . 

b - alpx - a2py - a3po - a4PG = 0, 2c lpx - 4a lpx - 4a3po + c3 + 4a3a = 0. 

Since So = So = 2, there exist 00 dim E - 1 -~, = 00 6 choices for v I' Actually, we can freely choose a2 = a3 = a4 = 0, 
c2 = c3 = c4 = 0. Moreover, by setting a l = 1 we get 

VI =(~+Px ~+2~) 
ax a¢ apx q 

and the integral line 

i l (x) = (x,0,0,0,x2 + X + !,2x + 1,0,a,0). 

Now we determine a vector V 2ETq E satisfying Eq. (2.3), where v I J W(21 = dpx - 2 dx. 
We have s I = s; = 1 and 00 4 choices. By setting v 2 = (a / ay) q we get 

i 2 (x,y) = (x,y,0,0,x2 + X + !,2x + 1,O,a,0). 

Now determine V3 satisfying Eq. (2.3) where 

VI J W(2) = dpx - 2 dx, v2 J W(21 = dpy. 

The related matrix is 

( -p 
-Py -Po -Ps ° ° ° 

D 
-4;x -4py -4po +4a - 4ps ° 2px ° 1 

A2 = 
-2 ° ° ° ° 1 ° ° ° ° 0 0 0 0 ° 
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We have S2 + si = 1 and 00 2 choices for v3• Therefore, we 
can solve the following system for ¢(x,y,O) by setting 
a4 =c4 =0: 

a¢ 2 
ao = Po' ¢(x,y,O) = x + x + A, 

apx aPe 
ao = ax' Px (x,y,O) = 2x + 1, 

apy apo 
ao = ay' py (x,y,O) = 0, 

ape (ape) ao = 4po - 4a - 2 ax Px' Po (x,y,O) = a. 

We also have the further equations 

a¢ 
ax -Px =0, 

a¢ 
ay -Py =0, 

apx apy 
---=0, 
ay ax 

apo (apx) 
ax - 4px + 2 ax Px = 0, 

apo (apx) ay - 4py + 2 ay Px = O. 

The vanishing of the residual constraints is given by 

apo =0 apo apx =0. 
ao 'ax ao 

(4.3) 

(4.4) 

(4.5) 

Now, Eqs. (4.4) are identically verified in view ofEqs. (4.3). 
An explicit integration gives ¢(x,y,O) = x2 + X + A + Oa, 
which also verifies Eqs. (4.5). The last step is trivial; one gets 
the required solution 

¢(x,y,o,g) = x2 + X + A + Oa. 

Consider the equation 

a/(x,O) = fJ, l(x,O) = a(x). 
afJ 

Use the Cauchy-Kowalewsky theorem directly with 

F(X,O,f a/ , al ) = fJ. 
ax afJ 

(4.6) 

The residual constraints are dF IdO = 1 #0 and no solution 
can be found. Actually, one should have found 
l(x,O) = a(x) + fJ2 = a(x), which does not solve Eq. 
(4.6). 
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Finally, consider the system 

F(x,O,¢,px'Po) =p~ -4ifJ+40Pe, 

with ¢,FEQo' q = 0, i. (x) = (x,0,x2,2x,0), and therefore 

( di) ( a a a ) 
u. = dx 0 = ax + Px a¢ + 2 apx q' 

We have 

( 

-Px 

A. = -4px 

-2 

-Po 1 0 

o 0 2px 

o 0 0 

and So + s. = 3, s~ + s; = 2. No solutions in the sense of 
Definition 2.1 can be found since we cannot freely choose the 
components 1T. u2• 
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The formal properties of n-dimensional Wronskians and their geometric interpretation enable 
one to construct explicit analytic solutions to some nonlinear partial differential equations 
(PDE's) that generalize the Liouville equation tPXy = e2~. The studied PDE's are (a) 2" mF 
= const, (b) 2" mF = G, 2" m G = F, and (c) 2" m (2" mF) = const, where 2" m is the 
nonlinear differential operation 2" mF: = det(a ~a ~F), with k,l = O,I, ... ,m. Some nontrivial 
formal properties of the composition of the 2" m 's are established. 

I. INTRODUCTION 

The classical nonlinear Liouville partial differential 
equation (PDE) , 

tPXy = e- 2E~ and c = 1, (1.1 ) 

which can be stated in the equivalent form 

FFxy - FxFy = E, where F: = eE~, (1.2) 

is presently considered as one of the simplest examples of a 
PDE yielding solutions via the Backlund procedure? 

It has been well-known for about 100 years that the 
PD E [ ( 1.1 ) and ( 1. 2) ] has the remarkable property of pos­
sessing the solution 

F = (EM) -'/2(1 + pq) <=> tP = E In[ (EP(O -'/2(1 + pq)], 
(1.3 ) 

where the single variable functions p = p(x) and q = q(y) 

are arbitrary, constrained only by the condition EPiJ > 0, with 
the dots denoting the derivatives with respect to the corre­
sponding variables. Thus the most general solution to the 
Liouville equation is algebraically constructed from arbi­
trary single variable functions and their derivatives. 

Of particular interest are (i) the mechanism that as­
sures us that the general solutions to (1.1) and (1.2) have 
theform of ( 1.3 ), and (ii) the existence of other PDE's with 
the general solutions of a similar structure, i.e., algebraically 
constructed from arbitrary functions of a single variable and 
their derivatives. This paper intends to offer at least a partial 
answer to these questions. 

In earlier work with J. D. Finley on the problem of twist­
ing N-type solutions in complexified general relativity, we 
encountered as an intermediate step the PDE's 

FFxy - FxFy = G and GGXY - GxGy = F. (1.4) 

The structural similarity of these PDE's with (1.2) suggests 
that they be labeled as "double" Liouville equations. In fact, 
the general solution to these equations may be constructed in 
a fashion quite similar to that for the general solution to 
(1.2). More specifically, the solutions can be algebraically 
constructed from arbitrary single variable functions Pi (x), 
qi (y), i = 1,2, and their first and second derivatives. 

aj On leave of absence from the University of Warsaw. Warsaw, Poland. 

The geometrical interpretation of the solutions to (1.4) 
has resulted in the elucidation of the formal properties of the 
three-dimensional Wronskians of functions of a single vari­
able. It seems natural to develop 1t more general n-dimen­
sional theory that contains PDE's ( 1.2) and (1.4) as special 
cases. Section II is a summary of the formal properties of the 
n-dimensional Wronskians and their basic minors, accom­
panied by the corresponding geometric interpretation. 
These are essential in Sec. III, which is concerned with the 
formal properties of the abstract nonlinear differential oper­
ators!L'm' 

Of course, in terms of !L' m 's, (1.2) and (1.4) may be 
stated as 

(a) !L',F=E, c= 1 and (b) !L'\F=G, !L',G=F. 
( 1.5) 

For m>2, !L'm constitutes the natural generalization of 
the concept of the "Liouville operator" !L' ,. In Sec. IV we 
investigate the chains a-b-c ofPDE's by exploiting these gen­
eralized Liotiville operators. It is shown that we are able to 
determine the most general analytic form of their solution 
for the case of an a-chain. In the case of a b-chain, we are able 
to determine some special solutions for m > 2, and the most 
general solutions for m = 1. Finally, we consider a c-chain 
for m = 1, which reduces to the biharmonic equation for the 
conformal factor of a two-dimensional Riemannian space. 
Also, we discuss alternative formulations of the differential 
problem under consideration. In Sec. V we discuss some 
open problems related to the results of this work. Semitrivial 
proofs of a computational nature are abbreviated by their 
basic ideas only. The nontrivial proofs are in appendices, 
which the interested reader might find useful in further work 
along the same lines as that given in the text. 

The fact that the most general solution to (1.1) and 
(1.2) has the analytic form of (1.3) is quite useful in math­
ematical physics. In particular, within the theory of exact 
solutions in general relativity, experience has shown that 
whenever a Liouville equation occurs at an intermediate 
step, the corresponding problem is integrable up to the very 
end. In this respect, we believe that the techniques of this 
paper are to some extent manageable when applied to non­
linear Liouville-like PDE's and thus may find some useful 
applications. 
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II. WRONSKIANS AND GEOMETRY 

Let F" be the set of ordered n-tuples of the smooth func­
tions of some single variable, say teR. Thus a typical element 
/EF"consistsoff = {/t(t),i= 1, ... ,n}, where/t:R ..... R,and 
n is a fixed integer. Ifthe/t's are considered as meaningful 
modulo the arbitrary changes of the independent variable 
only, then, defining the equivalence class C:/t (t) =/t(t(t '», 
where t ': R ..... R is an arbitrary smooth bijection, the set F"/C 
amounts to the set of smooth curves in R". 

The set F"/C automatically carries a rich structure in­
duced by the concepts of the Wronskian and its basic mi­
nors.3 These concepts are understood as the mappings W: 

(a) W(A/) = A "Wf, 

(b) W!' = (::,rZ)Wf, 
(c) W(M/) = det M· Wf, 

(d) W(*/) = (W/)"- \ 

In the first line of Eqs. (2.2). a smooth A: R ..... R is arbi­
trary and Af = {A(t)/t(t)}eF". In the second line. given 
1= {/t(t)}. a smooth bijection t: R-R induces 
!' = {/;(t')}: = {/t(t(t'»)} in the left-hand members W. 
The * is meant as the nonlinear differential operation with 
respect to t'. while in the right-hand members it refers to the 
variable t. Note that (2.2)(b) is valid for n>2. while 
(2.2) (f) applies for n>3. In the third lineMij = const is an 
arbitrary nonsingular n X n matrix. with Mf = {Mij Jj (t)}. 

The first three lines of (2.2) follow directly from the 
definitions of the mappings Wand •. The proofs of the iden­
tities given in the fourth line of (2.2) are nontrivial. They 
may be outlined in the form of a sequence oflemmas; those of 
interest are given in Appendix A. 

W-regular curves: According to (2.2)(b). a smooth 
curve in R". represented as/= {/t(t)}eF". has the charac­
teristic WI ;60. independent of the choice for its parametri­
zation. 

Observe that when (~) = even. the sgn ( WI) cannot be 
affected by the change of the parametrization. This gives rise 
to the classification of the curves l,g •... eF" / C into the two 
basic classes 

W-regular: WI;60. W-singular: WI= 0. (2.3) 

The origin of this classification is the condition WI;60 for 
feF". which is known5 to constitute a necessary and suffi­
cient condition for the linear independence of n smooth/t ·s. 
i.e., WI;60<:> {AI = const. AI/t(t) = 0 ~ AI = 0}.6 Con­
sequently. a W-regular curve cannot be contained in any of 
(n - I )-hyperplanes through the distinguished origin ofR". 
Correspondingly, each W-singular curve is contained in 
some (n - 1 )-hyperplane through the distinguished origin 
ofR". 

Normal parametrization: Given a W-regular curve rep-
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F" ..... F I and *: F"-F", which are defined explicitly by 

.- ii···j Ji,. ,., 
feF"~ 12.'2. 

{

WF' - E 1"11 ... /,,-1 
*1". - ( _1),,-1.., I'll ... /,,-2 
:Ii' - "iI,12 ···I._r'I, 12 1.-1' 

(2.1) 

where I~: = (d /dt)"l;. with k = 0.1 •... and i = 1,2 •...• n. 
Here E/ "'1 is the totally skew Levi-Civita symbol in n di­
mensio~s, ~ormalized by El2 ... " = 1.4 

The basic formal properties of the mappings Wand * 
may be stated in the form of the following theorem. 

Theorem 1: The following identities are valid for an arbi­
traryfeF": 

(2.2) 

resented by {It (t) }eF", WI ;60, we propose to define its nor­
mal parameter xeR via 

dx: = sgn( W/)'I W/II/(z) dt. (2.4) 

Heuristically, this idea is somewhat analogous to the idea of 
using the Pythagorean length as the natural parameter of the 
Frenet formulas and the concept of the relativistic proper 
time. 

Performing the quadrature in (2.4), the derived func­
tion x = x(t), with dx/dt ;60, defines its inverse t = t(x). 
Thus the curve may be considered as given in terms of its 
normal parameter as!' =I;(x): =/t(t(x»). Then it follows 
from (2.4) that 

(~) = odd ~ W!' = 1 and 

(~) = even ~ WI' = sgn( WI). (2.5) 

The differentiations in the operation Ware with respect to 
the variable x. 

According to (2.2)(d) •• maps W-regular curves into 
W-regularcurves. GivenacurverepresentedasfeF". WI ;60. 
we refer to *feF". W( */);60 as the dual curve. Considering 
the curve las represented in terms of its normal parameter. 
!' = {/;(x)}. according to (2.2) (d) and (2.2) (h). we have 

W!'= 1 ~ {
n = odd: W(*!') = I, **1; =/;. 
n = even: W( *!') = 1. **/; = - I;. 

(2.6) 

and 

W!'= -1 ~ {
n = odd: W(*I') = 1. **/; = - I;. 
n = even: W(*!') = - 1, **1; = -I;. 

(2.7) 

Therefore, * is an involution or anti-involution among the 
W-regular curves and their duals. Note that according to 
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(2.5), the formulas (2.7) are of interest only when (~) 

= even => n = 4,5,8,9, .... 
The ~ mapping: The construction of the normal param­

eter x for a W-regular curve via (2.4) involves a quadrature. 
There is, however, a simple process that enables us to con­
struct the W-regular curve, as given in terms of its normal 
parameter, bypassing the necessity of any integrations. 

Consider a W-regular curve represented as I = {/; (t)} 
ElFn, WI =1=0. Then the mapping~, defined by 

~/;: = I W/I- II
n
/;, (2.8) 

obviously produces another W-regular curve. The formal 
properties of ~ may be summarized in the form of the fol­
lowing theorem. 

Theorem 2: The following identities hold: 

(a) W(~/) = sgn( WI), (c) ~2/; = ~/;, 
(2.9) 

(b) ~(A/;) = sgnA~/;, (d) *~/; = ~*/;. 

Identity (2.9) (a) follows from (2.2) (a). Similarly, 
(2.9)(b) with arbitrary A: R-R, A(t) =1=0 follows from 
(2.2)(a). Equation (2.9)(c) is a trivial consequence ofthe 
definition of ~. Equation (2.9) (d) may be established by 
using (2.2) (e) and (2.2) (d). 

According to (2.4 ) and (2.9) (a), the curve g: = ~ I pos­
sesses the normal parameter x, where x = sgn ( WI) . t, if we 
choose the integration constant for x equal to O. Consequent­
ly, the curve 

g' = {g;(x)}: = {~/;lt=sgn(Wfl'x}' 
according to (2.5), satisfies 

(~) = odd => Wg' = 1, 

(~) = even => Wg' = sgn( WI). 

(2.10) 

(2.11 ) 

The {n-l}-dimensional interpretation o/~: According 
to (2.9) (c), the mapping ~ has the nature of a projective 
operation. This induces its (n - 1) -dimensional interpreta­
tion. Indeed, WI =1= 0 - /; =1= 0, and in particular In =1= O. Thus 
we can represent the/;'s as/; = I In Iii;. iii: =/;/1 In I. Then 
ii =: (iia,E), a = 1, ... ,n - 1, E 2 = 1, is an n-dimensional 
concept, ii = {iiJElFn, while h: = {iia}EFn- 1 is considered 
as a (n - 1) -dimensional concept. By hElFn - I we mean h 
= {h a (t)}, with the dot denoting the derivative. Then one 
obtains 

wh = E( - 1)n-l. Wh, (2.12) 

where the Wronskians on the left and the right are n- and 
(n - 1 )-dimensional constructs, respectively. This being 
the case, 

WI= I/nlnwh=E( -1)n- ll/nlnwi, [using (2.2)(a)]. 
(2.13) 

Hence, WI =1=0 => Wh =1=0. The last (n - 1 )-dimensional 
condition has a simple geometric interpretation. Having 
Wh = 0 implies that there are nontrivial Aa = const, 
a = 1, ... ,n - 1, such that Aaha (t) = 0 ¢} Aaha (t) = const. 
It follows that hEFn - I, with wi, =1= 0, is a curve in R n - I pro­
hibited to be contained in any (n - 2)-hyperplane in Rn 

- I, 
and not only those through the origin of Rn 

- I. 
Using the definition of ~ and (2.13), one easily sees 

that 
~fa = I Wh 1- lInha, ~/" = EI Wh I-lin. (2.14) 
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Therefore the functions (2.10), which automatically fulfill 
(2.11 ), may be considered as algebraically constructed from 
h: (t) = a ~ha (t), a = 1, ... ,n - 1, k = O, ... ,n - 1, where the 
smooth ha (t)'s are arbitrary, constrained only by the condi­
tion that the curve hEFn - lie is prohibited to be contained 
in any (n - 2)-hyperplane in Rn

- I, equivalently Wh =1=0. 
Inversely, one can also show that given any W-regular curve 
in its normal parametrization, g' = {g;(x)}EFn

, so that 
(2.11) applies, there is h = {ha (t) }ElFn - I, which "injects" 
it according to (2.10) and (2.14). 

III. THE BASIC PROPERTIES OF .Z'm OPERATORS 

Let Y be the set of smooth functions of the two vari­
ables x and y. Consider then a sequence of nonlinear differen­
tial mappings .Z'm: Y -Y, m = 1,2, ... , defined by 

FEY => .2"mY:=det(a!a~F), k,I=O,I, ... ,m>l, 
(3.1 ) 

where a ~ and a ~ denote iterations of the differential opera­
tors ax and ay" Of course, a~ = a~ = 1. 

It is convenient to extend the above definition of .2" m 's 
to all integer m's, postulating that 

m = 0 => .2" mF: = F, m = - 1 => .2" mF: = 1, 

m< - 2 => .2" mF= O. (3.2) 

Here, we will outline the basic formal properties of 
.2" m 'so One can easily see that the definition of .2" m 's implies 
the "homogenity property": 

F,A(x),B(y)EY => .2" mABF = (AB)m+ 1.2" mF, 

m> - 1, (3.3) 

if AB =1=0, applies for m< - 2. 
Then one can show that under the change of the inde­

pendent variables x = x(x'), y = y(y'), xy=l=O, meaning by 
.2";", .2";"F: = det(a!.a~F), for m>l, while (3.2) is valid 
with .2" m -+ .2";", the following identity holds: 

(3.4 ) 

Next, one easily sees that .2" I has the "distributive" 
property: 

F,GEY => .2" IFG = G2.2" IF + F2.2" IG. (3.5) 

(This follows directly from Y3F=I=O=>.2"IF 
= F2 aXay In F. Also, note that a = const => .2" IFa 
= F 2(a-ll.2" IF.) 

As far as the composition of the .2" m mappings is con­
cerned, we claim that the basic identity 

.2"1(.2" mF) =.2" m_IF·.2" m+IF (3.6) 

is valid for every integer m. The nontrivial proof of (3.6) is 
outlined in Appendix B, where we also discuss the general 
problem of the composition.2" n (.2" mF). 

It follows from (3.6) and (3.5) that 
.2"2(.2" mF) = (.2" m_IF)2.2" m+2F 

+ (.2"m+IF)2.2"m_2 F. (3.7) 

Indeed, (3.6) for m = 1 reduces to .2" 1(.2" IF) 
= F.2" 2F. Operating on both sides of (3.6) with .2" I and 
then using the result on the left and (3.5) on the right, we 
have 
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.2' mF·.2'2(.2' mF) 

= (.2' m_IF)2.2' 1 (.2' m + IF)2.2' 1 (.2' m-IF) 

= (.2' m_IF)2.2' mF·.2' m+2F 

+ (.2' m + 1 F)2.2' m _ 2F·.2' mF [using (3.6)]. 
(3.8) 

Canceling this by .2' m F (in general .2' m F =I 0), we obtain 
(3.7). Therefore, via the continuity argument, (3.7) is true 
for every Fand every integer m. 

Crucial for our purposes, we state the properties of the 
.2' m's in the form of two theorems. 

Theorem 3: For every hex) and g;(y) (smooth), 
i = I,2, ... ,n and m> 1, the identities 

{

a, if m>n> 1, 

~ _ Wi" Wg, if n = m + 1, 
.2' m .£.. hg; - n 

;= 1 i~1 *h' *g;, if n = m + 2, 
(3.9) 

hold, where Wand * are the mappings defined in Sec. I. 
Employing the summation convention over the indices 

k; = O,I, ... ,m = Ii> we have, from the definition (3.1), 

.2' mF = [V(m + 1 )!]Ek"'km + I 

X € a k'a 1 F·· ·a km
+ 'a /m+ 'F. (3.10) 1.'··/m+1 x y x y , 

where the €'S are (m + 1 )-dimensional Levi-Civita symbols 
normalized by €Ol"'m = 1. Consequently, with 
F=h(x)g;(y), we have 

.2' mhg; = [V(m + 1)!]Ek .... km + I €/ .. ··/m+1 

Xf[k, .. ·fkm + dg[/, .. . g/m+ d 
'. 'm+ I '. 'm+ I 

= (m + 1)1"(0 .. ·fm l g(o . .. ,.ml 
:J '. 'm+ I '. liim+ I 

= (m + 1)lff;," I'!'...+dtt;,·· ·g'!'..,+d· (3.11) 

In the above.!7: = (d Idx)"l;, g:: = (d Idy)/gi> and [ ... ] 
denotes the antisymmetrization symbol of a set of indices. 

When the i's have the range i = 1, ... ,n < m + 1, the anti­
symmetrization of m + 1 of the indices of the above type 
automatically leads to 0. Thus the first line of (3.9) is true. 
On the other hand, if the i's have the range 
i = 1, ... ,n = m + 1, then according to (2.1) 

i?[, . . , I,m 1 = [V(m + 1)!]E; ... ; . WI 
I m+ 1 I 1'11+1 

Similarly, 

t/. . 'g'!' = [V(m + 1)!)€; ... ; . Wg. 
I 1'11+1 I m+ I 

Therefore, making the contraction of two €'s over m + 1 
indices, the second line of ( 3.9) follows from (3.11). 

Finally, if the range of i's is i = 1, ... ,n = m + 2, (3.11) 
can be rewritten employing the concept of the generalized 
Kronecker 6's in the form 

.2' '"-g. = 6.· .. ~ .. ·f'!' gO ... ,.m . 
mJi, ,,""m+I;J,"')m+IJ i, '1'11+1 i, lSjm+1 

( 3.12) 

On the other hand, the 6's are equivalent to the contraction 
of two E'S over one index. Hence 

.2' '"-g. = e·· . E·· . ~ ., ·f'!' ...o ... ,.m . 
mJi I """'1'11+1 '1I"'1m+/i, 'm+JiSj, 15jm+1 

(3.13 ) 
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This, compared with the definition of * in (2.1 ), and remem­
bering that presently n = m + 2, assures the veracity of the 
third line of (3.9). 

Corollary 1: Formula (3.12) remains valid for the range 
of i's and is over 1, ... ,n> m + 2, and can be equivalently 
spelled out in the form 

.2' m hg; = [V(n - m - 1)!] 

XE... . ... go ... gm. 
s. s" _ In _ 1 1, 1m + I 1, 1m + I 

(3.14) 

For n > m + 2, the objectSEs "'s ; ... ; f? .. I'!' are 
I n-m-II m+1 I 1'11+1 

the generalized minors of the n X n matrix 1 f71, i = 1, ... ,n, 
k = 0, 1, ... ,n - 1. Within the objectives of this paper, how­
ever, this generalization of the third line of (3.9) is oflittle 
importance . 

Corollary 2: Iterating the third line of (3.9) and using 
(2.2) (h), it follows that 

m+2 
F= L /;(x)g;(y) ::::} !L'm (!L' mF) = (Wi" Wg)mF. 

;=1 

(3.15 ) 

Therefore, !L'm is an involution among the functions of two­
variables of the structure 

m+2 
F= L h(x)g;(y), 

;=1 

with h'S and g;'s arbitrary, being constrained only by the 
condition (Wi" Wg)m = 1. 

Theorem 4: For m> 1, 

m 

(a) !L'mF=O and !L'm_IF=lO::::}F= Lh(x)g;(y), 
;=1 

m+1 (3.16) 
(b) !L' mF=const=l0::::} F= L h(x)g;(y), 

;= 1 

the implications being understood in the sense of the exis­
tence ofthe corresponding functions of the one variable, con­
strained in the case of (3.16)(a) by the condition 
Wi" Wg=lO. Similarly, in the case of (3.16)(b) by Wi" Wg 
= const. 

Theproofof (3.16) (a) is given in Appendix C. Once the 
veracity of (3.16) (a) is granted, a simple proof of (3.16) (b) 
follows by employing the identity (3.6). 

Indeed, with !L' mF = const =I 0, (3.6) with m> 1 obvi­
ously requires !L' m _ 1 F· !L' m + 1 F = 0. If this were to hold 
with !L' m _ 1 F = 0, then according to (3. 16)( a) F would 
have the most general form of 

m-I 
F= L h(x)g;(x), 

;= 1 

which then according to the first line of ( 3.9) leads to !L' m F 
= 0, contradicting !L'mF = const =I 0. Therefore, 
.2' m + 1 F = 0, so that according to (3.16) (a) F has the most 
general form 

m+ 1 

F= L h(x)g;(y). 
;=1 

But then according to the second line of (3.9) !L'mF 
= Wi" Wg = const. 
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We conclude this section recognizing the fact that if 
O::j:.F, GEY are related by the condition 

.!f ,F=.!f ,G, (3.17) 

then, parametrizing equivalently these objects according to 

F= r 1/-12 cosh(t,b/2), G = e- 1/1/2 sinh(t,b/2), t,b::j:.0, 
(3.18 ) 

condition (3.17) can be stated in the simple form of 

'I/lXy = t,bAy • (3.19) 

IV. THE LIOUVILLE-LIKE POE's 

This section examines some POE's constructed by using 
the notion of the nonlinear differential operators .!f m' m> 1. 

We define first as the basic chain of the Liouville-like 
POE's for the searched FEY: 

.!f mF= E, ~ = 1. m = 1,2,... . (4.1) 

These equations together with the associated "degener­
ate" chain 

.!f mF= 0, m = 1,2 .... , 

include POE's ofthe form 

.!f mF= const, m = 1,2, .... 

(4.2) 

(4.3) 

If F fulfills ( 4. 3 ) with const::j:. 0, then F' = aF, 
a = const, fulfills .!f m F' = const· am + '. Therefore, choos­
ing a properly and dropping the prime with const::j:.O, (4.3) 
reduces to (4.1). Obviously, the proper Liouville equation 
( 1.2) constitutes the first member of the chain (4.1) for 
m=l. 

Now, we propose to consider a chain of POE's for 
searched F,GEY. 

.!fmF=G, .!fmG=F, m=I,2, ... , (4.4) 

which generalize the "double" Liouville equations (1.4), 
equivalent to (1.5)(b). 

It is also of some interest to comment from the point of 
view of this paper on the nature of the differential conditions 
for the searched FEY: 

.!f m (.!f rnF) = const, m = 1,2,... . (4.5) 

The first member of these POE's for m = 1, 
.!f , (.!f ,F) = const will be seen to be equivalent to the bi­
harmonic equation for the conformal factor of a two-dimen­
sional Riemannian space, with the harmonic scalar curva­
ture. 

Of course, among the POE's proposed above, the case of 
Eqs. (4.2) is the simplest. According to (3.16)( a), the most 
general solution to .!f rnF = O-with .!f m _ ,F ::j:.O-has the 
form of 

m 

F= L /;(x)gj(y), .!f m_,F= Wi' Wg::j:.O. (4.6) 
j=, 

In the terminology of Sec. II, it induces and is induced by the 
two W-regular curves in Hm, x and y playing the role of the 
arbitrary parameters of these curves prohibited to be con­
tained in any (m - 1 )-hyperplanes through the origin of 
]Rm. 

Notice that given Fin the form of (4.6), the functions 
f= {/;(x)}, g = {gj(y)}ElFm are meaningful modulo the 
affine transformations only: 

2166 J. Math. Phys., Vol. 29, No.1 0, October 1988 

J'=MJ, g'= (M-')Tg, M=constEGL(m), (4.7) 

the matrices Mbeing otherwise arbitrary . 
Next, examining PDE's (4.1), we observe that accord­

ing to (3.l6)(b) the most general solution must have the 
form of 

m+1 

F= L /;(x)gj(y), (4.8) 
;=1 

wheref= {/;(x)}, g = {gj(y)}EFrn + I [according to the 
second line of (3.9)] are constrained by the condition 

Wi' Wg = E, (4.9) 

and are otherwise arbitrary. 
Again, given the solution to (4.1) in the form (4.8) and 

(4.9), one easily sees thatf and g are meaningful modulo the 
transformations (4.7) only, but this time with the 
(m+ I)X(m+ 1) matrix M=constEGL(m+ 1). Con­
dition (4.9) obviously requires that both Wf and Wg be con­
stants ::j:.0. Using then as the special case of the transforma­
tions (4.7), /; -+)./;, gj -+). -Igj , ). = const::j:.O, one easily 
sees that, without losing any generality, we can always ar­
range that (4.9) constraining the general form of F from 
(4.8) is fulfilled with 

(Wf)2 = 1 = (Wg)2. (4.10) 

But with the above being valid, according to the results 
of Sec. II, J,geFm + , may be interpreted as the two W-regu­
lar curves in]Rm + I given, respectively, in terms of their nor­
mal parameters x and y. Thus we can interpret f and g from 
Fm +, in (4.8) as the two arbitrary W-regular curves in 
Rm + I, which are forbidden to be constrained in any m-hy­
perplanes through the origin of Rm + " as given in terms of 
their normal parameters. Notice that with this interpreta­
tion, the most general form of the solution to (4.1) as given 
by (4.8) constrained by (4.10), with f and g from Fm + " 

remain arbitrary modulo (4.7) transformations, where the 
(m + 1) X (m + 1 ) matrix M = constEGL(m + 1) is con­
strained by (det M) 2 = 1. 

With the objectives outlined in the Introduction in 
mind, the basic point of this section is that, according to the 
properties ofthe mapping ~ given in Sec. II [i.e., that a W­
regular curve in Rm +, (as given in terms of its normal pa­
rameter) can be always algebraically constructed from m 
smooth functions and their derivatives up to m + 1 order], 
the most general solution to (4.1 ) can be equivalently stated 
in the form 

F= (EWP' Wq) -I/(m + 1)( 1 + at, Pa (x)qa (y»), m> 1. 

(4.11 ) 

Thep = {Pa (x)} and q = {qa (y)}EFm in the above are 
two arbitrary smooth curves in Rm, forbidden to be con­
strained in any (m - 1 )-hyperplanes such that 
E Wp· Wq> 0. The solution is thus algebraically constructed 
from the arbitrary smooth functions Pa (x), qa (y), 
a = 1, ... ,m, and their derivative a! p, a ;q, k = 1, ... ,m. This 
most general form of the solution to (4.1) for m = 1 reduces 
precisely to ( 1.3), the classical result for the proper Liouville 
equation (1.2), ipso facto providing its proof, and hence 
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(4.11) is a natural generalization of (1.3) for the case of 
X' F = E POE's. 

m Corollary 1: The result that the most general solution to 
(4.1) has the form (4.11), i.e., that F from (4.11) satisfies 
(4.1) and inversely, givenF fulfilling (4.1), therearep,qeFm 

such that (4.11 ) is true, is easily seen to admit a "complexifi­
cation." 

For simplicity, until now we have constrained in this 
text lFn to be the set of real valued ordered n-tuples of smooth 
functions of the same real variable, and Y to be the set of real 
valued smooth functions of the real variables x and y. 

A moment ofreftection, however, convinces us that ifFn 

is interpreted as the set of the complex valued ordered n­
tuples of the holomorphic functions of the same complex 
variable, and, correspondingly, Y is interpreted as the set of 
the complex valued holomorphic functions of the complex 
variables x and y, then the most general solution to the "com­
plexified" POE (4.1), indeed has the form of (4.11), with 
the holoQlorphic functions {Pa (x)},{qa (y)}eJFm con­
strained by E Wp· Wi[ # 0, being otherwise arbitrary. 

Corollary 2: The result that we are in possession of the 
most general solution to the POE (4.1), either in its real or 
complexified version, has some interesting implications 
from the point of view ofOOE's. 

Suppose that we search the solution to (4.1) in the spe­
cial case of F= F(z), z: = x + y. Then (4.1) reduces to the 
nonlinear OOE of 2m differential order, 

d (d)m 
F, dz F'" dz F 

= E, €2 = 1. 

F. - F'" - F ( 
d )m ( d )m + 1 ( d )2m 
dz 'dz dz 

(4.12) 

Our general result on the level of POE (4.1) permits us 
to construct easily the explicit general solution to the OOE 
(4.12) as endowed with the 2m integration constants. 

Indeed, if F from (4.8) depends only on z=x+y, 
clearly /; (x) and g; (y) must have the form of 

/; = .,J7J; ea,x, g; = .,J7J; ea,y, 

m+1 
F = 2: p;ea

/
z
, 

;=1 

(4.13 ) 

wherea;,p;.i= 1, ... ,m + l,areconstants. With/;'sandg;'s 
of this form, one easily sees that 

(4.14 ) 

where 

1 

M:= (4.15 ) 

a'!' a::: + 1 

is the Van der Mond determinant, so that the (4.9) condi­
tion amounts to 

( 4.16) 
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This necessitates for 2(m + 1) constants a; andp; the two 
conditions 

a l + ... +am+ 1 =0, PIP2"'Pm+IM2=E, (4.17) 

the second of these requiring obviously M # 0, so that neces­
sarily i#j ~ a; - aj#O. Modulo conditions (4.17), F 
from (4.13) solves (4.12), contains 2(m + 1) - 2 = 2m ar­
bitrary constants, and hence is the most general solution of 
the nonlinear ODE (4.12) of the 2m's differential order. 

Perhaps one could guess the general shape of the solu­
tion to (4.12) in the form of ( 4.13) with the constants con­
strained by (4.17) primafacie, but in establishing this result, 
our knowledge of the most general form of the solution to the 
POE (4.1) was certainly useful. 

Now the case of the POE's (4.4) is much more involved 
than the case of POE's of the form (4.3), where we have 
succeeded in establishing the most general form of their solu­
tions as endowed with a geometric interpretation. Since we 
are interested only in the nontrivial solutions to these equa­
tions, F#O#G [because (4.4) necessitates F= 0 
{::} G = 0], (i) by eliminating G, we arrive at the necessary 
condition 

X'm (X' mE) = F, m>l, (4.18) 

and (ii) if we constrain additionally the searched F and G by 
X' m+2F= 0 {::} X' m+2G = 0, then Eqs. (4.4) admit aspe­
cial solution of the form 

m+2 m+2 
F= 2: /;(x)g;(y), G= 2: */;"*g;, ( 4.19) 

;= 1 ;=1 

wheref,geJFm + 2 are constrained by 

(Wf)2 = 1 = (Wg)2, (4.20) 

and are otherwise arbitrary. This statement applies for m> 1. 
Indeed, (4.18) is a trivial consequence of ( 4.4 ). On the 

other hand, with F of the form of ( 4.19) treated as an anzatz, 
according to G = X'mF and the third line of (3.9), G must 
have the form of 4. But then according to (3.15), 
F= X' G= X' (X'mE) = (Wi"Wg)mF is also fulfilled 
iff (W/Wg)m = 1': This is equivalent to Wi" Wg = E, €2 = 1, 
with m = odd, E constrained to the value E = 1. Rescaling/; 
.... )./;, g; -+). -Ig;.). = const#O, we can always arrange that 
the last condition be fulfilled with (4.20) being valid. 

The special solution to (4.4) described by (4.19) and 
(4.20) with Wi" Wg = E, Em = 1, has of course a parallel in­
terpretation to that given before to the solutions to X'mF 
= E, with m .... m + 1. Thus F and G are induced by two W­

regular curves in Rm + 2 prohibited to be contained in any 
(m + 1 )-hyperplane through the origin, with x and y serv­
ing as their normal parameters. From (4.19), we observe 
that Fmay also be interpreted as given in the form of (4.11) 
with m -+ m + 1. Of course, the corresponding G = X' m F 
can then be evaluated in terms of {Pa (x)}, {qa (y)}eJFm + I. 
Observe also that Fand G from (4.19), withf,geFm + 2, have 
the relative symmetric structure, compatible with the sym­
metry F -+ G, G .... F of Eqs. (4.2), due to the involutory rela­
tions (2.6) and (2.7), which apply because of (4.20). 

The question arises, "How general is the solution (4.19) 
and (4.20) to (4.4 )?" Answering this, we claim that, for 
m = 1, the solution constructed above is the most general 
solution to (4.4), which arose from a problem in general 
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relativity and motivated our interest in the chain of PDE's 
(4.4). 

Indeed, in the case of m = 1, (4.4) reduces to ( 1.5)(b) 
and the identity (3.6) reduces to 

2'1(2'IF) =F2'2F. (4.21) 

Consequently, (4.18) with F #0 is equivalent to 

2'2F= 1, (4.22) 

which was shown to possess the most general solution 
3 

F= L /;(x)g;(y), 
;=1 

WI- Wg = 1, equivalently, WI = E = Wg, r? = 1. But with 
n = 3, according to (2.5), the normal parameters can be so 
selected that the E above is constrained to the value E = 1. 
Thus the most general solution to (1.5) (b) has the form of 

3 3 

F= L /;(X)'g;(y), G= L *k*g;, 
;=1 ;= I (4.23) 

WI= 1 = Wg. 

For the W-regular curvesf,geF3 given in terms oftheir nor­
mal parameters x and y, and with the first line of (2.6) being 
in * involution to the dual curves *f,*geF3

, "1=1 and 
**g=g. 

The above is a rather nice result. Our original problem 
from general relativity admits the most explicit general solu­
tion endowed with a simple geometric interpretation. The 
solution to (1.5)(b) induces-and is induced by-the two 
arbitrary W-regular smooth curves in R3 given in terms of 
their normal parametrizations; F and G are constructed 
from these and their * dual curves. According to ( 4. 7), given 
F and G,I and g from F3 are determined, remembering that 
WI = 1 = Wg, and, because of (2.2)( c), are arbitrary mod­
ulo (4.7) transformations with 3X3 constant = MESL(3). 
The geometric interpretation given above is thus meaningful 
modulo SL(3) transformations of R3. Of course, F from 
( 4.23) can be also represented in the form of 

F= (WPWq)-1/3(1 + at/a (x)qa (y») , (4.24) 

while G = 2' IF can be elaborated in terms of p,qEF2
, accom­

panied by the corresponding geometric interpretation. 
However, the argument considered above for the case of 

Eqs. (4.4) with m = 1 does not work in the case of these 
equations with m;;;.2. Consider, e.g., the case of (4.4) with 
m = 2. Condition (4.18), employing identity (3.7) special­
ized for m = 2, reduces to 

2'2(2'2F) = (2'1F)22'4F+ (2'3F) 2F=F. (4.25) 

Thus, when 2' m + 2 F = 2' 4F = 0, indeed F # 0 con­
strained by 2' 3F = ± 1 is a solution. However, there is no a 
priori reason why 2' 4F should be equal to zero. Similarly, 
there is no a priori reason why 2' m + 2F has to be equal to 
zero for m > 2. 

In summary, we have established the most general solu­
tion to (4.4) for m = 1, and a nontrivial solution for m;;;.2. In 
the last case, the form of the general solution remains an 
open question. 

Corollary: With F = : e"', G = : e"', (1.5)(b) assume the 
equivalent form of 
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"" = e",-2", .1, = e",-2", (4.26) 'f'xy ''f/xy • 

On the other hand, for m = 2, (4.4) using the identity 
( 4.21), are equivalent to 

2'1 (2'IF) =FG= 2'1(2' IG), (4.27) 

or, with F: = e"', 2' IF: = en and G: = e"', 2' IG: = eX they 
assume the equivalent form of 

"" =en - 2I/J n =e",+",-2n 
Y'xy 'xy , 

.1. = eX- 2", X = eI/J+ "'-2X 
'f/xy 'xy • 

(4.28) 

Similarly, ( 4.4) arbitrary m > 1 can be equivalently stat­
ed as a set of differential conditions of the second order, with 
the nonlinear terms involving the notion of exponentials. 

Concluding this section, we should like to explain why 
these PDE's are of some interest in mathematical physics. 
Given a two-dimensional Riemannian space of signature 
( + , - ) in its conformally flat local representation in a 
chart {x, y}, 

AI ®Alg: = 2f/J-2(X,y)dx®dy, 
s s 

the condition that its scalar curvature R is harmonic, 
R ;a;a = 0, is easily seen to be equivalent to the biharmonic 
equation for the conformal factor, f/J;a;a ;/3;{3 = 0, amounting 
to 

(4.29) 

The above PDE is equivalent to the statement that the 
searched f/J fulfills 

2' le"'=elI/J aXayf/J = A (x) - B(y), (4.30) 

where A and B are arbitrary smooth functions of one vari­
able, in the general case such that AB # O. 

The differential problem (4.30) had emerged as rel­
evaqt in general relativity in 1962,7 and, as is well known, 
constitutes the key to the general nontwisting solutions of 
the Petrov type III of the empty space-time Einstein equa­
tions. In a somewhat different context one should also see 
Brans.s 

Up to now, Eq. (4.30) resists aU attempts to construct 
its most general analytic solution. A special solution to 
(4.30) ofthe form 

eI/J=~ (A _B)3/2/~AB (4.31) 

is well-known. 
From the point of view of this paper, we observe first 

thatwithAB #0, introducing in (4.30) the new independent 
variables x' = A (x), y' = B(y) and defining F: 
= exp[f/J + ! In AB] lifter dropping out primes, the investi­

gated PDE assumes the form of 

(4.32) 

It follows that 2' I (2' IF) = 1, which coincides with (4.5) 
for m = 1. This motivates ourinterest in the PDE's from the 
chain (4.5). 

Of course, using identity (4.21), (4.32) implies 

F2'2F= 1. (4.33) 

Notice that if we define F= :.JIF'3/2, then (4.32) as-
sumes the form 

F' 2' IF' = x - y. (4.34) 
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Acting on it with 2" I and using (3.5) and (4.21), we infer 
the necessity of 

F'32"2F' + (2"IF,)3= 1. (4.35) 

This elucidates why F': x - y ~ 2" IF' = 1 is a special so­
lution, i.e., the mechanism of the solution (4.31), as stated in 
a slightly more general form. 

On the other hand, if, instead of committing the inde­
pendent variables tox = A,y = B, wejust execute in (4.30) 
the transformation x = x(x'), y = y(y'), xY# 0, one easily 
sees that by dropping out primes and with F: = e'" (4.30) 
assumes the form 

2 

2" IF= L k;(x)!;(y), (4.36) 
;=1 

while the conditionAB #Ois now equivalentto Wk· Wg#O. 
It easily follows that the differential problem studied in 

its most general branch and in coordinates arbitrary modulo 
x = x(x'), y = y(y'), xy;¢;O is equivalent to the conditions 

2"2F#0 ~ 2"IF#O ~ F#O, 
(4.37) 

Notice that because of (4.21), with 2"IF#O, 
2" 2 (2" IF) = 0 is also equivalent to 

2"1(2"1(.2"1F»)=0. (4.38) 

v. CONCLUDING REMARKS 

The PDE's studied in this paper constructed with the 
help of 2" m nonlinear differential operators are certainly of 
interest as they generalize in a natural manner the Liouville 
equation. 

Using the properties ofWronskians, we were able to find 
the general solutions to some of these PDE's, i.e., Eqs. (4.3) 
and (4.4). The latter one especially is of great importance 
because of its role in the problem of type N spaces. We hope 
that further analysis of the problems presented here allows 
one to find solutions to much more involved cases. 

The Liouville equation has been revealed as the impor­
tant one in the study of the Born-Infeld massless scalar field 
and in the theory of relativistic strings. 9.10 Note also that this 
equation in three and more dimensions is of interest in con­
nection with the soliton and field theories. II

-
13 

We hope that our generalizations of the Liouville equa­
tion will find application not only in general relativity but 
also in many other domains of mathematical physics. 

APPENDIX A: PROOFS OF (2.2)(d) AND (2.2)(h) 
IDENTITIES 

The basic qifficulty in proving (2.2) (d) and (2.2) (h) 
for every n>2 is due to the "proliferation" of E'S and the 
order of derivatives involved in the concepts of .. and 
W( */). More specifically, there is no obvious way to initiate 
the inductive process with respect to n>2, and the usual 
combinatorics of E'S and related Kronecker generalized l)'s 

cannot deal with the mentioned "proliferation" in an effec­
tive manner. Our proof will rely on some facts from the theo­
ry of linear ODE's, and the formal properties ofthe minors 
of the matrix of the Wronskian II/~II, i = 1, ... ,n, 
k = O,I, ... ,n - 1, where {/; (t)}EFn. Within this proof, some 

2169 J. Math. Phys., Vol. 29, No. 10, October 1988 

"tangential" formal properties of the elements ofFn, related 
to the mapping *, will emerge as of interest as such. 

The minors of the Wronskian are defined for every 
{/; (t)}E Fn by 

M k. - ( 1 ) kE I' II .. 'Ik - I .. 'In - I 
j. - - iPI"'PIR,'''qll_k_IJp, P2 9. qll-k-I' 

i = 1, ... ,n, k = O,I, .. ,n - 1, (AI) 

where the summation convention over p's and q' applies. 
(Furthermore, the symbols M;- I and M7, where the upper 
index exceeds the permitted range k = 0, I, ... ,n - 1, are to be 
understood as zero.) This definition assures us that 

I~Mi = l)kl. WI (A2) 

and the parallel 
.. -I 

L I~M; = l)ij' Wf, 
k=O 

with the obvious ranges for the free indices. 14 
Observe that according to (2.1) 

M7- 1 = */;. 

(A3) 

(A4) 

[Formulas (AI) can be interpreted for k = O,I, ... ,n - I as 
defining for k = O,I, ... ,n - 1 the nonlinear differential map­
pings Jlk: Fn 

-+ Fn 
• For our purposes the most important is 

the mapping Jln - I = *, induced by the "basic minors" of 
the Wronskian.] 

Observe also that with 11M ~II being the matrix of the 
minors of II I~II and det( I~) = Wf, an elementary identity 

det(M k
): = E . . M O .. 'Mn-I = (Wf)n-I (AS) 

, ', ••• 1" '. '" J 

holds, consistent with equalities (A2) and (A3 }.15 
After these comments concerned with the definitions 

and the basic properties of the minors of the Wronskian, we 
will now prove the following. 

Lemma 1: Given any 1= {/; (t) }EF", there is 
A: = {A; (t) }EFn such that 

t!f/; =0, 
n 

~. - an", A aj - I u. - t - ~ j t , 

j=1 

(A6) 

and, if/;'s are linearly independent ( ¢:} WI #0), then 

An = at In( WI). (A7) 

• Suppose that WI#O. Thenh;: = IW/I- lIn F; = ~/;, 
according to (2.2) (a), has the property Wh = const#O. 
This differentiated at amounts explicitly to 

(A8) 

where h~: = (d Idt)kh;, k = 0,1, .... From the properties of 
E it follows then that the "vector" h 7 must be a linear combi­
nation of "vectors" h~, k = O,I, ... ,n - 2. Therefore, there is 
A' = {A'j (t)}EFn 

- I such that 
n-I 

h7- L A;h{-I=O. (A9) 
j= I 

By substituting here h; = I W/I- lin/; and applying the 
Leibnitz rule for a ~ acting on a product of two functions, one 
easily verifies that (A9) reduces to (A6), with An having the 
form of (A7). 

Let WI = 0, so that the n of/;'s are linearly independent. 
Also, let /;, i = I, ... ,n - 1, be linearly independent, and 
hence there are A.I = const#O such that In = I.7::11 A.;/;. 
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Repeating the argument given above, we infer the existence 
of A" = {A j'(t)}eF,,-1 such that, similar to (A6), 

,,-I 
1,,-1 ~A"'f'i-I-O '-1 I j - Jt... J j -, I - , .•• ,n - . (AW) 

J= I 

But then/" = ~j;;IIJ..J; must alorteriori satisfy the same 
ODE (AW). Then acting on (AW) with at> we conclude 
that there is AeF" such that (A6) is valid. A trivial descend­
ing induction implies that it does not matter how many of 
nit's are linearly independent. There is always AeF" such 
that (A6) is true for any {It (t)}eF". •• 

Lemma 2: We claim that, modqlo the existence of 
{A j (t) } eF" established in Lemma I, such that (A6) is valid 
for every {It (t) }eF" , it is true that 

(at -A,,)M7= -M7- I
- A k+I M 7- 1

, (All) 

k = O,I, ... ,n - I, i = I, ... ,n. 

• Indeed, differentiating at using the definition (A1) 
and remembering the total skewness of E, we have 

at M7 = ( - 1)kEjp "'p.d "'q k 
I In'I n--I 

The term in the first line of the right-hand member of 
this equality, according to (AI) amounts simply to 
" - M 7 - I." In the term from the second line, by using 
(A6) and remembering the total skewness of E, we can re­
place 

" 
I " ~ A j'i- I A /,,-1 +A Ik 

q" _ k _ t --+ ~ j 9" _ k _ I --+ n q" _ k _ I k + 1 q" -Ir, _ 1 • 

J=I 

Consequently, the contribution from the second line 
amounts to "A"M7-Ak+IM7-1" and hence (All) is 
true. •• 

Let now L:=A" -at and gj:=*It=.M7- 1. Then 
(A 11) assumes the form of 

LM7=M7- 1 +Ak+lgj. (A13) 

A trivial induction establishes then that this implies for 
every non-negative integer I: 

LIM7=M7-1+(/f,1 LI-I-sAk+I_S)gj, (A14) 
s=o 

Specializing this for k = n - I, we have 

(

/-1 ) Lig. =M'!-I-I+ ~ LI-I-sA g. " k n-s ,. 
s=o 

(A15) 

The last relation leads to the next lemma. 
Lemma 3: There are the smooth functions B! (t) such 

that 
I-I g: = (-I)IM7- 1- 1+ L B!g:. (A16) 
s=o 

• With (AI5) valid, remembering L: = A" - at> 
(A16) is obviously true for 1= O, ... ,n - 1. •• This estab­
lished, we propose, as the last lemma needed, the following. 

Lemma 4: It is true that 
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**1". = *g.: = ( _ 1)n-IE.. . g. gl .. . gn-2 
'J i I "1" 'In _ I '.'2 In _ I 

=(_1)n-IE .. . MI"'M n- 1 
Ill' "'n- I', 'n- l' 

(AI7) 

• Indeed, according to (AI6), and remembering the 
total skewness of E, the last factor in the first line of (A 17) 
can be replaced by g7- 2-.. ( - 1)n- 2M:, the contributions 

.-1 

from B : - 2 canceling out. By a parallel argument, proceed-
ing from the right to the left, the second factor can be re­
placed by g7 - 3 -.. ( - 1) n - 3M;, the contributions from 

.-2 

B : - 3 canceling out. Proceeding inductively this way we end 
upwithgj , - ( - 1)°M7,-I. Therefore, theright-handmem­
ber of the first line of (A17) amounts to 

**It = (_1)n-I.( _1)0+I+"'+(n-2lejj ... ,. 
I n-l 

(A18) 

Permuting now the factors from the last line to the opposite 
order, M: ... M 7 - I and remembering the total skewness of E, 

I "_I 

we conclude that the equality of **It to the second line of 
(A17) is true. •• 

With the established veracity of Lemmas (1-4), the 
proof of identities (2.2) (d) and (2.2) (h) for any n>2 is now 
very simple .• Indeed, by contracting the equality of **It to 
the second line of (A 17) with M:, I arbitrary, we have 

M~·**I". = (_1)n-I E . . M O ···M n- I·8IO 
I :J; '," 'In" 'n 

= (-1)n- I det(M/)'8IO 

= ( - 1)n-l( WI)n-I'8IO [via(A5)]. 
(A19) 

Then multiplying this equality by IJ and taking the sum 

~7;;d, 

( - I) n - I ( WI) n - ~ = Ct~ IJM:)' **It 

= (Wf) ·**It [using (A3)]. 
(A20) 

Therefore, if WI #0, necessarily 

**It = (_1)n-I(WI)n-2·1t· (A21) 

Via the continuity argument, this also must hold withlsuch 
that WI-O, so that (2.2) (h) is true for every n>2. 

Similarly, we now easily prove (2.2) (d). Indeed, 

W(*/) = Ej""jnti," ·g7.- 1 

= (_1)(n- ll+(n-2l+···+IEj ... j M7- 1 
, . , 

X" 'M?n [using (AI6)] 

=Ej ... j M?···M7- 1 
I 1'1 I n 

= (WI) n - I [using (A5) ]. (A22) 

Therefore, (2.2) (d) and (2.2) (h) are identities for every 
integer n>2. Also, Theorem I is true. •• 

Corollary: Equality (AI5) specialized for 1= n yields 

L"gj = (nil Ln-I-SAn_s)gj = (.±LJ-IAJ)gj, 
s=o J= I 

Therefore, while to an arbitrary {It (t)}eFn according to 
Lemma I, there is associated a linear ODE 
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n 

tJ/;=O, tJ:=a,n_ I Aja,j-l. 
j=l 

(A23) 

the functions gi: = */; must fulfill the somewhat conjugated 
linear ODE: 

n 

tJ*gi = 0 tJ*: = L n - I Lj-1Aj, 
j= 1 

(A24) 

where L:=An -a,. If Wj=const<::>A n =0, one can 
show that the operator tJ ° is just the adjoint of tJ in the 
standard sense, that, for every j, geF, 

g' tJj - tJ°g·j = ath, 

where 
n-l 

h = )~o hkl(t)jk(t)i(t), 

hkl independent ofjandg. 

(A25) 

Perhaps the notion of tJ* as "conjugated" to tJ may 
also be of interest when An # 0, but we shall not investigate 
this point in the present text. 

APPENDIX B: PROOF OF (3.6) IDENTITY 

Consider a matrix Mij, with the entries in a commuta­
tive field of numbers of characteristic zero, indexed by 
i,j = 1, ... ,m = a positive integer. Understanding €i,···i,. 
= €(i''''i,. I as the totally skew m-dimensional Levi-Civita 

symbol normalized by €l"'m = 1, and by 8 j ''''ik ;j''''A as the 
generalized Kronecker 8's, and assuming the summation 
convention, we have the basic identity 

8i, .. 'ik;j," oj, = [I/(m - k)!]€j," 'ikSk + I" ·S,. €j, .. oj'Sk + I' "Sk' 

k =O,I, ... ,m. (BI) 

Moreover, the notion of the determinant of the matrix Mij 
then has the role of a coefficient in the identities: 

(a) €i''''i,.Mi,j,·· ·Mi,.jm = det(Mpq )€j''''jm' 

(b) €j'''ojmMi,j, ···Mjmj,. =det(Mpq)€i, ... j,.' 
(B2) 

The generalized minors of the matrix Mij are then de-
fined as 

: = [I/(m - k)!]€i''''i'''+I ... ,,.€j''''hSk+I·''S,. 

'M, S •• 'M, " k = O,I, ... ,m. 
k + I k + I m-m 

(B3) 

Notice that for k = 0, m = det(Mpq ), for k = 1, mi;j are the 
minors of matrix in the conventional sense, and for k = m, 
m;""im;i""jm = D;""im;j""jm-

Using this definition, one easily establishes with the help 
of (AI) and (A2) that 

(a) MS,i," 'MSkjkmS''''Sk;j''''jk = det(Mpq) ·8i, ... jk;j''''jk' 

(b) Mj,s," 'MjkSkmj''''jk;S''''Sk = det(Mpq) ·8i, ... jk;j''''ik' 

k = O,I, ... ,m. (B4) 

These general rules imply that, in particular for k = 1, 

MSjms;j = det(Mpq ) '8ij = Mjsmj,s' (B5) 

where 8ij = 8i;j are the standard Kronecker 8's. For k = 2, 
we have 
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M.,i,Ms,i,m.,S,;j,j, = det(Mpq )8j,i,;j,h 

(B6) 

By contracting the first line of (B6) with mk,i, mk,j, we 
obtain 

[det(Mpq)] 2mk,k,;j,j, = det(Mpq ) '8i,i,;j,j,mk ,i, mk,i,' 
(B7) 

This, canceled by det(Mpq ), in general #0 via the continu­
ity argument, and, remembering that 

leads to the identity 

det(Mpq ) 'mi,i,;j,j, = mj,;j, 'mj,;j, - mj,;j, 'mj,;j,' (B8) 

which is essential for our purposes. 
Now using the traditional notation of I' . '1 for the deter­

minant of a matrix, one easily can show that the identity 

I
Mij Ail = -m· .A.B. B

j 
0 ';} , } (B9) 

holds, with i enumerating the entries into the rows andj into 
the columns of the determinant of the (m + 1) X (m + I) 
matrix in the left-hand member of the identity above. The 
Mij' Ai' and Bj are arbitrary with i,j = I, ... ,m, in the above. 

Slightly more difficult to demonstrate using the con­
cepts above is the identity 

Mij Aj Ci 

Bj 0 0 = mj,j,;j,j,A j, Ci,Bj,Dj,. (BlO) 

Dj 0 0 

Again, the ts enumerate the rows of the (m + 2) X (m + 2) 
matrix on the left-hand side, whose determinant is to be tak­
en. Correspondingly, the j's enumerate the columns. Of 
course, in (BlO), Mij, Ai' Ci, Bj , Dj are arbitrary with 
i,j = I, ... ,m. 

Contracting now (B8) with Ai Ci Bj Dj and using 
(B9) and (BlO), we arrive at the ide~tity , , 

Mij Aj Ci 

IMijl' Bj 0 0 

Dj 0 0 

= I~ij ~il'l~ij ~il_l~ij ~jl'l:ij ~jl· 
(Bll) 

Now we claim, using the same notation, a more general 
identity 

Mij Ai Cj 

IMijl' Bj E G 
Dj H F 

= IMij Ail.IMij Cjl_IMij Ail.IMij Cil, 
BjE DjF DjH BjG 

(BI2) 

with Mij' Ai> Ci> Bj , Dj , E, F, G, and H arbitrary. 
Indeed, (BI2) is true because one easily sees via an ele­

mentary argument that the coefficients of the arbitrary E, F, 
G, and H are the same on both sides of (B 12). It follows that 
for (B12) to hold it is sufficient to verify its validity with 
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E = F = G = H = O. Of course, this amounts to the already 
established (Btl ).16 

With the identity (B12), we can identify the entries of 
the (m + 2) X (m + 2) determinant in the left-hand mem­
ber of (BI2) with the entries ofthe determinant for am + IF 
according to the scheme 

. . . . . . . . . . . . . 
am-IF" ·am-Iam-IF 

y x y 
amam-IF am+lam-IF 

x y x y 

amF···am-IamF y x y a,;a;F a,;+ la;F 

a m+ IF···am-Ia m+ IF 
y x y 

ama m+ IF a m+ la m+ IF 
x y x y 

My Ai Gi 
_. Bj E G (B13) 

Dj H F 

Using the definitions above, one easily sees that 

.2" I (.2" mF) = .2" mF·aXay.2" mF - ay.2" mF·ax.2" mF 

= IM
y 

Ail·IM
y Gil 

Bj E Dj F 

_IMy Ail·IM
y Gil. 

DjH Bj G 
(BI4) 

By comparing (B 13) and (B 14) with the identity 
(BI2), we conclude that for every FEY and m = 1,2, ... it is 
true that 

(BI5) 

It is now convenient to formally extend the validity of 
this identity for all integers m. Understanding.2" 0 F: = F, it 
is natural to define 

.2" _IF: = I, .2" _2F = .2" _3F = ... : = 0, (BI6) 

which consistently assures us that (BI5) is indeed valid for 
all integer m's. 

For m = I, (BI5) amounts to 

.2"1 (.2"IF) =F.2"2F. (BI7) 

Substituting the above F -+.2" m F, we have 

.2" 1(.2" I (.2" m F») = .2" m F· .2" 2 (.2" m F) . (BI8) 

On the other hand, using the representation of .2" IF in 
the form of F2 .2" x .2" y In F, one easily finds that the oper­
ation .2" I has the property 

F,GEY:::} .2"1 (FG) = G 2.2" IF + F2.2" IG. (BI9) 

Consequently, acting on both sides of (BI5) with .2" I 
and employing (BI8) and (BI9), we have 

.2" mF·.2"2(.2" mF) = (.2" m_IF)2.2"1(.? m+lF) 

+ (.2" m+ IF)2 . .2" 1(.2" m_IF) 

= (.2" m_IF)2.2" mF·.2" m+2F 

+ (.2" m+ IF)2 . .2" m_2F·.2" mF 

[using (BI5)]. (B20) 

Canceling this by .2" mFin general #0, via the continu­
ity argument, we arrive at the identity 
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.2"2(.2" mF) = (.2" m_IF)2 . .2" m+2F 

+ (.2"m+IF)2·.2"m_2F, 

which is valid for all integers m. In particular, 

.2" 2 (.2" IF) = F2.2" 3F + (.2" 2F) 2 

and 

(B2l) 

(B22) 

(B23) 

Notice that a direct proof of (B21) based only on the 
definition of .2" m operations, without employing (B 15) and 
the (BI9) property of .2" I' would be highly nontrivial. In the 
initial stages of this paper, (B22) has been proved in particu­
lar via the direct computation, with the assistance of Dr. 
Alberto Garcia-Diaz, whose help is gratefully appreciated. 
At this stage of trying to find some formal properties of 
.2" k (.2" IF), with at least one of the indices being an arbi­
trary integer, this question appeared to be an extremely 
messy algebraical problem. 

The general problem of the result of the iteration of the 
.2" m operations, i.e., .2" k (.2" I F) = ?, to which we have now 
the answer for k = 1,2 and I arbitrary, remains as a rather 
nontrivial algebraic problem. 

One easily sees from the definition of .2" m that 

(B24) 

where'" .. " denotes the terms constructed from the deriva­
tives of Fofthe differential order <2m - 1. 

It follows that 

.2" It (.2" m F) = .2" m _ I po .2" It _ t<.2" m F) 

(B25) 

where " ... " denotes the terms algebraically constructed 
from the derivatives of F of the differential order 
<2(n + m) - 1. If we wish to express this statement in 
terms of the .2" m operators, multiplying (B25) by 
.2" It + m _ I F and employing (B24), we arrive at 

.2" It + m _ I PO.2" It (.2" mF) 

= .2" m _IF·.2" It _ I (.2" mF)·.2" It + mF + .... (B26) 

The dots denote the terms algebraically constructed from 
the derivatives of Fofthe differential order <2(n + m) - 1. 

On the basis of intuitive arguments, we conjecture that 
the'" .. " terms described above consist of the algebraic con­
structs made of .2" mF, m = 0,1, ... ,k<2(m + n) - 1. We be­
lieve that it would be of interest to determine the explicit 
form ofthe " ... " terms in (B26), determining this way the 
"algebra" of the composition of the .2" m operators, 
(.2" It 0.2" m )F: = .2"" (.2" m F), which is obviously associ­
ative. 17 

APPENDIX C: PROOF OF (3.16a) 

• Using the traditional explicit notation for the deter­
minants for .2" m F as defined by (3.1), we have 

.2" mF: = 
... , 

(CI) 

a;F, a;axF, a;a';F 
Since the derivative of a determinant equals the sum of 
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determinants with initial columns successively differentiat­
ed, we also have 

.... . . . . 
a';-IF, 

a am-IF. Y x , . . . . . . 
amF. ama F amam-IF. ama m+ IF 
Y' yx yx' yx 

Now .!f mF= 0 implies that the last column of (C1) 
must be a linear combination of the first m columns, i.e., 
there areAj (x,y),j = 1, ... ,m, such that 

m 

.!fmF=O~a~a';F= LAja~a~-IF, k=O, ... ,m. 
j= I 

(C2) 

Similarly, if ax .!f m F = 0, via the same argument there 
are A j (x,y),j = 1, ... ,m, such that 

ax.!f mF= 0 
m 

~ a~a,;+ IF= LA j a~a~-IF, k = O, ... ,m. (C3) 
j= I 

In particular, (C2) for k = 0 is given by 
m 

.!f mF= 0 ~ a';F= L Aj a~-IF. (C4) 
j= I 

Acting on the above with a ~ and applying Leibnitz's 
rule, 

.!f mF= 0 

~ akamF= ~ ~ (k)ak-IA .. alaj-lF. yx ~~lY lYX' 
j= 11=0 

k= 1, ... ,m. (CS) 

However, the term in the right-hand side cancels with the 
left-hand member when the summation index 1 equals k be­
cause of (C2). Hence 

.!f F=O ~ ~ k~l(k)ak-IA .. alaj-IF=O 
m ~~lY lYX , 

j= I 1=0 

k= I, ... ,m. (C6) 

A parallel argument applies to the case of (C3 ). Special­
izing for k = 0, we have 

m 

a .!f F=O ----. am+IF= ~ A ~ aj-IF. (C7) x m ---rx ~JX' 

and acting on it with a ~, 
ax.!f mF= 0 

~ akam+IF 
Y x 

j= I 

= ~ ~(k)ak-IA ~.alaj-IF. 
~~lY lYX' 
j= 11=0 

k= I, ... ,m. (C8) 

Similarly, the entry in the summation over l, 1 = k, because 
of (C3) cancels out with the left-hand member, and we are 
left with the conditions 

ax.!f mF= 0 

~ j~1 :t~ (:)a~-IAj.a~a~-IF=O, k= I, ... ,m, 

(C9) 
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which, with A j -+ Ai' formally coincide with (C6). 
Lemma: Conditions (C6) imply that, for every 

k = 1, ... ,m, 
m 

hk.l : = L a~-IAj 
j=1 

·alaj-IF=O Y x , for every 1 = O,I, ... ,k - 1. 
(ClO) 

We prove the above by induction. For k = 1, (C6) re­
duces to 

m 

~ a A.·aj-IF=O 
~ Y 1 x 

j=1 

and (ClO) is true, h 1.0 = O. Assume then (ClO) for some 
k -+ ko, 1 .;;;ko < m, i.e., h"".1 = 0, 1 = O, ... ,ko - 1. However, 
according to the definition of hk,/: ayhk•1 

=hio+ 1,1 + hI<... + 1.1+ I' Consequently, 

h",,+ 1.1 + h",,+ 1.1+ I = 0, 1 = O,I, ... ,ko - 1. (Cll) 

It follows that 

hI<... + 1,/ = (-l)lh",,+I.o, l=O,l, ... ,ko. (C12) 

On the other hand, (C6) specialized for k -+ ko + 1 re-
quires 

1<.., (ko + I) L 1 hI<... + 1,1 =0. 
1=0 

(C13) 

Using (C12), because 

1<... (k + 1) L (_1)1 0 ={1-1)1<...+1_(_1)1<...+1 
1=0 1 

= (- 1)1<..., 

we see that this condition implies hI<... + 1.0 = O. So that, ac­
cording to (C12), 

hI<... + 1,/ = 0, 1 = O,l, ... ,ko, (C14) 

which completes the inductive proof of (C 10). 
Now we are sufficiently prepared to demonstrate the 

veracity of (3.16)(a). Indeed, with .!f mF= 0, the condi­
tion (C6) according to (ClO) implies 

hk,k_1 = 0, k = 1, ... ,m, i.e., 
m 
~ a A ·ak-Iaj-IF-O k-1 ~ y j y x -, - , ... ,m. (CIS) 

j=1 
But the matrix lIa~-la~-IFII, k,j = 1, ... ,m, has determi­
nant equal to .!f m _ I F. Therefore, if it is assumed that 
.!f m _ IF =1=0, the matrix is invertible. Then (CIS) implies 
ayAj = 0 ~ Aj = Aj(x). It follows that F must satisfy 
(C4), which reduces to a linear ODE: 

(a,;-.I Aj(x)a~-I)F=O. 
1= I 

(C16) 

Understanding by /; (x), i = 1, ... ,m, the linearly inde­
pendent solutions to this linear ODE, Fmust have the form 
of 

m 

F= L /;(x)g;(y), (C17) 
;=1 

where the g;'s are "integration constants." Therefore 
(3.16)(a) is true. • 
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An infinite sum of products of Jacobi polynomials 
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Starting with a formula by Noble [Proc. Cambridge Philos. Soc. 59, 363 (1963), Eq. (16)] for 
a certain sum of products of Jacobi polynomials, another sum of this type is evaluated. 

I. INTRODUCTION =(a+1)n ± (n+a+.B+1).(-n). 

n! .=0 s!(I + a). 

(lb) 

In the course of our (as yet unfinished) investigation of 
the inviscid, incompressible flow of a rotating fluid shell con­
fined between concentric, spherical, corotating rigid walls, 
we encountered a certain sum of products of Jacobi polyno­
mials. We needed to evaluate 

P(p.,/,x) = i (2k + p. + I) 
k=O (k+p.)(k+I+p.) 

where (z) n = r (z + n) /r (z). In this paper it is shown that 

P(p.,I,x) = [((1-x)/2)-I'/p.Jl5o,1 (-I<x<I,p.#O), 
(2) 

where 150,1 is the Kronecker delta function. 

Xp<,:'+I.-l) (x) p<,:'+/I.-l)(X), (la) 

where I is a non-negative integer. The P ~a.(3) (x) are the Ja­
cobi polynomials 1 given by 

To evaluate P(p.,I,x) for I> 1, it was convenient to evalu­
ate first a more general sum of products of Jacobi polynomi­
als, which can then be related to P by considering a special 
case. The evaluation of P(p.,O,x) requires a separate treat­
ment. 

p~a·(3)(x) = [(a + 1)n/nl] II. GENERAL FORMULA 

X2Fdn + a +.B + 1, - n;1 + a;(I- x)/2] We shall evaluate the sum 

Q( b.1 .)= ~ (k+m)!r(a+b-l+k+2m)(2k+2m-l+a+b) p(a-I-l,b)( )p(a+m,b-I+m-O( ) a, , ,m,x £.. k + m X k X , 
k=O f(a+k+m+ 1)r(b+k+m+ 1) 

where 1 and m are non-negative integers. 
We start with a formula by Noble,2 

00 k!(c+ 1)k(2k+c+ 1) 
S(a,b,c;x,y) = I Plc-b,b)(x)Pla,c-al(y) 

k=O (a + l)k(b + Ih 

where 

r(a + 1)r(b + 1) 2C+ 1(1 +x) -b(l_ y) -a(x _ y)a+b-C-Ia(x,y), 
r(c+ 1)r(a+b-c) 

{
I, if - l<y<x<l, 

a(x,y) = 0, if - l<x<y<1. 

(3) 

(4) 

Setting a + b - c - 1 = 1 (a non-negative integer), and differentiating m times with respect toy, we obtain in the limity--+x 

am 
R(a,b;l,m;x) = lim --S(a,b,a + b -1- 1;X,y) 

y-x aym 

{

O, 

= r(a + 1)r(b + 1)r(a + m -/)ml 
r(a + b - /)r(a)l!(m -I)! 

if m<l, 

if m>l, 

for - I <x < 1. We now use the formula for differentiating the jacobi polynomials, 1 
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d m 
__ p<a,p)(y) = 2 -mea + R + k + 1) p<a_+m,P+m)(y) dym k , fJ m k m , (6) 

to obtain 

00 k '(a + b - I) (2k + a + b - I) 
R(a,b;/,m;x) =2- m L' k+m Pka-I-I,b)(x)Pka_+mm,b-l+m-\)(x). (7) 

k=m (a+1)k(b+l)k 

Here we have used the recursion relation satisfied by the P ~a,p) (x), 

2(n+ l)(n+a+p+ 1)(2n+a+p)p~a:l(x) 

= (2n + a + P + 2)(2n + a + P + 1)(2n + a + p)xp~a,p)(x) + (2n + a + P + 1)(a2 _ (2)p~a·p>(x) 

- 2(n + a)(n + p)(2n + a +P + 2)p~a~1 (x), (8) 

to verify that p~a,p)(x) = ° when n is a negative integer. Shifting the summation index in Eq. (7) and noting that R is 
proportional to Q, we obtain finally 

{
a, if m <I, 

Q(a,b;/,m;x) = (_ 1)/2a+b+m-/(i)(a)m_/(1 +x) -b(1-X) -a-m+/, if m>/, (9) 

where (i) = m!/It(m -I)! is the binomial coefficient. 

III. EVALUATION OF P( .... ,I,x) 

A. Case/>1 

Since I> 1, the function P(p"/,x) can be related to 
Q(a,b;/,m;x) by setting a = p, + 1, b = 1, and m = 1- 1. 
Then we have 

Q( 1 1-11 l'x) _ ~ (2k + p, + I) 
p, + , " -, - k~O (k + I)(k + P, + I) 

XpJ!'+I,- \)(x)PJ!'+/:Il (x) = 0, 
( 10) 

because m = 1- 1 <I. 
We can now express P ~~Il (x) in terms of P ~a, - I) (x) 

as follows. Set p = ° in the contiguous relations, I 

(a + P + 2n)p~a,p- \)(x) 

= (a+p+n)p~a,p)(x) + (a+n)p~a~l(x) (11a) 

and 

~ (a+p+2n)(1 +X)p~a~I+I)(x) 

= (P + n)p~a~l (x) + np~a,P)(x). (11b) 

Then for n> 1, 

p~a.:..°l (x) + p~a,o)(x) = (2n + a)/2n)( 1 + x)p~a.:..ll (x), 
(12) 

from Eq. (llb), and 

p~a.:..°l (x) + p~a.o)(x) = (a + 2n)/(a + n»)p~a,-I)(x), 
( 13) 

from Eq. (11a), so that for n> 1, 

p~a.:..ll(x) = [2n/(a+n)(1 +x)JP~a,-I)(x). (14) 

Substituting this result in Eq. (10) with n = k + I gives, 
for I> 1 and p, ;fO, 
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I 

Q(p, + 1,1,p, + 1;/,/- l;x) 

2 00 (2k + P, + I) 
= (1 +x) k.?O (k+p,)(k+ I+p,) 

XPJ!'+I,-I)(X)PJ!'+II,- \)(x) 

== [2/(1 + x) JP(p"/,x) = ° (- 1 <x < 1). 

B.Case/=O 

(15) 

P(p,;O;x) can be evaluated by integrating 
S(p, + 1, 1,p, + l;x,t) with respect to t from - 1 to x. To 
evaluate SX-IPJ!'+ 1,0) (t)dt, we use the differentiation for­
mula for Jacobi polynomials, Eq. (6), with m = 1. This 
gives 

Ix P<I'+I.O)(t)dt= 2 p<I',-I)(X) (16) 
-I k (k+p,+l) k+l , 

sincePJ!'-i-,I)( -1) =OfromEq. (14) for k a positive in­
teger or zero. Thus integrating Eq. (4) yields 

f: 1 S(p, + 1,1,p, + l;x,t)dt 

=2 t (2k+p,+2) PJ!'-i-,I)(X)PJ!',I)(X) 
k=O (k+ l)(p,+k+ 1) 

=_4_ t (2k+p,)[PJ!',-I)(X)]2 
1 +x k=1 (k+p,)2 

= 4/(1 + x)[P(p,;O;x) - (lIp,)] 

= [21'+2/p,(1 +x)][(1-x)-1'-2-1'] (p,;fO), 
(17) 

where we have utilized Eq. (14) and have shifted the sum­
mation inqex. Finally, Eq. (17) yields the desired result, 

P(p"O,x) = 21'/p,( t - x)l'. (18) 

While Eq. (5) requires 1 < x < 1, Eqs. (15) and (18) hold 
also for x = - 1 because, 1,3 as noted above, 
P ~a, - \) ( _ 1) = ° for a positive integer, and 
p~a,-\)( -1) = 1. 
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Quite recently, a symmetric stochastic calculus of variations was proposed to formulate 
canonical stochastic dynamics, which is an extension of Nelson's stochastic mechanics. In this 
article a "Noether's theorem" is formulated within this ~alculus of variations. Conservation 
laws of momentum, angular momentum, and energy are proved, which are related with the 
sartle laws in quantum mechanics. 

I. INTRODUCTION 

Several years ago, Yasue proposed the notion of stochas­
tic calculus of variations 1-4 within Nelson's stochastic me­
chanics.s-7 This calculus has been improved recently.s The 
new calculus is called "symmetric stochastic calculus ofvar­
iations" (SSCV). "Symmetric" means that this stochastic 
calculus employs the time-symmetric semimartingale. On 
the stochastic least-action principle in the SSCV, Nelson's 
stochastic mechanics is reformulated in the Lagrangian for­
malism. We present a certain class of stochastic Lagrangian 
systems in the SSCV that are associated with solutions of 
SchrOdinger equations,S as in Nelson's mechanics. 

The aim of this paper is to set up a theorem similar to 
Noether's theorem within the SSCV on the model of an ordi­
nary calculus of variations,9 and to get thereby conservation 
laws for the stochastic Lagrangian systems mentioned 
above. 

II. SSCV: SUMMARY 

We start with a summary of the SSCV. S Let (n, B, P) be 
a base probability space and x a stochastic process in RI, i.e., 
a continuous mapping t ..... x (t) from a time intetval /into the 
Hilbert space H = L 2(n,p) ..... R/). We consider two filtra­
tions indexed by I, B t and B t , with Bs CBt and B t CBs for 
s ~ t, to which x(t) is adapted. By hypothesis, x(t) is a time­
symmetric semimartingale. 2.4.10 Moreover, the process x ( t) 
has the two mean velocities 

Dx(t) = lim h-1E[x(t+h)-x(t)IB,] 
h-O+ 

and 

D.x(t) = lim h-1E[x(t) -x(t-h)IBt ], 
h_O+ 

where E[ '11:1] denotes the conditional expectation with re­
spect to the (T algebra 1:1. Let us denote the class of stochastic 
processes of the above-mentioned type by K. For 
LeC2(R21 + 1 ..... R I), a Lagrangian, and for each processx(t) 
in K, we define the action functional J by 

J [x] = E rib L (x(t),Dox(t),t)dt ] , (1) 

where E[ .] is the absolute expectation and a,bel, a<.b. In 
the expression (1), Dox(t) denotes the "symmetric mean 
derivative" defined by 

Dox(t) =!(D + D. )x(t). 

We denote by 11 the totality of processes z(t) = z(x(t),t), 
wherez = z(x,t) is any smooth R/-valued function vanishing 
identically for t = a and b. We note that each process z(t) in 
11 also belongs to K. The process x ( t) in K is called a station­
ary process of the functionalJ, given by (1), if c5J[x] (z), the 
first variation of the functional J in x on K, is equal to zero 
for any processes z in 11. The following theorem describes the 
stochastic least-action principle in the SSCV.8 

Theorem 1: A process x (t) belonging to K is a stationary 
process if and only if, for the process x(t), the following 
equation holds: 

Do aL -~=O. 
aDox(t) ax(t) 

(2) 

We call this equation (2) the stochastic Euler's equa­
tion. The proof of this theorem consists of computing 
c5J[x] (z) by Taylor's expansion and using the following 
lemma. 

Lemma J (Zheng-MeyerlO
): Let x(t) andy(t) be sto­

chastic processes belonging to K. Then 

E [x(b) 'y(b) - x(a) 'y(a)] 

= E [i
b 
(y(t) 'Dx(t) + x(t) ·D.y(t»)dt ] 

=E[ib(x(t)'DY(t) +Y(t)·D.X(t»)dt]. (3) 

III. A NOETHER'S THEOREM IN SSCV 

Now we proceed to set up a theorem similar to 
Noether's theorem 10 in the SSCV. Suppose that one has pro­
cesses x(t) and X(t) belonging to K and satisfying the fol­
lowing conditions. 

(i) The process x (t) is a stationary process of the func­
tional J given by (1). 

(ii) The processX(t) is derived fromx(t) by the follow­
ing transformation depending on a parameter E: 

X(t) = cfo(x(t),t;E), (4) 

where t/J(X,t;E) is a smooth function differentiable with re­
spect to E, and for E = 0 the cfo becomes the identity transfor­
mation. 

and 

Theorem 2: Assume that both of the processes 

( aL ) (x(t),Dox(t),t) 
aDox(t) 
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A (x(t), t)= (dtfJ) (x(t),t) 
dE £=0 

belong to K. If, for arbitrary a and b, AJ=J[X] - J[x] [the 
variation of J induced by (4)] satisfies 

( dAJ) =0 
dE £=0 ' 

then 

E [( aL ) (x(t),Dox(t),t )'A (x(t),t)] 
aDox(t) 

is constant along the stationary process x(t). 

(5) 

Proof' Suppose that E is a small quantity. Using Taylor's 
expansion with respect to E and the stochastic Euler equation 
(2) for x(t), we find that Eq. (5) turns out to be 

E[fb(DO aL A+ aL DOA)dt) =0. (6) Ja aDox(t) aDox(t) 

Applying Lemma 1 to Eq. (6) we finally obtain 

E[(aD~~(t) A ),=b -(aD~~(t) A ),=J =0. (7) 

Theorem 2 now follows from the arbitrariness of a and b. 

IV. CONSERVATION LAWS IN THE STOCHASTIC 
LAGRANGIAN DYNAMICAL SYSTEM 

We now turn to conservation laws obtainable by apply­
ing Theorem 2 to a stochastic Lagrangian dynamical system 
in the SSCV that corresponds to a solution of the Schro­
dinger equation. For this purpose we first touch upon the 
reformulation of Nelson's mechanics on our stochastic least­
action principle.8 Let us consider diffusion processes x ( t) 
belonging to K that are governed by the stochastic differen­
tial equation and the reversed equations-7: 

dx(t) =b(x(t),t)dt+ (fzlm) 1/2 dw(t) , (8) 

dx(t) =b.(x(t),t)dt+ (fzlm) 1/2 dw.(t), (9) 

where b and b. are certain vector-valued smooth functions, 
fz is Planck's constant, and m is the mass of a particle. In (8) 
and (9), w(t) is a standard HI-valued Wiener process, and 
w. (t) has the same properties as w(t) except that the incre­
ments w. (t) - w. (s) are independent ofx(r) for r~t>s. 
We assume that x(t) has a probability density function 
p(x,t). For this process we have Dx(t) = b(x(t),t) and 
D.x(t) = b.(x(t),t). According to Nelson,s-7 these func­
tions b and b. are connected with the probability density p 
by the equations 

ap + div(v'p) = 0, u = {~} grad lnp, (10) 
at 2m 

where v, the "current velocity," and u, the "osmotic veloc­
ity," are vector-valued functions defined by v = !(b + b. ) 
and u = !(b - b. ), respectively. 

Now we assume that the diffusion process x(t) men­
tioned above is an extremal of the functional J with the La­
grangian 

L(x,Dox,t) = (mI2) IDoxl 2 
- V(x,t) + (m/2) lu(x,t) 12 

+ (fzI2)div u(x,t), (11) 
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where V is a given potential function and u is the osmotic 
velocity given by the second equation of (10). Then 
Theorem 1 and the following lemma due to Nelson are put 
together to show that 

(:t + v'V)V(x(t),t) 

= - ~ grad V(x(t),t) + (u.v + ~ a) u(x(t),t). 
m 2m 

(12) 

Lemma 2 (Nelsons-7): Let f(x,t) be a smooth func­
tion on RI XR 1 and x(t) the diffusion process governed by 
(8) and (9). Then 

Df(x(t),t) = [:t + b·V + {2:}a ]f(x(t),t), (13) 

D. f(x(t),t) = [! + b.·V - L:} a ]f(x(t),t). (14) 

Equation (12) is just the same consequence as that of 
Newton's equation of motion in Nelson's mechanics. There­
fore in a manner analogous to Nelson's mechanics we can 
determine v, u, andp (and hence b and b.) from Eqs. (10) 
and (12), so that the diffusion processx(t) is determined.s-7 

Thus Nelson's mechanics is now reformulated on the sto­
chastic least-action principle. The diffusion process x(t) to­
gether with the Lagrangian (11) is called the stochastic La­
grangian dynamical system (SLOS). 

In the same manner as Nelson's, one can further show 
that the SLOS x ( t) with the Lagrangian (11) corresponds 
to a solution of a Schrodinger equation. Indeed, the wave 
function defined by 'I1(x,t) = {p(x,t)}1/2 exp{iS(x,t)}, 
whereS(x,t) is such that v(x,t) = (fzlm) grad S(x,t), satis­
fies the Schrooinger equation with the potential function 
V(X,t)S-7; hence p = 1'1112 gives the probability density of a 
particle in the position space. 

Weare now in a position to obtain conservation laws in 
the SLOS with the Lagrangian (11). These conservation 
laws will have their correspondents in quantum mechanics 
on account of the correspondence between our SLOS and 
the Schrodinger equation. For simplicity we consider a 
three-dimensional system and set m = fz = 1. 

(i) Conservation of momentum. Let us take up Xi 
= Xi + E (i = 1,2,3) for the transformation (4). We assume 
that the potential function V(x,t) in the Lagrangian (11) is 
invariant under this transformation in R3. Then we can ver­
ify that Eq. (5) holds in this case. Indeed, by a computation 
along with Lemma 2 we obtain 

( dAJ) = E [ fb {.t ~ (D - D. )Ui(x(t),t)}dt] . 
dE £=0 Ja 1=12 

(15) 

We note that the process ui(x ( t) ,t ) belongs to K, since ui is a 
smooth function. Then Lemma 1 shows that 

so that Eq. (15) is equal to zero. Moreover, the assumption 
of Theorem 2 also holds in this case, since (aL I 
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aDox) = Dox = v and A. are smooth functions-on x and t. 
Therefore by Theorem 2 

E [itl Vi(x(t),t)] 

proves to be a conserved quantity. 
(ii) Conservation of angular momentum. We now as­

sume that the potential function V(x,t) is invariant under 
the rotation about, say, the x3 axis. In the same manner as in 
(i) we obtain 

( dt:J) = E [i
b 
{~(D - D. )X2

'U
I(X,t) 

de £=0 a 2 

- ~ (D - D. )XI
'U

2(X,t)} dt] . (16) 

By the definition of u, the right-hand side of Eq. (16) be­
comes equal to zero, and hence Eq. (5) holds also in the case. 
Moreover, as in (i) the assumption of Theorem 2 also holds. 
Therefore Theorem 2 shows that 

E[DoXI(t) ·x2(t) - Xl(t) 'Dox 2(t)] 

is a conserved quantity. 
(iii) Conservation of energy. Let TEe 1 (/-+ R I) be_a 

strictly monotonic function with 1'(a) = a and 1'(b) = b. 
The inverse function is denoted by t( 1') for a<n;;;b, and 
X(t(1'}) is denoted by X(1'). Then we can regard (X(1'),t(1'») 
as a stochastic process on R3 X R I. For this process we intro­
duce a new Lagrangian lee 2 (R2

(3+ J) -+ R I) through the re­
lation 

l(X,t),(DOX, :;))=L(x,DOx(:;)-I,t). (:;), 

where L is the Lagrangian (11). We denote by J the func­
tional for the Lagrangian I with the process (x ( 1') ,t( 1') ). 

We now assume that the potential function V(x,t) in the 
original Lagrangian (11) is independent of t. Consider the 
transformations in R4, X( 1') = x( 1') and T( 1') = t( 1') + E. 
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Then after a calculation, the left-hand side ofEq. (5) for the 
functional J goes over into 

( dtJ) =E[ib{u~+~diV(~)}dt]. (17) 
de £ = 0 a at 2 at 

By both equations of ( 10) and Lemma 2, the integrand of the 
right-hand side of Eq. (17) becomes 

- ~(D - D.) (v'u) - !(D - D.) (div v), 

so that Eq. (17) is equal to zero because of Lemma 1. Fur­
thermore, we also see that the assumption of Theorem 2 
holds in this case. Therefore from Theorem 2 it follows that 
E[ {al / a( dt / du)}] = const. On inserting the relation be­
tween L and I into this equation and setting u = t, 

E[~IDoxI2 + V(x) - !Iu(x,t) 12 - ~ div u(x,t)] 

is a conserved quantity. 
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The concept of canonoid transformation for a locally Hamiltonian vector field is introduced, 
and its relation with the existence of non-No ether constants ofthe motion is shown from a 
geometrical viewpoint. The equations determining generating functions for such canonoid 
transformations are obtained and applications to some particular problems given. 

I. INTRODUCTION 

Canonical transformations are very often used to reduce 
Hamilton equations describing the time evolution of a Ham­
iltonian system to a simpler set of Hamilton equations. This 
property of preserving the form of such equations, whatever 
the Hamiltonian is, characterizes the canonicity of the trans­
formation. However, as remarked by Saletan and Cromer, I 
given a concrete Hamiltonian H, the transformations pre­
serving the Hamilton form of the motion described by H, 
which are said to be canonoid with respect to H, may also 
play an important role in the solution of the problem at hand, 
and this fact has motivated recent papers on the properties of 
this kind of transformation.2

•
3 

The approaches developed up to now, however, are lo­
cal and coordinate dependent-a paper by Marm04 refers 
only slightly to the global problem. One of our aims, there­
fore, is to develop a global theory for canonoid transforma­
tions, using the tools of modern differential geometry, that 
will be valid for a more general case in which the manifold is 
not topologically trivial. 

The paper is organized as follows: In Sec. II we give a 
geometric definition of canonoid transformation that re­
duces to the well-known one for the simplest case of a topolo­
gically trivial system, or at least when considering only local 
expressions for the system. The geometric version of the 
Poisson bracket theorem I gives a suggestion for such a defin­
ition, which coincides with the concept of quasicanonical 
transformation introduced by Marmo.4 The theory oflocal­
ly Hamiltonian dynamical systems admitting alternative 
formulations5.6 will be used for studying such canonoid 
transformations, and we will find some global results gener­
alizing previous contributions by Leubner and Marte2 and 
Negri et al., 3 to which they reduce when only trivial systems 
are concerned. It is also well established how to generate 
canonical transformations starting from "generating func­
tions.,,1.7 In contrast, as far as we know, there is no available 
method of generating a canonoid transformation for a con­
crete Hamiltonian H; therefore this will be the main goal of 
Sec. III, where we develop the theory of generating functions 
for canonoid transformations. In Sec. IV, some examples 
given previously are shown to arise in this way as associated 
to some generating functions. Finally, for the sake of com­
pleteness, the local expressions have been collected in an Ap­
pendix. 

II. CANONOID TRANSFORMATIONS 

The concept of canonoid transformations with respect 
to a Hamiltonian H was introduced by Saletan and Cromer I 
in order to name those transformations preserving the form 
of Hamilton's equations for a fixed Hamiltonian H. The gen­
eralization for the case of a nontrivial phase space is due to 
Marm04 under the name of quasicanonica1 transformations. 
The idea of this definition may be demonstrated by consider­
ing that given a symplectic manifold (M,m), the integral 
curves of a Hamiltonian vector field r H' defined by 
i(r H)m = dH, are determined in Darboux coordinates for 
m, for which m = dq; Adp;, by the Hamilton equations 

dl = aH, dpi = aH. (2.1) 
dt api dt al 

The same assertion would be true for a locally Hamilto­
nian vector field r, the role of H being played by a local 
Hamiltonian for r, but the explicit reference to a concrete 
type of coordinate seems, however, to be not quite satisfac­
tory. The relation between locally Hamiltonian vector fields 
and mechanical systems whose evolution is described by 
Hamilton's equations may also be based on the fact that such 
systems are characterized by the relation of the so-called 
Poisson bracket theorem, I 

d{F,G} = {dF G} + {F. dG} 
dt dt ' 'dt ' 

that in geometrical terms is given by 

r{F,G} = {rF,G} + {F,rG}. (2.2) 

The following theorem asserts that this relation is simply the 
equivalent of saying that r is a locally Hamiltonian vector 
field. 

Theorem: Let (M,m) be a symplectic manifold. A vector 
field re£il" (M) is locally Hamiltonian if and only if relation 
(2.2) holds. 

Proof: We recall that the Poisson bracket of any two 
functions Fand G is defined by {F,G} = m(XF,xG)' where 
XF denotes the vector field such that i(XF)m = dF. Then 

.!f r {F,G} = .!f r [m(XF,xG)] 

= (.!frm)(XF,xG) 

+ mqr,xF ],xG) + m(XF,[r,xG p, 
and therefore 
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2" r {F:G} = (2" rW )(XF,xG) 

+ [r,XG]F - [r,xF ]G, 

from which we get 

r{F,G} = - (2" rW)(XF,xG) + {rF,G} + {F,rG}. 

Consequently, if r is locally Hamiltonian, 2" r w = 0, 
then relation (2.2) holds, and, conversely, ifthis relation is 
true, then (2" r w) (X F,xG) = 0 for any pair of functions. 
Since a local basis of fIE' (M) can be built up from Hamilto­
nian vector fields, the Lie derivative 2" r w must be zero, i.e., 
r is locally Hamiltonian. 

A canonoid transformation eI> (w.r.t. H) preserves the 
form of Hamilton's equations, and therefore condition (2.2) 
would also be true for the transformed field eI>. r H' This 
shows that an appropriate generalization for the concept of 
canonoid transformation is that of quasicanonical transfor­
mation according to Marmo's4 terminology. 

Definition: Given a locally Hamiltonian vector field 
rEfIE'(M) in a symplectic manifold (M,w), a transforma­
tion el>EDiff(M) is said to be canonoid with respect to r if 
the transformed field eI>. r is also locally Hamiltonian. 

The two-form B = 2"<1> rW is exact, BEB2(M), since 
• 

B = dP with P = i(eI>. r)w. Thus the property B = 0 im-
plies, locally, the existence of a function K such that 
i(ct>. r)w = dK. 

The point is that eI>. r is locally Hamiltonian with re­
spect to the symplectic form w if and only if r is locally 
Hamiltonian with respect to the symplectic structure eI>. w, 
because of the relation eI>·d[i(eI>. r)w] = d[i(r)ct>*w]. 
This means that when eI> is a canonoid transformation for r, 
then the vector field r admits a new and different locally 
Hamiltonian structure. 

The dynamical systems admitting alternative Hamilto­
nian formulations have received much attention in the last 
few years. In particular, for Lagrangian systems, it was 
proved by Hojman and Harleston8 that given two s-equiva­
lent, but not gauge-equivalent, Lagrangians L i , i = 1,2, it is 
possible to find some constants of motion that are the traces 
of the powers of the product matrix W 2-

I WI , where Wi' 
i = 1,2, denotes the Hessian matrix 

a2L. 
[W;]aP = avaa~' 

Moreover, Henneaux9 proved that this corresponds to the 
vanishing of the Lie derivative of a (1,1) tensor field whose 
diagonal blocks are W 2- I WI' The more general case of 
Hamiltonian dynamical systems has been studied in Refs. 5, 
6, 10, and 11. Now we will show that the properties of these 
bi-Hamiltonian dynamical systems can be used for the study 
of canonoid transformations. 

A. Particular case: Bidimensional symplectic manifold 

If the dynamical system is two dimensional, dim M = 2, 
then any two arbitrary nondegenerate two-forms are propor­
tional. Therefore there will exist a function / EC"" (M) such 
that eI>*w = /w. 

Now because of the relation 
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we obtain that, if r is a locally Hamiltonian field, then the 
transformation eI> is canonoid w.r.t. r if and only if / is a 
constant of motion. 

Next we prove that this function / relates the Poisson 
bracket ofthe pullbacks eI>* (F), eI>* (G) of any pair offunc­
tions F,GECoo (M) to the primitive Poisson bracket {F,G}. 
In fact, we have 

i(XFo<l»w = d(Foel» = eI>*(dF) = eI>* [i(XF)w] 

= i[eI>; I(XF) ]eI>*w, (2.3) 

and consequently if eI>*w =/w, then we obtain XFo<l> 
= /eI>; I(XF ). Since the definition of the Poisson bracket is 

{Foel>,Goel>} = XGo<l> (Foel», 

and taking into account the value of XGo<l> given above, we 
find 

{Foel>,Goel>} = /eI>; I(XG )(Foel» 

=/XG(F)0<l> =/{F,G}oel>. (2.4) 

This property may be used to get a new proof of the 
theorem given by Leubner and Marte2 for the case of a "one­
dimensional system," according to which a mapping 
(q,p) .... (Q,P) carries a given canonical description (p,q,H) 
of a one-dimensional system into another canonical descrip­
tion (P,Q,K) if and only if the Poisson bracket {p,Q} is a 
constant of the motion. Actually, in the particular case of 
taking as functions F and Gin (2.4) the coordinates q and p, 
seeing that they are canonical conjugate variables, 
{q,p} = 1, we find that / is given by / = {Q,p}. Note, how­
ever, that we have established the theorem in a larger context 
without the assumption of M being the phase space ofa sys­
tem with a topologically trivial configuration space. 

B. The general case 

The more general case of a higher-dimensional system 
has recently been studied by Negri et al.3 in a coordinate­
dependent way, and they have proved that a necessary, but 
not sufficient, condition for a transformation 1'Ja = 1'Ja (t) to 
be canonoid w.r.t. a Hamiltonian H(q,p) = H(t) is that 
r apAaP must be a constant of motion. Here Aap denotes the 
Poisson bracketAaP = {1'Ja ,1'Jp} and raP the elements of the 
canonical symplectic matrix. 

The existence, when eI> is canonoid, of alternative Ham­
iltonian formulations for the vector field r indicates the exis­
tence of non-Noether constants of motion. In fact, we can 
consider the pencil of admissible closed two-forms for r 
defined by eI>·w and w, i.e., the family eI>*w - Aw. If2n is the 
dimension of M, then the two 2n-forms (eI>*w - AW) A nand 
wAn are volume elements and thus proportional. The func­
tion/A. EC"" (M) defined by 

(eI>*w-Aw)An=hw"n (2.5) 

satisfies 2" r /A. = O. It is a polynomial of degree n in the 
indeterminate A,/A. = a o + alA + ... + anAn, with coeffi­
cients ak, defined by 

(_1)k [;] (eI>*w)A(n-k) AwAk=akW"n, k=O, ... ,n, 
(2.6) 
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that are constants of the motion, .? rak = 0. 
We have obtained n not necessarily independent, asso­

ciated constants of the motion, ak, k = O, ... ,n - 1, and we 
will prove that one of them, an _ 1 , reduces in the simplest 
case to the constant of motion found by Negri et al.3 In fact, 
if (qi ,Pi), i = 1, ... ,n, is a set of Darboux coordinates 
for m, then the two-form <I>*m can be written using these 
coordinates as 

<I>*m = !ay dqi /\dqj + by dqi /\dpj + !Cydpi /\dpj, 

where A = [ay ] and C = [cy ] are skew-symmetric matri­
ces. Therefore Eq. (2.6) for k = n - 1 reads 

(<I>*m)/\mA(n-l) =n!TrBmAn, B= [by), 

thus obtaining that.? r (Tr B) = 0. The coefficients by can 
be shown to be identified with the Poisson brackets {Q" ,~} 
with Q i = qio<l> and ~ = Pj 0<1>. In fact, let @ denote the map 
@: ~(M) -> /\ I(M) given by contraction, @(X) = i(X)m, 
and let A be the (1,1 ) tensor field defined 10 by 
A = @-lo(<I>*m)A - or, in an equivalent way, 

(<I>*m)(X,Y) = m(A(X),Y), VX,Ye~(M). (2.7) 

Such a tensor is such that .? r A = ° and, therefore, 
.? r A k = 0, so that the coordinate expressions of these 
equations are Lax equations (see, for example, Refs. 10 and 
11) giving rise to a set of constants of the motion that are the 
traces of the integer powers of the matrix representing A in a 
local basis of fields. Using this tensor, the Poisson bracket of 
the <I> pullback of two functions F and G is 

{Fo<l>,Go<l>} = i(X(]oq;, )d(Fo<l» 

= i[ A(<I>; I(XG»)d(Fo<l» 

= [A(XG)OF)OF- I, (2.8) 

where we have used X(]oq;, = A(<I>; I(XG»' which follows 
from (2.3), and the definition (2.7) of A. In particular, 

{Qi,Pj } = A C:j) qi, 

and since 

A (a: j ) = bkj (a:k) - akj (a!k ), 

we obtain {Q i,Pj } = by, and therefore Tr B reduces to 
n 

TrB= I {Qi,pJ. (2.9) 
i=1 

It was also pointed out in Ref. 3 that the condition of 
(2.9) being a constant of the motion is a necessary, but not 
sufficient, condition for <I> to be canonoid. Actually, it is a 
rather obvious consequence of the theory developed here; 
not only the trace of A but also the traces of the integer 
powers of A must be constants of the motion. The point is 
whether this last condition is also sufficient for <I> to be can­
onoid. The answer is "no" because, assuming 
.Y r (Tr Ak) = 0, k = 1, ... ,n, we will then obtain 
.? r (<I>*m - Am) An = ° for any value of A, and it does not 
follow from this that'? r (<I>*m) = 0, the condition for <I> to 
be canonoid. 

The expression .? r (<I>*m - Am) An = ° can also be 
written as a system of n equations, 
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U? [(<1>* )Ak/\ A(n-k)] -0 k-l ..z. r m m -, - , ... ,n, (2.lOa) 

or, in an equivalent way, 

[ .? r (<I>*m) )/\ (<I>*m) A (k - I) /\ m A (n - k) = 0, 

k= 1, ... ,n. (2.lOb) 

Actually, it is possible to find a closed form ml different from 
zero such that 

ml /\(<I>*m)A(k-l)/\m A(n-k) =0, k= 1, ... ,n. 

If the (1,1) tensor field N is defined by 
ml(X,Y) = m(N(X),Y) for X,Ye~(M), then 

[m l /\ (<I>*m) A (k - I) /\ mA (n - k)] (XI' Y1, ... ,xn' Yn ) 

= mAn(N(XI)'YI,A(X2)'Y2'"'' 

A(Xk ),yk,xk+ 1'''''Y2k )' 

This proves that it is sufficient to take a (1,1) tensor field N 
such that 

N(~)=C .. (~) aqi IJ apj 

for the value of the left-hand side of (alaql,al 
apI, ... ,a laqn,a laPn) to be zero. Thus even if ml #0, the vol­
ume form ml /\ (<I>*m) A (k - I) /\ m A (n - k) can be null. 

This fact proves that the stronger condition !f r (<I>*m) 
= ° cannot be replaced by "the traces of the different pow­

ers of A are constants of the motion." 

III. GENERATING FUNCTIONS 

The canonicity of a transformation is related to the exis­
tence of an associated generating function. This function is 
defined on the graph of the map, and when expressed in local 
coordinates it clearly displays the relationship between the 
"old" and the "new" positions and momenta. following this 
idea we will reformulate the definition of canonoid transfot­
mation. 

Proposition: Let (MI,m l ) and (M2,m2) be symplectic 
manifolds, 1T'i: M I XM2->Mi the projections onto M i, 
i = 1,2, and Oe /\ 2(MI XM2) the symplectic two-form de­
fined by 0 = 1T1'ml -1T'fm2. Then a diffeomorphism <1>: 
MI->M2 is canonoid with respect to the locally ml-Hamilto­
nian field re~(MI) if and only if 11 (.? vO) = 0, where 
Ve~(MI XM2) denotes the field V = rX<I>. r, Gq;, is the 
graph of <1>, and iq;,: Gq;, ->MI XM2 is the inclusion map. 

Proof First, we notice that 

.? vO = !f v( 1T1'm l -1T'f(2) 

= 1T1'(.? 1T,oVml) -1T'f(.? 1T20V(2)' 

On the other hand, <I> induces a diffeomorphism of MI onto 
Gq;" so we can write 

1(m,q;,(m»)Gq;, = {(v,<I>.v) IveTmMI}, 

and therefore 

[iq;, *(.? vO») {(v1,<I>. VI ),(v2,<I>. V2)} 

= (.? 1T,oVml)(VI,V2) - (.? 1T20V( 2)(<I>.VI,<I>.V2) 

= (.? rmt> (V I,V2) - <I>*(.? q;,or(2)(VIJV2) 

= [.? r (m l - <I>*(2») (VI,V2)' 

and the proposition is proved. 
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If we write n = - d0 we obtain d ['1 (.Y v0)] = 0; 
that is, '1 (.Y v0) being closed is equivalent to <I> being can­
onoid with respect to r. Locally, by Poincare's lemma, there 
exists a function SEC'" (G4» such that i~ (.Y v0) = dS. We 
call the function S a generating function for the canonoid 
diffeomorphism <1>. If we take 0 = 11181 - tr!82, we obtain 

'1 [111(.Y r ( 1)] - '1 [tr!(.Y 4>.r 82>] = dS. (3.1) 

Recall that for a canonical transformation, the associat­
ed generating function measures the change of the action 
induced by it. Now note that we have found that, for canon­
oid transformations, S measures the Lie derivative of this 
change with respect to the field r. 

Let <1>: M I --M2 be canonoid, and denote the Darboux 
coordinates by (qi,p i ) and (Q i,Pi ) as usual. Then, regarding 
S as a function of (qi,p i ), the relation (3.1) reads 

a 2H _ a{Q\H} P _ aH _ {p H} aQk 
aqi aPk Pk aqi k aq k' aqi 

as (3.2a) 
= aqi' 

a
2
H Pk _ a{Q\H} Pk _ {Pk,H} aQk = as , (3.2b) 

ap i aPk ap i ap i ap i 

These equations are obviously more complicated than those 
found for the canonical transformations (Le.,pi = as lal, 
Pi = - as 1 ae ), but this fact is due to the presence in (3.1 ) 
of the Lie derivative consequence of the r dependence. Ifwe 
restrict ourselves to the so-called fouling transforma­
tions I2.13-that is to say, fiber-preserving diffeomophisms 
inducing the identity in the base space, Q i = qi-the expres­
sions (3.2) reduce to 

a 2H aH as 
. (Pk - Pk ) - -. - {Pi,H} = -. , (3.3a) 

aq1apk aql aql 

a 2H as 
---(Pk -Pk) =-. (3.3b) 
api apk api 

IV. EXAMPLES 

( 1) Saletan and Cromer proposed I as a pattern for can­
onoid transformations the following example in one degree 
of freedom. The equations giving the transformation are 

Q=q, (4.1a) 

P=pl /2 _ q2, (4.1b) 

and it is proved to be canonoid for the Hamiltonian H = p21 
2 of a unit-mass free particle. 

In fact, using (3.3) this map is obtained as the particular 
one associated to the function 

(4.2) 

and the new Hamiltonian K such that dK 
= - i(r)d[<I>*(8o» is found to be given by dK 
= - {P,H}dQ + {Q,H}dP, which when integrated gives 
K=i(P+Q2)3. 

Moreover, using (3.3) we can now obtain not only a 
particular one, but the set of all the fouling transformations 
for this Hamiltonian. Indeed Eqs. (3.3) particularized for 
H = p2/2 reduce to 
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as ap 
-=--p, 
aq aq 

(4.3a) 

as 
ap =p-P, (4.3b) 

a system that can be integrated and solved for P as a function 
of (q,p) if and only if S verifies the following compatibility 
condition: 

p a
2
s _ as =0. 

aqap aq 
(4.4) 

The general solution of this equation is given by 

S=/(q)p + g(p), (4.5) 

with / (q) and g(p) being arbitrary differentiable functions. 
Thus any function S in the form (4.5) generates a canonoid 
transformation for H = p2/2, given by 

Q=q, 

P= P - /(q) - g'(p). 

(4.6a) 

(4.6b) 

As the system is one dimensional, the new Hamiltonian K is 
related to H by dK = {Q,P}dH, which for (4.6) becomes 
dK = {1 - gH (p)}p dp, and then we obtain for the function 
K, when expressed in terms of the set of old coordinates 
(q,p), the following expression: 

K(q,p) = !p2 + g(p) _ g'(p)p. (4.7) 

Note that K can never be reduced to K = const, since 
1 - gH (p) #0 is precisely the condition imposed by the im­
plicit function theorem for solving (4.6) for p. Furthermore, 
note that when the function g(p) is a homogeneous function 
of degree 1, then K = Hand (4.6) reduces to a canonical 
transformation. 

(2) As a second example we will consider the two-di­
mensional isotropic harmonic oscillator 

H = !{(ql)2 + (q2)2 + (PI)2 + (P2)2}. (4.8) 

Given any differentiable function S = S(ql,q2,PI,P2)' every 
solution (PI ,P2 ) of the system 

as - = {H,PI } - ql' (4.9a) 
aql 
as - = {H,P2} - q2' (4.9b) 
aq2 

(4.9c) 

(4.9d) 

represents a fouling canonoid transformation. The only con­
straint for S is that it must satisfy the compatibility condi­
tions 

as __ {H as} as = _ {H as} 
aql - 'apI' aq2 'ap2 . 

Recently,3 two different fouling transformations have 
been found for (4.8). They are 

and 

PI = 2PI - P2 + qlq2' 

P2 = P2 - PI + !tft , 

J. F. Car.ii'lena and M. F. Rai'lada 
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PI = ~q7PI + ip~, 
P2 = !~P2 + iP~· 

(4.11a) 

(4.11b) 

It is not a hard task to show that they are just two particular 
solutions of ( 4.9). In fact their associated generating func­
tions are easily found to be 

s= ~~ - qlq2 - ~p~ + PIP2 - qlq2PI - ~~P2' 
and 

s = !(p~ + p~ - ~ - q~) - !(q~pi + ~p~) 
+ i(q1 + q;) - -A(p1 + p;), 

respectively. 
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APPENDIX: COORDINATE EXPRESSIONS 

In this appendix we give the expressions in local coordi­
nates for different formulas used throughout the paper. 

We denote by Sa' a = 1, ... ,2n, a set of Darboux vari­
ables for w, 

w = AafJdSa I\dsp, 

where 

[0 In] 
[Aap] = 0 0 . 

We will also use YafJ = AafJ - Aap such that 

YapYap = 8/Jp' 
If rE2" (M) is a locally w-Hamiltonian field, then there ex­
ists a locally defined function H = H(Sa) such that r takes 
the form 

r =fa (a;a)' fa = YaA (:~). 
Let Fa be the local components of the field cJ>. r, 

<1>. r = Fa (~) . 
aSa 

Then the two-form BE 1\ 2 (M) defined by B = .!.t' <1>. r w is 
given by 

B = Bp.vdSp.l\dSv, 

where 

Bp.v = Yav (~::) - Yap. (~::). 
In this way, we obtain that the necessary and sufficient con­
dition for the map <I> being canonoid with respect to r is that 

(
aFa ) (aFa ) Yav asP. - Yap. aS

v 
= 0, I',V = 1, ... ,2n. 

The meaning of this system of equations is the existence of a 
function K = K(Sa ) such that 
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Fa =YaA (~). 
as;. 

Thus {Sa (t)} is an integral curve of <1>. r if and only if 
Hamilton's equations with respect to K hold: 

dS
a =YaA(~)' 

dt as;. 

In an equivalent way, we can use the two-form 
T= .!.t'r (<I>·w), which will be given by 

T= <I>.(B ) a'l]p' a'l]v df:- I\df:-
p.v aSa asp ~a ~p, 

where'l]p. denotes'l]p. = cJ>·(Sp.). 
Theone-formp· = P! dSp. such thatdP· = Tis given 

by 

P! = YapLap. (:~), 
where the coefficients LafJ are given by 

and correspond to the Lagrange brackets of the variables S 
with respect to the 'I]'s. 

In the particular case of M being an exact symplectic 
manifold, w is given by w = - dO, and then we can reflect 
the canonoid character of cJ> using the one-form gE 1\ I (M) 
defined by g = - <1>·0. In this case the condition T = 0 
means d(.!.t' rg) = 0, and ifgis given by g = g;.ds;., we ob­
tain 

.!.t' rg = (g;. + R)Jds;., 

with 

and 

R;. =gp.Yp.a (a~~~J· 
In this way we obtain finally that cJ> is canonoid if the 2n 
functions g;., A = 1, ... ,2n, satisfy the equations 

ag;. _ agp. + aR;. _ aRp. =0. 

asP. as;. asP. as;. 
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Higher-order or generalized symmetries for the super modified KdV equation are constructed. 
Moreover, by the introduction of graded potentials nonlocal symmetries are obtained, one of 
them leading to the recursion operator for symmetries in a straightforward way. 

I. INTRODUCTION 

In the study of complete integrability of classical evolu­
tion equations such as KdV, mKdV, Boussinesq, massive 
Thirring, and other well-known equations there was a great 
emphasis on Wahlquist-Estabrook prolongation and high­
er-order or generalized symmetry calculations. 1-3 We con­
structed computer-algebra programs to handle the enor­
mous computations arising from these concepts. As a step 
towards supersymmetric equations we recently constructed 
a graded differential geometry package in REDUCE.4 The no­
tions of graded differential geometry are taken from Kos­
tant,5 while the graded jet bundle formulation is due to Her­
mindez Ruiperez and Munoz Masque.6 The present paper 
deals with the construction of generalized symmetries of the 
super modified KdV equation by the developed software. 
The super modified KdV equation7 (mKdV) is given by the 
following system of graded partial differential equations: 

vt = 6v2vx - Vxxx + ~tfx tfxx + ~tftfxxx + ~vx tPtPx + ~vtPtPxx , 

tft = (6v2 -6vx )tfx + (6vvx -3vxx )tf-4tfxxx, 
(1.1 ) 

where subscripts denote partial derivatives; t is the time and 
x is the space variable; and V,x,t are even (commuting), 
while tf is odd (anticommuting). 

In Sec. II higher-order symmetries are constructed sat­
isfying a similar condition as in the classical case,8 i.e., 

Ly(D"'/) C D"'/, 

where D '" / is the infinite prolongation of the graded ideal!. 
Following Ref. 9, nonlocal variables are introduced in the 
graded case, and nonlocal x,t-dependent higher-order sym­
metries of the super mKdV equation are obtained in Sec. III. 
Finally, in Sec. IV we derive the recursion operator lO

•
11 for 

higher-order symmetries of the super mKdV equation. 

II. HIGHER-ORDER SYMMETRIES OFTHE SUPER mKdV 
EQUATION 

In a previous paper12 concerning the super KdV equa­
tion we constructed ordinary symmetries before concentrat­
ing on higher-order symmetries. Now we shall investigate 
higher-order symmetries only, because ordinary symmetries 
can be obtained from them. Classical higher-order symme­
tries are defined on the infinite jet bundle J'" (x,t,v,tf) (see 
Ref. 8) and satisfy the symmetry condition 

LyD"'/C D"'/, (2.1) 

where D '" / is the infinite prolongation of the exterior differ­
ential system / describing the partial differential equations 

by means of the action of the total partial derivative vector 
fields D",Dt defined by 

D" = ax + Vx av + tfx ax + Vx;x; avx + ... , 
D t = at + Vt av + tft at{! + Vxt avx + ... . 

(2.2) 

Due to the fact that Eqs. (2.2) satisfy (2.1) in an obvious 
way, the search for higher-order or generalized symmetries 
can be restricted to vertical vector fields; i.e., the compo­
nents of ax ,at are taken to be zero. 

The vertical vector fields are proved8 to have the repre­
sentation 

so we are only interested in the defining functions f,g of the 
vector field. The functions f,g are assumed to depend on a 
finite number of independent variables of the infinite jet bun­
dle. 

In the graded case at hand we proceed in a similar way, 
keeping in mind the left module structure of the vector fields. 
We restrict our search for higher-order symmetries to even 
vector fields; moreover, our search is for vector fields V 
whose defining functions f,g (2.3) depend on 
x,t,v,tf"",vxxxxx,tfxxxxx, the other components being obtained 
by prolongation (2.3). The vector field V has to satisfy the 
symmetry condition (2.1), which is equivalent to 

(2.4) 

where Lv stands for the Lie derivative with respect to the 
vector field V, and "== 0" should be read as equal to zero on 
the submanifold in the infinite jet bundle J '" (x,t;v,tf) de­
fined by (1.1) and its differential consequences. Condition 
(2.4) leads to an overdetermined system of partial differen­
tial equations for the functions f,g including the exterior 
algebra defined on tf,tfx,tfxx,tfxxx,tfxxxx,tfxxxxx' 

From now on we shall write 

Vi = Vx' "x' tfj = tfx ... x . (2.5) 
~ ~ 
; times j times 

Using the developed integration package we obtained the 
following result: There are four even vector fields satisfying 
(2.4) under the above-mentioned assumptions, i.e., 
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VI = VI av + t/JI a", + '" , 
V2 = ( - V3 + 6v

2
vI + ~Vlt/Jt/JI + ~V#2 + a#3 + at/JIt/J2)aV 

+ ( - 4t/J3 + 6vv l t/J + 6v2t/JI - 6vlt/JI - 3v2t/J)a", ' 

V3 = - 2vav - t/Ja", - 2xVI - 6tV2, 
(2.6a) 

and the vector field 

- '" V4 = V~ av + V 4 a", ' (2.6b) 

whereas in (2.6b) V~, vt are given by 

V~ = V5 - lOv3v2 - 40v2vlv - lOv~ + 30VlV
4 

-11t/Jt/J5 - ¥t/Jlt/J4 - ~t/J2t/J3 -l,fVt/Jt/J4 - 5Vt/Jlt/J3 

- 15vlt/Jt/J3 + l,fV2 t/Jt/J3 - 5Vl t/Jlt/J2 + l,fV2 t/J1t/J2 

- 15v2t/Jt/J2 + 15vlvt/Jt/J2 + 15v3t/Jt/J2 

+ 45v1V
2
#1 -l,fV3t/Jt/J1 , 

vt = 16t/J5 + (40vI - 40V2)t/J3 

+ (60v2 - 120v lv)t/J2 

+ (50v3 - lOOv2v - 60V lV
2 - 70vi 

+ 30v4)t/JI + (15v4 - 30v3v - 30V2V
2 

- 60v2vI - 60vi V + 60v]v3)t/J 

(2.7) 

Note that the vector fields VI"'" V3 are equivalene to 

VI = ax' V2 = at , 

V3 = 6t at + 2x ax - 2v av - t/J a", . 
(2.8) 

III. NONLOCAL SYMMETRIES OF THE SUPER mKdV 
EQUATION 

In order to construct the recursion operator for higher­
order symmetries we introduce nonlocal variables. They can 
be introduced by prolongation of the exterior differential 
system lor D 001 by means of potential forms or equivalent­
ly, by prolongation of the total partial derivatives Dx ,D,. For 
details the reader is referred to Refs. 3 and 9. 

We first construct the potential forms PI and P2, 

PI = dpi - dx(v) - dt(2v3 - V2 + at/Jt/J2 + 1vt/Jt/JI) , 

P2 = dP2 - dX(P2x) - dt(P2t) , 
( 3.1a) 

where 

P2x = v
2 + !t/Jt/JI , 

P2t = 3v4 - 2v2v + vi - t/Jt/J3 + 2t/Jlt/J2 (3.1b) 

+ 1Vt/Jt/J2 - 3v I #1 + ~V2t/Jt/JI . 
The nonlocal variablesPI,P2 are just 

PI = J: 00 v dx, P2 = J: 00 (v
2 + ! t/Jt/JI) dx, (3.2) 

whereas the integrals in (3.2) are to be considered as formal 
ones. Motivated by the results obtained for the classical (un­
graded) KdV equation and super KdV equation,]2 our 
search is for a nonlocal vector field Vof the form 

V= a ltV4 + a2xV2 + a3P2VI + V*, (3.3) 

where V4, V2, VI are defined by (2.6) and (2.7), a l,a2,a3 are 
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constants, and V * is a vector field yet to be determined. 
The prolongation of the vector field V (3.4) towards the 

variables a v, ,a"" , ... is obtained by the 3ct~on of the prolonged 
total partial derivative vector fields Dx ,Dt, where 

- 2 
Dx = Dx + vap , + (v + !t/Jt/JI)ap, ' 

- 3 
D, = D, + (2v - v2 + a#2 + 1vt/Jt/JJ )ap , + P2' ap, • 

(3.4 ) 

We now apply the symmetry condition including the nonlo­
cal variables PJ,P2' i.e., 

Ly(v, - 6v2vJ + V3 - at/J]t/J2 - at/Jt/J3 

- ~V]t/Jt/JI - ~Vt/Jt/J2) =.0, (3.5) 

Ly(t/Jt - 6v2t/JJ + vlt/J] - 6Ov]t/J + 3v2t/J + 4t/J3) =.0, 

where now by "=. 0" we mean vanishing of the Lie derivative 
on the submanifold of 

J(x,t;V,t/J,PI,P2) = {(x,t,v,t/J,PJ,P2,V lt/JI""}' 

defined by (1.1) and its differential consequences, together 
with 

Pix = v, PJ' = 2v3 - V2 + 1vt/Jt/JJ , 

P2x = v
2 + !t/Jt/JJ , 

P2' = 3v
4 

- 2v2v + vi - t/Jt/J3 + 2t/JJt/J2 

+ ~Vt/Jt/J2 - 3vJt/Jt/J1 + ~V2t/Jt/JJ . 

( 3.6) 

Conditions (3.5) lead to an overdetermined system of par­
tial differential equations for the defining functions of V*, 
whose dependency on the jet variables vl,t/JJ'''. is induced by 
the standard grading of the super mKdV equation, i.e., 

deg(x) = - 1, deg(t) = - 3, 

deg(v) = 1, deg(t/J) =!, 
deg(pJ) = 0, deg(P2) = 1 . 

So we are searching for a vector field V, whose av and a", 
components are of degree <3 and <2!, respectively. 

Solving the overdetermined system of partial differen­
tial equations leads to the following result. 

Theorem: The vector field V defined by 

V = - ~t V4 - !x V2 + P2 VJ + V * , (3.7a) 

where 

V* = ( - ~V2 + 2v3 + V#I + ~t/Jt/J2)aV 
+ ( - 5t/J2 - Vt/JI + 4v2t/J - 4v l t/J)a", (3.7b) 

is a nonlocal (higher-order) symmetry of the super mKdV 
equation. 

Remark 1: Due to the fact that V,t/J,P2 satisfy the super 
mKdV equation (2.1), including differential consequences 
and (3.6), which do not depend onx,t,P2 explicitly, the coef­
ficients of x,t,P2 in (3.3) can be proved to be symmetries. 

Remark 2: The solution of (3.5) does admit an addi­
tional nonlocal symmetry, i.e., 

(3.8) 

In order to compute the Lie bracket of the vector fields 
VI"'" V4 and V, we would have to extend the results of Sec. 
III towards the nonlocal variables. This leads to results simi­
lar to the results in the ungraded case, obtained for the mas-
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sive Thirring model. 3 This is not the direction we shall pur­
sue in the next section; instead we shall construct the 
recursion operator for higher-order symmetries leading to 
the commuting flows, starting from the nonlocal higher-or­
der symmetry (3.7). 

IV. THE RECURSION OPERATOR FOR SYMMETRIES OF 
sKdV EQUATIONS 

In the case of the classical KdV equation, i.e., the un­
graded case, the Lenard recursion operator is obtained by a 
construction based on a nonlocal vector field, i.e., the un­
graded analog of the vector field VofSec. IV, and the Hamil­
tonian structure of the mKdV equation. 10.11 The construc­
tion of the recursion operator for symmetries of the super 
mKdV equation can be obtained in a similar way and is given 
below. A formal proof of its properties and the fact that the 
higher-order symmetries commute is beyond the scope of 
the paper. 

The super mKdV equation (1.1) can be written in the 
following Hamiltonian form: 

+ ~ f/!xf/!xx + ! v2
#x + ! v#xx) , (4.1) 

where all variational derivatives are taken to be left ones. In 
(4.1), 

0) _(D-I , 0-
4 0 ~) ( D -I = f~ = . dX) 

(4.2) 

are analogous to the simplectic operator and its inverse. We 
now proceed in a way similar to the ungraded case and calcu­
late the variational derivative of Ov, i.e., (OV)' and its ad­
joint (OV)'·. Then we are led to the recursion operator for 
symmetries by (cf. Refs. 10 and 11 ) 

T= O-I{(OV)' - (OV)'·}. (4.3) 

A simple and straightforward computation starting 
from V (3.7) and (4.2) results in the following equation: 

~f/!D + ~vf/! + ~f/!I - v(D -If/!I) ) 

- D 2 - VI + v2 
- fi,#1 - ~f/!I (D -If/!I) 

(

-D 2+4VI(D- IV) +4v2 

= - 3f/!D + 6vf/! - 2f/!1 + 4f/!1 (D -IV) 

~f/!ID + ~f/!D 2 + ~VI f/! + ~Vf/!I + ~vf/!D ) 

+ ~f/!2 + ~f/!ID - Vf/!I - VI (D -1f/!1) . 
- 4D 2 - 4vI + 4v2 

- ~f/!f/!I - f/!I (D -If/!I) 

(4.4) 

A straightforward but tedious computation shows that 

i.e., 

(4.5a) 

and 

(4.5b) 

V. CONCLUSION 

The use of computer programs to handle graded differ­
ential geometry calculations, together with the notion of 
nonlocal graded symmetries, leads in a constructive way to 
the recursion operator for higher-order symmetries of the 
super mKdV equation. 
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Classical solutions of the two-dimensional Grassmannian u models of, respectively, Euclidean 
and Minkowskian type are compared with each other. Some explicit solutions of both types are 
constructed and some of their graphs are presented. 

I. INTRODUCTION 

Classical two-dimensional nonlinear u models have 
been studied intensively since Pohlmeyerl discovered that 
the sn model possesses the so-called dual symmetry. Their 
popularity is mainly due to their property2-4 as integrable 
systems with infinitely many conservation laws with corre­
sponding generators,5 and to their striking resemblance to 
four-dimensional Yang-Mills systems. Moreover, some of 
those models have a direct application in gauge and string 
theories,6-9 as well as in the theory of gravitation 10.11 and in 
solid-state physics. 12,13 

A Grassmannian u model is a (classical) field theory 
defined on the two-dimensional Euclidean or Minkowskian 
space and taking its values in a complex Grassmannian 
manifold G pq (C) (see Ref. 14). One can explicitly describe 
the classical field either by an idempotent unitary matrix g or 
a projector P of rank p: 

g: x,t'"+g(x,t), gEU(p + q), g2 = 1 , (1) 

P; x,t'"+P(x,t), p 2=p, P+=P, TrP=p. (2) 

These two descriptions are completely equivalent,3,14,15 
and related by the transformation g = (1 - 2P). When for­
mulated in light-cone coordinates S = x + t, 1] = x - t, or 
complex coordinates S = x + it, 1] = x - it, respectively, 
Minkowskian and Euclidean u models are indistinguishable, 
with the same action and the same equation of motion, 
namely, 

s= f d 2xTr(g-1 asg)(g-I a.,g) 

= f d 2X Tr(asP a.,p) , 

as(ga;;lg) +a.,(gas-Ig) =0, 

[aSa.,p,p] = 0 . 

(3) 

(4) 

(5) 

(6) 

The only difference is the nature of the variables. Thus the 
question arises naturally whether a solution of one type of 
model will give a solution of the corresponding model of the 
other type after the substitution (analytic continuation) 

t -+ it . (7) 

Clearly the matrix g ( or the projector P) will satisfy ( 1 ) after 
the substitution, but in general the matrix g will no longer be 

a) Chercheur Institut Interuniversitaire des Sciences Nuch~aires, Belgium. 

unitary (P will not be Hermitian). Indeed, the substitution 
(7) need not commute with the antilinear constraint 
g+g= 1. So if one has, for real x, t,g+(x,t) =g-I(X,t), 
then in general g+ (x,it) #g-I (x,it). [From the general de­
finition of the nonlinear u models given in Ref. 16 one can see 
that the substitution (7) will transform a solution of the 
Euclidean model into a solution of the Minkowskian one and 
vice versa only for the SL(n,C) andGL(n,C) models.] So if 
one wants to construct classical solutions of these models, it 
has to be done separately for both types of model. 

The explicit methods for constructing solutions are of 
two types. The first class is the "holomorphic" method in­
troduced by Borchers and Garberl7 and developed by Din 
and Zakrzewski (see Ref. 18 for a review of their work). This 
method works only for Euclidean models; translating it to 
the Minkowskian case would yield solutions depending on 
either S or 1] alone, thus with vanishing action. In the special 
case ofCP n [in the notations above: GIn (C)], it gives all the 
finite action solutions. 

The second type of method is the Backlund transforma­
tion described for any kind of Minkowskian u model in Ref. 
16. We have shown with Antoine l5 that this method can be 
adapted to work in the Euclidean case as well. We are now 
going to summarize those methods, and use them to con­
struct explicit solutions, displaying some of their graphs. 
Then we will compare the classical solutions of the two types 
of models, as well as the methods used to construct them. 

II. SOLUTIONS OF THE MINKOWSKIAN MODEL 

Solving nonlinear differential equations is known to be a 
difficult task. There are no algorithms to do it, but all the 
well-known nonlinear equations are solved in similar ways, 
called generically Backlund transformations or inverse scat­
tering methods. In our case those equations depend on two 
variables x and t, and when one tries to construct a simple 
nontrivial solution, one gets a function that looks like a soli­
tary wave propagating at a constant speed. The shape of the 
bump sometimes depends on time, but is always related to 
the speed of propagation. Such solutions are called one-soli­
ton solutions. For linear differential equations, it is well­
known that given two different solutions, their sum is a third 
solution. Can something similar be done for a nonlinear 
equation? The answer is yes (at least sometimes). One per­
forms what is called a Backlund transformation. 19 Take for 
example two one-soliton solutions propagating in opposite 
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directions. The transformation will yield a two-soliton solu­
tion, which looks like two solitary waves crossing each other. 
When the two bumps are far from each other, those new 
solutions look like the simple superposition of the two pre­
vious ones. Once they are close to each other, the two bumps 
start to interact, giving rise to a complicated shape. After the 
interaction they continue on their way as if nothing hap­
pened. Usually a short delay occurs during the crossing, so 
that looking at the solution in the (x,t) plane from the top 
will give a graph similar to the lowest-order Feynman dia­
gram of the electron-positron scattering, rather than a sim­
pleX shape. 

This problem has been completely solved for the two­
dimensional Minkowskian 0' model by Saint-Aubin et al. 16 

They showed how to construct directly n-soliton solutions. 
The method is very powerful, but tedious, to apply. One first 
has to construct a very simple solution called a vacuum solu­
tion (whose action is zero), and multiply it by the so-called 
dressing matrix to get the new solution. The construction of 
the dressing matrix is the tedious part of the construction. A 
one-soliton solution can be constructed explicitly, but from 
the complexity of the result obtained ( 10), it is clear that the 
explicit construction of any multisoliton solution is hopeless. 
Fortunately, once the vacuum solution has been computed, 
the rest of the construction is purely algebraic and pointwise, 
sand 11 playing the role of mere parameters. So all the te­
dious part can be performed numerically on a computer so as 
to produce graphs of those solutions. 

We have constructed one-, two-, and three-soliton solu­
tions of the Minkowskian 0' model on Cp I. In all three cases 
our starting point (vacuum solution) is the matrix 

( 
cosx 

g(x,t) = . 
-smx 

- sin X) , 
-cosx 

(8) 

which represents a static, "wavy" background. 

A. One-soliton solution 

A k-soliton solution is parametrized by k complex 
numbers (also called poles-see Ref. 16), A k = A k + U k 
( IA k I =1= 1 ), from which the speed and the shape of each soli­
ton will be fixed. Introduce the following notation: 

w = ~ (1 !;t + 1 : ;t) , 
u = 2 Re(w), v = 2 Im(w) . 

(9) 

Then the one-soliton solution we have constructed takes the 
form 

- 1{1[1/' 'h2 gll= -g22=COSX-~ ~ A smxsm v 

+ A " cos x cosh 2v] 

+ 1 [cos(2u - 3x) 
IAI2 - 1 

-IAI2 cos(2u -X)]}, (lOa) 
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gI2=g21= -sinx- ~2LI,,[AICOSXsinh2v 

- A " sin x cosh 2v] 

+ 1 [sin(2u _ 3x) 
IAI2 - 1 

+ IAI2 sin(2u - x)] 

+ i[£ sin(u - x)cosh v 
A" 

_ IAI2 + 1 cos(u _ x)sinh v]}, (lOb) 
IAI2 - 1 

where we have put 

A2 = IAI2[4cos
2
(u -x) + COSh2v]. (11) 

(1 - IA 12)2 A H2 

The solution ( 10), with A = 1.1 + 1.1 i, is displayed in Fig. 1 
in the form of a computer-generated plot similar to those 
given by Saint-Aubin in the real case.6 As an independent 
check we have recalculated the same solution numerically. 
The resulting graph is indistinguishable from the one ob­
tained by plotting the analytical solution. 

The solution plotted in Fig. 1 clearly deserves its name 
of "one-soliton"; it describes a single irregularity (bump) 

FIG. 1. The one-soliton solution (10) of the Minkowskian cp 2 model with 
pole A = 1.1 + 1.1;: (a) gil = -g22' (b) Img'2 = - Img2l' 
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propagating with constant speed V = (1 + )A )2)/U I > Ion 
top of the background given by the vacuum solution g of (8) 
(the background is flat for the imaginary part and wavy for 
the real part). Note that the soliton is not simply superposed 
to the "wavy vacuum," it also induces a shift in it. It is clear 
from the conformal invariance that the model also has solu­
tions with V < 1. Because of this invariance, the absolute 
scale of the graphs is irrelevant and is therefore not indicated 
on Fig. 1. Because of the unitarity the size of the bump is 
normalized, but its shape depends on A. 

B. Multisollton solution 

For the two-soliton solution of our example shown in 
Fig. 2, we have chosen for the two poles A I = 1.1 + 1.1 i as 
before and A2 = - 1.1 + 1.1i. This solution describes the 
collision of two solitons with the same asymptotic behavior 
but opposite speeds. One sees clearly that the main effect of 
the collision is a phase shift, showing that the two-soliton 
solution is a nonlinear superposition of two one-soliton solu­
tions. 

Exactly the same behavior is observed for the three-soli­
ton solution plotted in Fig. 3 (the third pole here is 
A3 = 1 + 40. Thus the situation is entirely similar to the one 
found for other familiar nonlinear equations, such as KdV or 
sine-Gordon, and also for the u models on real Grassmann 
manifolds. 16 

FIG. 2. The corresponding two-soliton solution, with poles A I = 1.1 + 1.1 i, 
A2 = - 1.1 + 1.1i: (a) gil' (b) 1m g,2' 
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FIG. 3. The matrix element gil of the three-soliton solution with poles 
A, = 1.1 + 1.li,A2 = -1.1 + 1.li,A3 = I +4i. The three solitonsincom­
ing from the left are indicated by arrows. 

III. SOLUTIONS OF THE EUCLIDEAN MODEL 

A peculiarity of the Euclidean models is that if a projec­
tor P satisfies 

(1 - p)a"lP = 0 or (1 - p)asp = 0, (12) 

then it automatically satisfies Eq. (6) and is called a self-dual 
(anti-self-dual) solution. If its action is finite, then it is also 
called an instanton (anti-instanton) solution. To construct 
the most general self-dual solutions 12 one starts from a holo­
morphic n Xp matrix F of maximal rank, 

a"lF=O, (13) 

and constructs the projector 

P=F(F+F)-IF+ . (14) 

As F is of maximal rank, P is well defined and satisfies ( 12a) . 
If the entries of F are rational functions of S, then P is an 
instanton solution. Similarly, antiholomorphic functions 
will give the most general anti-self-dual solutions. 

To construct other solutions of the Grassmannian mod­
el, one introduces the operator 

Ps(F) =asF-F(F+F)-IF+ asF, 

and defines its powers by 

PJ(F) = Ps(PJ-I(F») , 

(15) 

(16) 

where we have assumed that all the powers of Ps (F) are of 
maximal rank. It can be shown 18 that 

(17) 

which implies that P~ (F) = 0 for some s. It is then easy to 
showl8•

2o that 

Pk =P~(F)[P~(F)+P~(F)] -IP~(F)+ (18) 

is a solution of the Grassmannian model of rank p for all k, 
and that if F is a rational function of S, then the action is 
finite. Moreover, the last one, Ps _ I , is an anti-instanton so­
lution. In the Cp n case, it gives all the finite action solutions. 
In the general Grassmannian case, many other solutions can 
be constructed in a similar way (see Refs. 15, 18,20, and 21 
for a detailed description), but we are not going to describe 
them here. The action of the above solutions reads 
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S(Pk } = J d 2x ito Tr[(Pt+ I(F}+P t+ I(F}) 

X(P~(F)+Pt(F»)-I], (19) 

which can easily be shown to be an integer in units of21T. Let 
us consider an example. Take 

F I (5} = (1 + 5 + 55, 5 + 53,5 2 + 54) , (20) 

from which we can construct the orthonormal vector 

Z=FI(F+F)-112 

or, equivalently, the projector 

P=ZZ+ . 

(21 ) 

(22) 

We have shown in Fig. 4 some of the matrix elements of Z. 

Ie) 

FIG. 4. The five-instanton solution [(20), (21)J of the CP2 model: (a) 
Re Z" (b) 1m Z" (c) Re Z2. 
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One sees that the last two components of Z vanish at infinity, 
where the first one, being of the larger degree, looks like a 
starfish with five branches. It is a general feature of the in­
stanton solutions that the highest degree in 5 of the function 
F from which Z is built corresponds to the topological 
charge of the solution, which is also called the winding num­
ber at infinity; it is also equal to the action of the solution. It 
is interesting to see that this number can be read directly off 
the graph of the solution. In our example F is of degree 5; 
thus the solution has an action equal to 5 (in units of21T). It 
is usually called a five-instanton solution. If one takes a non­
polynomial function such as 

F I (5} = (sin 5, cos 5, sin 5 + cos 5) , (23) 

the vector Z will have an infinity of branches (Fig. 5) and an 
infinite action. The problem when plotting the entries of Z 
(Por g) is that there are many of them, and, moreover, they 
are only defined up to a gauge transformation. The Euclid­
ean model being seen as a static model, it appears natural to 
plot the Lagrangian density of the solutions rather than their 
entries. This is a real, gauge-invariant function, and it will 
show where the physical things happen. Consider, for exam­
ple, the instanton solutions corresponding to the following 
functions: 

FI = (: = ~ + i/2), F2 = (: : ~ - i/2) , \t - 2 - i/2 \t + 2 + i/2 

(
5- 2)(5+ 2) ) 

F3 = (5 - 2 + i/2)(5 + 2 - i/2) . 
(5 - 2 - i/2)(5 + 2 + i12) 

(24) 

The first two solutions are one-instanton solutions, the third 
one being a two-instanton solution. One sees from their La­
grangian density plots (Fig. 6) where those names come 
from. In general the Lagrangian density of an instanton solu­
tion of topological charge (or action) equal to r has r bumps 
(instantons, possibly on top of each other) localized by the 
zeros of the entries of F. One sees from the graphs that the 
first instanton is localized around 3, the second one being 
near - 3. The two instantons of the third solution are local­
ized at the same place. In general, the instantons will be 
around the point where the different entries of the holomor-

FIG. 5. The trigonometric solution [(21), (23) J of the same model: 1m Z,. 
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FIG. 6. The Lagrangian density [the first ofEqs. (26) 1 of instant on solu­
tions (24) of the cp 2 model: (a) L for F" (b) L for F2, (c) L for F3• 
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phic vector P will have nearby zeros, and the farther apart 
those zeros will be from each other, the more spread out the 
instanton will be. When varying the coefficient, one can 
force a zero of each entry to converge to the same value. 
Doing that, the corresponding instanton will become more 
and more localized (very thin but huge), ending like a /j 

peak. This limit corresponds to the elimination of an instan­
ton. Note that this limit does not commute with the compu­
tation of the action. In fact if we perform such a variation on 
the second instanton of our third example, doing it on the 
solution itself we will end up with our first one-soliton solu­
tion. If we do it in the computation of the action, the result 
will always be 2, even in the limit. 

One can see also from our graph that our third solution 
can be seen as a kind of linear superposition of the two first 
ones. All this is true also for the anti-instanton solution, the 
only difference being that the topological charge is negative, 
and the action of those solutions is equal to the absolute 
value ofthe topological charge. Noninstanton solutions can 
be seen as a mixture (nonlinear superposition) of instanton 
and anti-instanton (see Ref. II for a detailed description). 

Starting with P3 in (24) one can construct the following 
instanton, noninstanton, and anti-instanton solutions: 

pp+ P~PP~P+ p 2pp 2p+ 
P. p- ~ ~ p- 5 S 
o=p+p, I- pp+pp' 2-p2p+p2p' 

5 S S 5 
(25) 

for which the corresponding Lagrangian densities are, re­
spectively, 

L _IPsPI2 
0- 1F12 ' 

IP~FI2 

IPFI2 
(26) 

[see Figs. 6 ( c) and 7]. In our example, the two solitons are 
located on the real line around 2 and - 2, the two anti­
instantons being on the imaginary line around 2i and - 2i. 
The noninstanton solution PI is clearly a superposition (lin­
ear for L but not for the solution itself) ofthe instanton and 
anti-instanton solutions. For the other Cp nand Grassman­
nian models, noninstanton solutions are somewhat more so­
phisticated superpositions of instanton and anti-instanton 
solutions. 

IV. COMPARISON BETWEEN EUCLIDEAN AND 
MINKOWSKIAN MODELS 

We have seen that the solutions of the Euclidean and 
Minkowskian q models can be constructed in a very differ­
ent way. So it is natural to ask ifthe two methods described 
above can be adapted to the other case. Can the holomorphic 
method used to construct Euclidean solutions be trans­
formed so as to give Minkowskian ones? It is clear from the 
construction that one of the important points in the con­
struction is that sand '1] are complex conjugates of each 
other. So, as is easy to check, when applied to construct Min­
kowskian solutions this method will give solutions that de­
pend only on S or '1], and so will be trivial. Rather than using 
the light-cone coordinates, one can use the hyperbolic com­
plex variables S = t + XE, '1] = t - XE, where ~ = I and 
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E = - E. This will yield nontrivial vacuum solutions of a 
Minkowskian u model valued in a hyperbolic complex 
Grassmannian manifold (see Ref. 22 for more details). 

(

COS 2x 

go = d l sin 2x 

d2 sin 2x 

dl sin 2x 

(ldd 2 
- Id2 1

2 )cos 2x 
dld2(l - cos 2x) 

where d I and d2 are two complex numbers such that 

Idl 1
2 + Id2 1

2 = I , (28) 

one can construct the following one-soliton solution: 

g(,1,) =go-- -- ,1,V(y)V(w)+ +,1,V(w) V(y) + 1 [ cos u {- } 
A 2Re,1, 

co
2
s V {V(w)V(w)+ + 1,1, 12V(Y)V(Y)+}] ' 

1,1, 1 + 1 
(29) 

FIG. 7. The Lagrangian density (26) of (a) noninstanton and (b) anti­
instanton solutions of the CP2 models constructed from F3 (24). 
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On the other hand, the multi-Backlund transformation 
method can be modified to act on Euclidean solutions. 14

,21 

For example, starting from the vacuum solution 

(27) 

where 

u=y-y, 
(30) 

v=2x-y-y, 

w=2x-y, 

(31) 

V(z) = [cos z, d l sin z, d2 sin Z]I. (32) 

As can be seen from the graph (Fig. 8), this solution is quite 
different from the Euclidean solutions we have constructed 
previously. Its nonpolynomial dependence indicates that 
this solution has infinite action, and it is not obvious to see if 
one can obtain it by the holomorphic method. So rather than 
starting from our vacuum solution, one can try to apply the 
Backlund transformation on an instanton solution con­
structed before. This work has been done by Sasaki,21 who 
showed that applying the multi-Backlund transformation on 
a cp n instanton solution constructed from a holomorphic 
vector F gives another instanton solution, which can be con­
structed from another holomorphic vector F' = aF, where a 

FIG. 8. Thematrixelementg" of(29) with pole..t = 2 - ioftheEuclidean 
ep2 model. 
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is some specified invertible matrix independent on s. The 
same applies to the noninstanton solution for which all the 
PsF will be transformed into PsF'. This means that in gen­
eral an r-instanton solution will be transformed into another 
r-instanton solution. The only effect of the Backlund trans­
formation would be to move the position of the solitons and 
modify their shape. So we may say that in the Cp n case this 
transformation acts nearly trivially on finite action solu­
tions. We suspect it is also true for Grassmannian solutions. 
It is quite surprising to see that this transformation is very 
similar to the one obtained by Arsenault et al. in Ref. 23, 
where by exponentiating the infinite-dimensional Lie alge­
bra described in Ref. 5 on the Grassmannian solutions they 
showed that it reduces to a finite-dimensional Sl(N,C) ac­
tion. More explicitly, the solution P'sF will become a new 
solution P'iF', where F' = SF, SESI(N,C). It is not easy to 
see if a has a unit determinant or not, but if not, it cancels out 
when one computes the projector P. It is also not clear 
whether any matrix Sbelonging to Sl(N,C) can be obtained 
from a product of different a's (up to the determinant fac­
torization). Thus the Backlund transformation can be con­
sidered at least as a subcase of the transformation found by 
Arsenault et al.23 

So we have seen that Minkowskian and Euclidean 
Grassmann (7 models are strikingly different. Each one pos­
sesses its own method for constructing classical solutions. 
Those methods can be adapted to the other type of model, 
but then one sees that it gives rather trivial results. 
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constants with ratios 1 and 2 
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The system of ordinary differential equations describing the multiple three-wave interactions 
with a common pump (daughter) wave is proved to be completely integrable by obtaining the 
necessary 2N + 1 independent first integrals in involution for the case when the coupling 
constants and the frequency mismatches have ratio 1 and/or 2. This case was deemed 
integrable on the basis of a Painleve analysis, but a direct proof has been lacking for some time. 
The first integrals are the N + 1 quadratic Manley-Rowe relations, the cubic Hamiltonian, 
N - 1 quartic integrals (analogous to the ones needed for complete integrability in the case of 
equal coupling constants and detunings in all wave triads), and a new sixth-order integral 
involving all wave quantities. The form of this last invariant was deduced from the recent 
result for the analogous interaction between five waves (N = 2), and essentially made possible 
by the proper use of irreducible forms, elementary building blocks for polynomial first integrals 
in involution with the Manley-Rowe invariants. 

I. INTRODUCTION 

The last decade has seen a rather extensive study of non­
linear wave interactions among a great number of wave tri­
ads coupled through one common wave. This is because of 
their many applications in different physical circumstances, 
such as the modeling of ocean waves or plasma turbu­
lence. l

-8 Where the emphasis was on the integrability of the 
Hamiltonian system of coupled ordinary differential equa­
tions (ODE's) describing such phenomena, a real impetus 
has been given by Menyuk et al.,4.5 who carried out the Pain­
leve analysis and deemed the system integrable in only two 
different cases (at arbitrary initial conditions). 4 

First, all N triads have equal coupling constants, but the 
frequency mismatches or detunings are arbitrary, though 
small in view of the physical applicability. In the other case, 
the coupling constants for some triads have to be twice as 
large as for the other triads, with similar ratios for the detun­
ings. 

Several authors proved the integrability of the first case 
by constructing or obtaining enough (here 2N + 1) inde­
pendent first integrals in involution. Menyuk et al.5 did it 
already via Lax operators, but with a degenerate matrix 
yielding less than 2N + 1 independent first integrals, so that 
ad hoc methods were needed to construct the remaining 
ones. Wojciechowski et al.6 obtained another Lax represen­
tation giving directly all the necessary integrals. We our­
selves introduced the concept of irreducible forms 7 and 
showed how these led to first integrals in a rather systematic 
way.8 Irreducible forms can be defined in different but equiv­
alent ways. Originally they were thought of as the simplest 
possible polynomial combinations of wave quantities re­
maining constant on the fast oscillation time scale. Thus they 
could serve as building blocks for polynomial first integrals 
on the interaction time scale.7 Later it became clear that the 
same irreducible forms are obtained by looking for the sim­
plest polynomials in the wave amplitudes that are in involu­
tion with the Manley-Rowe relations (the quadratic first 

integrals immediately related to the energy exchanges inside 
or between the wave triads).8 

The direct proof of integrability for the case of coupling 
constants and detunings having ratio 1 or 2 has until very 
recently eluded all efforts, apparently by whatever method. 
We succeeded, however, in proving the integrability of the 
reduced system of ODE's describing two interacting triads 
in the absence of detunings,9 by a proper combination of the 
Y oshida-Kovalevskaya approach (giving insight into the 
degree of possible first integrals 10.11) and the use of irreduci­
ble forms (allowing then a direct search as advocated by 
Roekaerts and Schwarz, 12 but in a much simpler way). It is 
the aim of the present paper to generalize this recent result 
for arbitrary N, and to include the appropriate detunings. 

II. BASIC FORMALISM FOR NTRIADS COUPLED 
THROUGH A COMMON PUMP WAVE 

As in Ref. 8, we start from selection rules for different 
triads interacting through a common pump wave 

(1) 

The complex amplitudes of the waves with frequency Wo, wj , 

and llj are denoted bye, aj, and bj (j = 1, ... ,N). Their slow­
time evolution obeys 

OJ = iAibj + {i/2)l>jaj , 

hj = iAjCOj + {i/2)l>jbj , 
N 

i: = i L Ajajbj (j = 1, ... ,N) , 
j=1 

(2) 

plus the complex conjugate equations. The frequency mis­
matches or detunings l>j were put into (2) in a symmetric 
way, in contrast to Ref. 8, so as to get simpler expressions 
later on. The dot refers to the slow-time derivative and the 
bar to complex conjugation. 

The system (2) can be derived from the Hamiltonian 

2197 J. Math. Phys. 29 (10), October 1988 0022-2488/88/102197-05$02.50 @ 1988 American Institute of Physics 2197 



                                                                                                                                    

H = jtJtj(ajbi: + a)./jc) + ~ «5j (aj aj + b),ij)] , (3) 

when one considers the pairs (aj ,aj ), (bj>bj ), and (c,c) as 
pairs of canonically conjugated variables and writes Hamil­
ton's equations in an appropriate way. 13 

As was said already, a direct proof of the integrability of 
Hamiltonian systems such as (2) requires the existence of as 
many independent first integrals in involution as there are 
degrees of freedom 14 (here 2N + I). Two first integrals A 
and B are in involution when their Poisson bracket vanishes, 
defined here as 

{A,B}= ±(aA aB _ aA aB + aA a~ _ a~ aB) 
j = I aaj ilaj ilaj aaj abj abj abj abj 

+ aA aB _ aA aB . (4) 
ac ac ac ac 

Without restrictions on Aj and «5j , one finds already N + 1 
independent quadratic first integrals in involution, the Man­
ley-Rowe relations: 

N 

Eo = L (ajaj + bjbj ) + 2cc, 
j=1 

Ej = ajaj - bjbj U = 1, ... ,N) . 
(5) 

In addition, H itself is a cubic first integral, giving together 
N + 2 integrals out ofthe 2N + 1 needed for integrability. 

Defining now the irreducible-forms as the simplest poly­
nomials in the wave amplitudes, in involution with the Man­
ley-Rowe relations (5), we see that they are 

ajaj> bjbj , CC, ajbjc + ajbjc , 

a;b;ajbj + a;b;aA (i,j = 1, ... ,N) . 
(6) 

Since the Manley-Rowe relations plus the Hamiltonian 
amount already to N + 2 independent first integrals in invo­
lution, one can try to extend them to a full set of 2N + 1 
integrals. If this can be done (via polynomials), the remain­
ing first integrals have to be in involution with, among oth­
ers, the Manley-Rowe relations, implying that they must be 
combinations of the irreducible forms8 -hence the search 
for additional integrals as polynomials in the irreducible 
forms, rather than in the original variables themselves. This 
is basically very much simpler, as we shall see. 

Turning to the Painleve analysis of (2) as carried out by 
Menyuk et a/.,4 one has a first integrable case when all cou­
pling constants Aj have the same value (Aj = 1 after a suit­
able rescaling of the amplitudes). Then there are no further 
restrictions on the detunings «5j • The full proof ofintegrabi­
lity by getting all the necessary first integrals by one method 
or the other was given by different authors.5.6.8 

The second case that was deemed integrable for arbi­
trary initial conditions is when 

AI=···=AM=2..1.M+ 1 =···=2..1.N , 

«5 1 = ... =«5M =2«5M+ 1 = ... =2«5N • 

(7) 

For this case there has been no direct proof ofintegrability so 
far. Recently we succeeded in determining the missing first 
integral for the special case of N = 2 and in the absence of 
detunings9 (AI = 2..1.2 = 2, «5 1 = 2«52 = 0). The necessary 
five integrals in involution are Eo, E I, E2, H, and 
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I = 4(albla2b2 + albla2b2) (a2a2 + b2b2) 

- 2(ca2b2 + ca2b2) 2 

- [(a2a2 + b2b2)2 + 4a2a2b2b2](alal + blb l ) . (8) 

One easily recognizes its structure as a combination of irre­
ducible forms of total degree 6. We now set out to generalize 
this result for arbitrary N and for detunings obeying (7). We 
will rescale the amplitudes in such a way that Aj are either 1 
or 2 for simplicity. 

III. FIRST INTEGRALS OF DEGREE 4 

For the remainder of this paper we take the SUbscripts 
m,nintherange{I, ... ,M},whereAm =2and«5m = 2«5, and 
p, q in the range {M + 1, ... ,N}, with Ap = 1 and «5p = «5. Be­
cause of what we learned from the five-wave coupling, we 
replace the set of irreducible forms (6) by the equivalent set 
of building blocks: 

Kj = ajaj + bjbj , Ej> Eo , 

Hj = Aj (ajbi + ajbjc) + ! «5j (ajaj + bjbj ) , (9) 

Li} = a;b;ajbj + a;b;ajbj (i,j = 1, ... ,N) . 

The form of Hj is inspired by the structure of the Hamilto­
nian, so that 

(10) 

A full direct search is rather difficult at arbitrary N, so that 
we take the structure of (8) and of the derivatives of the 
building blocks (9) as our guides. Using (2) we find that 

Kj = 2Uj (ajbjc - ajbi) , 
N 

ilj = iAj L A; Vi} , (11 ) 
;=1 

ii} = (A/2..1.j )K;Kj + (Aj/2..1.; ) KjK; + i(<<5; - «5j ) Vi} 

(i,j = 1, ... ,N) , 

if we denote for brevity 

Vi} = a;b;ajbj - a;b;aA (i,j = 1, ... ,N) . (12) 

We thus immediately see that if in the last line of ( 11) i and j 
both refer to SUbscripts of the same range {1, ... ,M} or 
{M + 1, ... ,N}, then A; = Aj and «5; = «5j imply that 
Li} - ! K;Kj (i,j = 1, ... ,M or i,j = M + 1, ... ,N) are first in­
tegrals. These are symmetric in i and j; furthermore, 

L jj - !KJ= - !EJ U= 1, ... ,N). (13) 

There are thus! M(M - 1) + ! (N - M) (N - M - 1) ad­
ditional independent first integrals. However, not all are in 
involution. In a way that is reminiscent of what was done in a 
previous paper, when all Aj = 1 and «5j = /j (see Ref. 8 ); we 
rearrange the new first integrals into 

(14) 

Ip = ± (Lpq - .lKpKq) (p = M + 1, ... ,N - 1), 
q=p+1 2 
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or something equivalent, as the choice ( 14) is not unique. As 
the sUbscripts on Lij or Kj refer.,!o pairs of canonically conju­
gate variables (apaj ) and (bj ,bj ), one sees that L ij and L kl 
have no common pair of canonically conjugate variables, 
unless there is at least a common subscript. If we let i,j,k 
refer to mutually different indices, we see that the only rel­
evant Poisson brackets involving Lij and/or Kj are 

{Lij,Lik } = Ki Vkj , {Lii,Lij} = 2Ki Jji , 

{Lij,Kj} = 2Jj; (i,j,k = 1, ... ,N) . (15) 

The ones not written vanish. Using (15) we can compute 
that 

M M ( 1 
{Im,In} = I I {Lmk,Ln1 } - -{Lmk,KnK1} 

k=m+ll=n+1 2 

- ~ {KmKk,L n1 }) 

= k=~+I({Lmn'Lnk}+{Lmk'Lnk} 
1 1 

- T{Lmn,Kn}Kk - T{Lmk.Kk}Kn 

- ~{Kn,Lnk}Km - ~{Kk,Lnk}Km) 
=0 (m<n, m,n= 1, ... ,M-l). (16) 

Similar results hold for {Ip,Iq} (p,q = M + 1, ... ,N - 1), 
and of course {Im,Ip} (m = 1, ... ,M - 1, 
p = M + 1 , ... ,N - 1) vanish straightaway as 1m and Ip have 
no common pairs of canonical variables. 

There are thus (M - 1) + (N - M - 1) = N - 2 ad­
ditional first integrals Im,Ip (m = 1, ... ,M - 1; 
p = M + 1, ... ,N - 1), mutually in involution. Because they 
are constructed from the irreducible forms, they are auto­
matically in involution with the Manley-Rowe relations 
and, as first integrals, with H. The total of independent first 
integrals in involution is now already 2N, namely, Eo, 
EI, ... ,EN, H, II, ... ,IM_I' IM+ I , ... ,IN-I' Only one is miss­
ing, and for reasons of symmetry it will involve quantities 
related to all wave triads. 

IV. FINAL INVARIANT OF DEGREE 6 

Looking at the structure of (8), the last first integral 
required to prove integrability in the case N = 2, we see that 
it can be written (with 81 = 282 = 0) as 

1= 4L12K2 - 2H~ - 2K~KI + E~KI' (17) 

This involves a quartic irreducible form L 12, with quantities 
of a triad in the range where A2 = 2 and another with AI = 1, 
multiplied by a quadratic building block K2 from the latter 
range. The term H2 belong also to this range. It thus seems 
logical to expect the missing first integral in the general case 
to include in a similar vein all possible pairings of triads from 
both ranges. First, however, we get from (11) that 

. N M 

Hp = i I Vqp + 2i I Vmp (p=M+ 1, ... ,N), 
q=M+I m=1 
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imp = KmKp + ! KpKm + i8Vmp 

and hence 
N M N 

I Hp = 2i I I V mp , 
p=M+I m=lp=M+I 

M N 

I I imp 
m= I p=M+ I 

(m = 1, ... ,M), 

M N. 1M. N 

m~1 Km P=~+I Kp + 4" m~1 Km P=~+I Kp 
M N 

+i8 I I Vmp 
m=lp=M+I 

M N 

=.%'A%B+!%A.%'B+i8 I I Vmp , 
m=lp=M+I 

if we call 
M M ~ 

.%'A = I Km = I (amam + bmbm), 
m=1 m=1 

N N 

.%'B = I Kp = I (apap + b/Jp)' 
p=M+I p=M+I 

Keeping (17) in mind we set out to compute 

M N 

+ 4i8.%' B I I Vmp 
m=lp=M+I 

• M N 

+ 4.%' B I I Lmp 
m=lp=M+I 

N M N 

- 8i I Hp I I Vmq , 
p=M+ I m= I q=M+ I 

(18) 

(19) 

(20) 

(21) 

and try to rewrite the rhs as a total derivative. Using the 
~etailed expressions of all quantities as functions of aJ' aJ, bj , 

bj , c, and c, we luckily find that 
M N 

4i8.%' B I I Vmp 
m=lp=M+I 

M N 

+4%B I I Lmp 
m=lp=M+I 

N M N 

- 8i I Hp I I Vmq 
p=M+I m=lq=M+I 

N 

=2 II Lpq%A 
p.q=M+ I 

(22) 

We are now home, as 

(23) 

Thus the final invariant is 
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M N 

L LL [4(ambmapbp +ambmapbp)(aqaq +bqbq) -2(apbpaqbq +apbp{1qbq)(amam +bmbm) 
m=. p,q=M+. 

- (amam +bmbm)(apap + bpbp)(aqaq +bqbq)] -2[ f (apbpC+ apbpc + ~(apap +bpbp»)]2 (24) 
p=M+. 2 

This first integral is automatically in involution with the Manley-Rowe relations and the Hamiltonian, so that one needs to 
check whether {Jm,lAB} (m = I, ... ,M - 1) and {lp,lAB} (p = M + I, ... ,N - I) vanish as well. Because lAB is not symmetric 
in the quantities of all triads [as Eq. (2) themselves are also not], both sets of Poisson brackets are not analogous. So we first 
see that 

(m = I, ... ,M - I) . (25) 

The intervening Poisson brackets are easily shown to vanish with the help of (15). Because {Lmn'%A} vanishes, so will 
{Lpq ,% B}' and we Qave that 

N N{ I } N{ I } - 4% ALL Lpq - - KpKq,Lpr + Lqr + 2% A L Lpq - - Kpq,Lpp + 2Lpq + Lqq 
q=p+lr=M+. 2 q=p+. 2 

=0 (p=M+ I, ... ,N-I). 

Thus we have the 2N + 1 necessary first integrals in involu­
tion needed to prove complete integrability: Eo,E., ... ,EN , H, 
1., ... ,IM_. ,IM+ ..... ,IN_ .. lAB' That these are indeed inde­
pendent can be proved via complete induction from the case 
N = 2, but this is too lengthy to be included here. 

v. CONCLUSIONS 

The above treatment was for mUltiple three-wave cou­
plings, where the one common wave is a pump wave in each 
triad. 

If the common wave is a daughter wave in each triad, the 
selection rules are 

OJ = liJo + liJj + I5j (j = 1, ... ,N) . (27) 

This case is completely analogous and will not be detailed 
here. 

As mentioned already elsewhere,8 the mixed case where 
the common wave is a pump wave in some triads and a 
daughter wave in others is qualitatively quite different, but 
was overlooked in other studies.5

,6 For N = 2 the selection 
rules are 
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(26) 

liJo = liJ. + 0 1 + b., O2 = liJo + liJ2 + 152 , (28) 

It was surmised that this case would not be integrable, and 
this is borne out by the Painleve analysis that we carried out 
on the system of amplitude equations derived from 

H =A,.(a.b.c + a.b.c) + (15.12)(a.a. + b.b.) 

+ A,2(a2b2c + a2b2c) + (152/2)(a2a2 - b2b2 ) • 

(29) 

Because of its negative results, the analysis will not be given 
here. Suffice it to say that it flounders already at the first 
stage, where one has to determine the weights in trying to 
balance the most singular terms in the amplitude equations. 

Multiple triads are thus integrable only if they are all 
coupled through a common pump or a common daughter 
wave. 

We have now covered both cases proposed by Menyuk 
et al.4 (equal coupling constants in Rer: 8 and ratios I and 2 
at present), essentially by exploiting the structure ofinvar­
iants as polynomials in the irreducible forms. This should 
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amply demonstrate the power of this method in providing a 
fairly systematic procedure for uncovering missing first inte­
grals, especially when combined with a proper Painleve 
analysis and the Y oshida-Kovalevskaya approach. 
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A formula is obtained for the action transferred between two weakly coupled harmonic 
oscillators, where the time-dependent frequency of one oscillator passes through resonance 
with the fixed frequency of the other. The analysis employs an action-angle Hamiltonian that is 
the classical analog of an earlier wave-mechanical description of linear mode conversion. It 
represents a link between generalized Hamiltonian approaches to linear mode conversion, and 
those based on wave dispersion relations. 

I. INTRODUCTION 

There is at present considerable interest in the process of 
linear mode conversion. 1-15 In both plasma physics and geo­
physical fluid dynamics, the following question arises. What 
is the flow of energy between the linear normal modes, when 
at some point Xc the inhomogeneity of the system causes the 
frequencies of two initially distinct normal modes with wave 
number kc to become degenerate, before again diverging? 
This question has previously been answered from two points 
of view, which the present paper is intended to link. Grim­
shaw and Allen,3 who were concerned with applications in 
geophysical fluid dynamics, considered a Hamiltonian sys­
tem. Their multiple-time-scale analysis of the canonical evo­
lution equations generated equations that were solved using 
parabolic cylinder functions. Cairns and Lashmore-Da­
vies,6.8 who were concerned with applications in plasma 
physics, considered the wave dispersion relations that arise 
from the dielectric properties of magnetized plasmas. They 
carried out a generalized analysis of the local dispersion rela­
tion in which wave numbers map to the operator - i d /dx. 
The resulting coupled first-order differential equations gave 
rise to a second-order system which was solved in terms of 
Weber's equation, 16 again using parabolic cylinder functions 
and reproducing where appropriate the results of earlier 
fourth-order calculations.2

•
s Recently, a third line of ap­

proach to linear mode conversion has been developed, using 
Hermitian operators. 13-15 In particular, in Ref. 15, a wave­
mechanical interpretation of the class of dispersion relation 
considered by Cairns and Lashmore-Davies6.8 was intro­
duced. Using standard techniques of first-order perturbation 
theory, differential equations for the wave amplitUdes were 
obtained that led in tum to Weber's equation. Once again, 
the standard result for energy transfer was obtained, using 
the asymptotic properties of parabolic cylinder functions. 
The success of wave-mechanical techniques represents the 
first oftwo steps that link the two basic approaches to linear 
mode conversion, namely, those based on wave dispersion 
relations and those based on Hamiltonian systems. The pres­
ent paper is intended to provide the second step. We con­
struct the classical Hamiltonian analog of the Hermitian sys­
tem considered in Ref. 15, which is itself an extension of the 
dispersion relation approach. At the same time, the action­
angle Hamiltonian that we construct and its method of solu­
tion necessarily have many features in common with the gen­
eralized Hamiltonian approach of Grimshaw and Allen.3 In 

discussing these features further, we hope to show how the 
Hamiltonian and wave dispersion relation approaches to lin­
ear mode conversion reflect the same physical phenomenon. 

II. ACTION TRANSFER IN THE HAMILTONIAN SYSTEM 

Let us now construct the classical mechanical analog of 
the wave-mechanical system considered in Ref. 15. It con­
sists of two weakly coupled one-dimensional harmonic oscil­
lators: the fundamental frequency WI of the first oscillator 
remains constant; that of the second oscillator is initially less 
than WI' but increases slowly with time. At a particular time 
tc ' we have 

WI = W2(tc)' (1) 

so that for a finite interval of time the fundamental frequen­
cies are degenerate or close to degenerate. We shall calculate 
the action transferred between the oscillators during the res­
onant interval at t=:tc when the fundamental frequencies 
remain nearly degenerate. This oscillator system can be rep­
resented by the explicitly time-dependent Hamiltonian 

pi wi trl p~ W~ (t) ~ 
H(PI,QI,P2,qZ,t) = 2" + -2- + 2" + 2 - 1/QIQ2' 

(2) 

It is convenient to carry out a canonical transformation of H 
into action and angle variables using the generating func­
tionl7 

This gives 

aF aF Wit/; 
Pi =-a =WiQi cotOi, Ji = --- (4) 

Q/ ao, - 2 sin2 OJ , 

and the transformed Hamiltonian K = H + aF / at becomes 

K = WIJI + wz(t)J2 + w2 J 2 sin 202 
2W2 

( 
JIJ2 )112 . . 

- 21/ -- sm 01 sm O2, 
W IW2 

(5) 

Here W2 denotes dw2/dt. We shall assume that w2 is small in 
the sense that W2/W2-<WI,W2' and that the coupling between 
the oscillators is weak in the sense that 1/ -< wLw~. The ca­
nonical evolution equations for the actions ji = - aK / a8i 
can be written in the form 
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JII2 
~V2= _ 7J 2 

dt 2(CU lCU2) 1/2 

X [sin(OI - ( 2 ) - sin(OI + (2 )], (6) 

d 7JJ11/2 
_ J 112 = _ ro2 J 112 COS 20 + -.....:.-..:..-~ 
dt 2 2m2 2 2 2(CU

l
CU

2
) 1/2 

X [sin(OI - ( 2 ) + sin(OI + (2 )], (7) 

using standard trigonometric identities. The canonical evo­
lution equations for the angles OJ = aK laJ; become 

(8) 

7J (J )1/2 
- 1/2 --l. sin 0 1 sin O2, 

(CU l CU2) J 2 

(9) 

The long-time-scale consequences of the terms involving ro21 
CU2 in Eqs. (7) and (9) have been investigated, for the case of 
a single harmonic oscillator (7J = 0), by Vandervoort. 18 

Here we shall concentrate on the two-oscillator resonant in­
terval, defined to be the interval of time when the relative 
phase 01 - O2 varies slowly compared to 01 and O2 them­
selves. By Eqs. (8) and (9), we have to leading order 

d 
- (01 - ( 2 ) = CUI - cu2 (t)· 
dt 

( 10) 

Referring to Eq. (1), let us define a new independent vari­
able 

T= t- te , (11 ) 

and for future convenience we define 

/-l = [ro2/2],= Ie' (12) 

Combining Eq. (1) and Eqs. (10)-(12), it follows that to 
leading order during the resonant interval, 

0 1 - O2 = -/-lr - r/Jo, (13) 

where r/Jo is a constant. This is equivalent to the wave-me­
chanical result given by Eq. (30) of Ref. 15. In contrast to 
01 - O2, the other angular variables 202 and 01 + O2 that 
appear in Eqs. (6) and (7) oscillate rapidly during the reso­
nant interval. On the time scale ofinterest, namely, the dura­
tion of the resonant interval, we assume that the changes in 
the actions J; arising from these rapidly oscillating terms are 
negligible, since they integrate almost to zero. Let us denote 
the slowly varying amplitudes of the actions J; by I;. Then 
using Eq. (13), Eqs. (6) and (7) give 

d - 7J-_J:12 = __ J~/2 sin(/-lr + r/Jo), (14) 
dT 2m1 

d - 7J --Jr2 = - --JV2 sin(/-l~ + ~o). (15) 
dT 2cu l 

Here we have simplified the coupling coefficients using the 
fact that CU2<::::CUI during the resonant interval. We note that 
the total averaged action II + 12 is conserved by Eqs. (14) 
and (15). This is the discrete system analog of the wave­
mechanical result Eq. (22) of Ref. 15. Because we shall dif­
ferentiate Eqs. (14) and (15) again with respect to T, it is 
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convenient to consider the complex system of which Eqs. 
(14) and (15) are the real part: 

d J- 112 • 7J (',J, ) J- 112 ( ..-2) - I = 1 --exp - ''''0 2 exp - I/-lT , 
dT 2m1 

(16) 

..!!.- I ~12 = i...!l..... exp(ir/Jo) 1:12 exp(i/-l~). 
dT 2m1 

(17) 

Then, defining complex variables 

a l = 1:12 exp[i(/-lr + ~0)/2] 
and 

a2 = I r2 exp[ - i(/-lr + r/Jo)/2] , 

and differentiating Eqs. (16) and (17) again with respect to 
T, we obtain two uncoupled second-order differential equa­
tions: 

dd;1 + [( ~I r + /-l2~ - i/-l] a l = 0, (18) 

~;2 + [( ~I r + /-l2r + i/-l] a2 = O. (19) 

Equations ( 18) and ( 19) are formally identical to Eqs. (35) 
and (36) of Ref. 15. A sequence of transformations, IS some 
previously noted by Budden, 19 leads from these equations to 
Weber's equation. 16 The asymptotic properties of the roots 
of Weber's equation have been employed by Cairns and 
Lashmore-Davies6

•
8 to calculate the energy transfer during 

linear mode conversion. It follows that the formula that de­
scribes the action transfer for coupled harmonic oscillators 
with a resonant interval can be obtained by relating the pa­
rameters arising in Eqs. ( 18) and ( 19) to those of Ref. 8. The 
fraction of the action initially possessed by the first oscillator 
that is transferred to the second during the resonant interval 
is 

a = 1 - exp( -1rrll4cu~/-l), (20) 

where /-l is defined by Eq. (12). The combination of param­
eters that occurs in the exponential in Eq. (20) is physically 
reasonable. It is proportional to the product of two dimen­
sionless quantities, one large and one small: ( 7JI 
cu~ ) 2 (cu~ l/-l). Here TJI cui « 1 is a measure of the strength of 
the coupling between the oscillators, and cui I /-l» 1 is a mea­
sure of the number of rapid oscillation periods for which the 
oscillators remain in approximate resonance. 

Thus far we have employed an action-angle Hamilto­
nian because it provides the closest classical analog of the 
wave-mechanical system considered in Ref. 15. Let us now 
examine the close similarities between this action-angle de­
scription and the generalized Hamiltonian approach of Ref. 
3. First, we note that the components ofEqs. (6) and (7) 
that are significant during the resonant interval, namely, 
those with argument 01 - O2, resemble Eq. (4.3) of Ref. 3, 
where, however, 01 and O2 are not canonical coordinates. 
Next, we note that during the resonant interval, the depen­
dence of 01 - O2 on the independent variable is quadratic in 
Eq. (13). In Ref. 3, the corresponding dependence is more 
complex, but we note from Eq. (4.10) of Ref. 3 that it in­
cludes a dominant quadratic term asymptotically. Equa­
tions (14) and (15) also differ from Eq. (4.8) of Ref. 3, 
insofar as the coupling coefficients are themselves functions 
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of the independent variable. Nevertheless, it is clear from the 
similarity of Eqs. (18) and (19) to Eq. (4.14) of Ref. 3 that 
these differences are essentially minor. Both approaches lead 
to equations that can be solved in terms of parabolic cylinder 
functions, the eigenfunctions of Weber's equation. 

III. CONCLUSIONS 

A simple formula has been obtained for the action trans­
ferred between two weakly coupled one-dimensional har­
monic oscillators, where the time-dependent frequency W 2 of 
one oscillator passes through resonance with the fixed fre­
quency WI of the other. During the resonant interval, the 
coupled canonical evolution equations yield uncoupled sec­
ond-order equations of a form that has been shown 15 to 
transform to Weber's equation. 16 The analysis of Weber's 
equation by Cairns and Lashmore-Davies,6,8 developed dur­
ing studies of energy transfer during linear mode conversion 
in inhomogeneous plasmas, is adapted to give the action 
transfer between the harmonic oscillators. The present result 
was obtained using an action-angle Hamiltonian system that 
is the classical analog of the wave-mechanical system consid­
ered in Ref. 15. The latter is itself an extension of the wave 
dispersion relation approach to linear mode conversion. The 
theory presented here has, in addition, many points in com­
mon with the generalized Hamiltonian approach to linear 
mode conversion developed by Grimshaw and Allen. 3 It 
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thus represents a link between the two basic classes of de­
scription of this phenomenon. 
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A decomposition of the solution of the dissipative wave equation into incoming and outgoing 
components across a smooth surface in a homogeneous region is presented. (The proof of the 
decomposition is given only for the plane surface.) This is then applied to the factorization of 
the dissipative wave equation into incoming and outgoing components in a planar-stratified 
medium. The Ricatti integral-differential equation for the reflection operator that relates the 
two components is obtained. It is shown how the zeroth and second moments (with respect to 
the transverse variable in a planar-stratified medium) ofthe reflection kernel can be used in the 
inverse problem to recover the velocity and dissipation coefficient from knowledge of the 
scattered field. 

I. INTRODUCTION 

A common technique 1.2 for the formulation of the time­
dependent inverse problem, associated with the one-dimen­
sional wave equation as well as related equations,3 is based 
upon the concept of wave splitting. In one-dimensional 
problems this entails decomposing the wave into up- and 
down-going wave components. Invariant imbedding tech­
niques4•5 and their variations are used to get an equation for 
the reflection operator (the operator relating the up-going 
wave component to the down-going wave component). The 
equation for the reflection operator contains a quadratic 
nonlinearity and is commonly known in the terminology of 
inverse scattering as being a Ricatti-type equation, the rea­
son for this being the fact that in the one-dimensional prob­
lem in the frequency domain the equation is an ordinary 
differential equation with the quadratic term (Ricatti equa­
tion). However, the equation for the reflection operator in 
the time-dependent case takes the form of an integral-differ­
ential equation with the quadratic term involving a convolu­
tion. The initial condition associated with the kernel of the 
reflection operator is related to the unknown coefficient of 
the wave equation. The importance of the whole approach is 
that the Ricatti equation for the reflection operator's kernel 
has been used successfully in numerical schemes for solving 
the inverse problem.3,6-8 

Recently this approach has been generalized to the wave 
equation in three dimensions, first to the case where the me­
dium is planar stratified,9 then for the more general case of 
non planar stratifications. 1O Here the concept of up- and 
down-going waves is replaced by the concept of outgoing 
and incoming wave across a smooth surface S. The key to the 
analysis is the development of an incoming and outgoing 
wave condition on the surface S, which is expressed in terms 
of a linear operator relationship between the wave function u 
and its normal derivative au/an on S. This is used to factor 
the wave equation into incoming and outgoing components. 
From this the form of the reflection operator and its Ricatti 
equation are obtained for the special case of a planar-strati­
fied medium. At present the reflection operator and its equa­
tion are being examined for cylindrical geometry, and nu­
merical work is applied to the associated inverse problem. II 

Here in this paper the wave-splitting process that was 
developed previously9,10 for the wave equation in R3 is gener­
alized to apply to the dissipative wave equation (or telegraph 
equation) 12 

au 
Ou+b-=O, at 

where 

1 a2 a2 a2 a2 

0---------
- c2 at 2 axi ax~ ax~' 

(1) 

(2) 

with the coefficient b;pO. The corresponding incoming and 
outgoing wave condition expressed as a linear operator rela­
tionship between u and au/an on a smooth surface S is ob­
tained, for the case where the coefficients band c are con­
stant (with the proof of the decomposition given only for the 
plane surface). This is then generalized to the case where the 
medium is stratified, with emphasis on plane stratification 
where band c are functions of X3 only. The reflection opera­
tor and its Ricatti equation are obtained for the special case 
of a planar-stratified medium. The associated inverse prob­
lem for a stratified half-space is treated where reflection data 
on the surface are used to get the coefficients b,c in the upper, 
or penetrable, layer of the medium, Since the waves are at­
tenuated due to absorption, it is not practical to get the coef­
ficients band c deep inside the medium from reflection data 
on the surface. 

Except for the work of Buzdin 13 or Blagoveshchenskii, 14 

the time-dependent inverse problem treated here for the dis­
sipative wave equation differs from previous work6,7.15,16 in 
which the geometry that is taken is a one-dimensional slab 
and where reflection data on both sides are employed. A 
Gelfand-Levitan-type system was developed by Weston l5 

and the results generalized by Krueger. 16 More recently 
Kristensson and Krueger6

•
7 have applied the wave-splitting 

technique to obtain the Ricatti equation formulation for the 
reflection kernels. 

Buzdin's13 approach to the inverse problem for a plane­
stratified medium involves directly taking two moments of 
the dissipative wave equation (telegraph equation) and re­
ducing it to a system of two partial differential equations in 
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two independent variables (time 1 and depth parameter z). 
Cauchy data (reftection data) at z = a are used to transfer 
the system into a system of integrodifferential equations, by 
integrating over a triangle formed by the characteristics. The 
resulting nonlinear system can be solved up to a certain 
depth of penetration. 

The emphasis in this paper is on the development of the 
wave splitting into outgoing and incoming waves in a strati­
fied medium, and the determination of the equation that 
must be satisfied by the associated reftection operator for a 
plane-stratified medium. This approach has the potential (as 
ongoing research indicates) to be applied to the more gen­
eral inverse problem associated with a nonhomogeneous me­
dium. The moment approach (applied to the reftection oper­
ator) is employed in the latter part of this paper to 
demonstrate the existence of the solution to the inverse prob­
lem. 

II. INCOMING AND OUTGOING WAVE CONDITION FOR 
A HOMOGENEOUS MEDIUM 

Let Sbe a smooth ( C 2) surface enclosing an open region 
Di in R3 that mayor may not be bounded. Let the corre­
sponding open exterior region be denoted by De. In this sec­
tion, conditions will be derived to indicate whether or not a 
solution U of the dissipative wave equation (1) represents an 
outgoing or incoming wave across S. This condition will take 
the form of a linear relation between u and au/an on S. From 
the physical standpoint an outgoing wave across S is pro­
duced by sources in Di and is represented mathematically by 
the solution of exterior initial-value and boundary-value 
problems, with the initial values of u, au/al being zero in 

De. A corresponding formulation holds for incoming 
waves. 

To develop the outgoing wave condition on S, the 
Kirchhoff formula for the exterior problem 

Ou + bu, = 0, 1>0, xeDe , 

u = u, = 0, t = 0, xe De , 
(3) 

where b and c are constants and b>O, is needed. If?f (x,t) is 
the fundamental solution of the system 

O?f + b?f, = 8(x)8(t), ?f = 0, 1<0, (4) 

then it follows in the usual manner that for I> 0, xoeD eo 

u(xo,t) = - (' r {?f (x - xo,t - s) !!!.... Jo Js an 

- u ! ?f(x - xo,t - s) }dO"x ds, (5) 

where dO" x is an element of surface area on S and a/an is the 
normal derivative on S taken in the direction of the normal 
pointing into region De. The precise form of?f (x,t) is given 
byl2 

?f(x,t) = {CH(Ct)8(C
2
1
2 -lxI2) 

21T 

+ bc2H(ct - IxI>II(bc~c2t2 -lxjY2) }e- bc"/~ 
81T~?t2_lxI2 

(6) 
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where I I is the modified Bessel function of order 1, and H (I) 
is the Heaviside step function. 

With the variable of integration x replaced by y, and 
expression (6) inserted for ?f (x - xo,t - s), relation (5) re­
duces to the explicit form 

u(X()Jt) = - _1_ r {EU n [xo,y,t] 
41T Js 

where r = Ixo - yl, (7) 

and the operator E acting on a functionj(y,t) , yeS, is defined 
as follows: 

Ej[xo,y,l] = ! j~,t - ~)exp( _ b;r) 

+ b:c
3 f-'IC exp[ b2(~- I)] {II~)} 

Xj(y,s) ds, (8) 

where ~ = bc2[ (t - S)2 - (r/c)2] 1/2/2. 

The outgoing wave condition is obtained by letting 
xoeDe approach x on S. In taking the limit one must note 
that the second term in the integral on the right-hand side of 
Eq. (7) has the property of a double-layer potential,17 and 
hence has a jump discontinuity across S. Taking this into 
account and using the same approach that was employed for 
the wave equation,1O one subsequently obtains the result 

(I+M)u + KU n = 0, xeS, (9) 

which is the sought-for outgoing wave condition on S. Here I 
is the identity operator, and the operators M and K are de­
fined as follows: 

Kw[x,t] = _1_ r (Ew[x,y,t])H (t -:.) dO"y, (10) 
21T Js c 

liara (r) Mw[x,t] = - - --- (Ew[x,y,t ])H t - - dO"y, 
21T s any ar c 

(11 ) 

for xeS, leR. The Heaviside step function is introduced in 
these operators to take care of the initial condition that 
u = u, = a for t..;O, xeS. 

For the special case where there is no dissipation, b = 0, 
K reduces to the operator 

K - 1 i w(y,t- ric) H( r) d w-- t-- 0" 
21T s r c y' 

given in the previous paper. 10 

The corresponding incoming wave condition is obtained 
by treating the interior initial-value problem in a similar 
manner. The resulting incoming wave condition is given by 

(I-M)u - KUn = 0, xeS. (12) 

For the special case when S is a plane surface, ar/ an = a 
for x,yeS; hence the operator M is identically zero. The out-
going and incoming wave conditions reduce to 

u ± Ku n = 0, xeS (a plane surface). (13) 
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Using the two lemmas that are proved in Appendix C, it 
will be shown next that the operators K and M are compact. 
The time interval T may have to be restricted depending 
upon the complexity of the surface S, due to condition (C2) 
of Appendix C. Holder continuity in the time variable will be 
needed (see Appendix C for appropriate definitions). 

Theorem 1: If Sis a Lyapunov closed surface, 17 then (i) 
K is a compact operator mapping C(S) XC(O,,t)[O,T] into 
C(S) X Co[O,T] , and (ii) Mis a compact operator mapping 
C(S) xC(\,,t) [O,T] into C(S) XCo[O,T], where A., 0 <A.< 1, 
is the HOlder index, and Co [0, T] is the space of continuous 
functions of t on [0, T] that vanish at t = O. 

Proof From Eq. (10) it is seen that the operator K can 
be decomposeq in the following manner: 

Ku=Gu+Hu, 

where G corresponds to the operator in Lemma 1 of Appen­
dix C with kernel 

g(x,y) = _1_ exp ( _ bcr), r = Ix _ yl, 
21Tr 2 

and H corresponds to the operator in Lemma 2 of Appendix 
Cwith kernel 

h(x,y,t) = _1_ b 22 exp[ _ be
2
t] II (t) , 

81T 2 t 
with t = be (t 2 - r / c2

) 1/2/2. Because these kernels satisfy 
the conditions in the lemmas, the compactness of K follows 
from the compactness of G and H. 

From Eq. (11) it follows that the operator M can be 
decomposed as follows: 

Mu = Glu + Hlu + G2u" 

with G I ,G2 corresponding to the operator in Lemma 1 with 
respective kernels 

gl (x,y) = _1_ ~ [~+ be + b 2C
2

] exp (_ bCr) , 
21T any r 2r 8 2 

g2(X,y) =_I_~exp (_ bcr) , 
21Trc any 2 

and HI corresponding to the operator in Lemma 2 with ker­
nel 

hl(x,y) = b4~r ~ {12(t)} exp (_ bc
2t) , 

321T any t 2 

with t = bc2 (t 2 - r /c2
) 1/2/2 and 12 the modified Bessel 

function of order 2. Since S is a Lyapunov surface (with 
Holder smoothness in unit normal, Inz - ny I<Klx _ yla, 
o < a < 1 ), it follows from Vladimirov 17 that 

/..!!...-/ <alx _ yla; 
any 

hence gl,g2,h l satisfy the requirements of the lemmas. Com­
pactness of M thus follows. 

III. WAVE SPLITTING IN A HOMOGENEOUS MEDIUM 

With the incoming and outgoing wave conditions now 
established, the splitting of the solution of the dissipative 
equation into incoming and outgoing waves can be obtained. 
However, before considering this, some results on the exis-
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tence and structure of the inverse operator K- I have to be 
established. 

Theorem 2: The null space ofK is empty, and K- I exists. 
Proof The proof depends upon the fact that the interior 

and exterior Dirichlet initial-value problem associated with 
Eq. (1) has a unique solution. This follows from the energy 
integral 18 associated with Eq. (1), 

J J {~ :t [:2 u; + IVUI2] + b(Ut )2 - V'(UtVU)} 

Xdxdt=O, 

which indicates the importance of b being non-negative. 
Letv(x,t)eC(S) X C[O,T] be a solutionofKv = 0, xeS. 

Then set 

u(x,t) = _1_ r Ev[x,y,t 1H(t -!..) duy, 
21T Js e 

(14) 

where xeR3. It thus follows from the Kirchhoff formula (7) 
(withun = -2v,u=0,onS)thatuisasolutionofEq.(l) 
in De and D;. Because of the presence ofthe Heaviside step 
function, it follows that u = Ut = 0 for t = 0 and xeDe or 
xeDi • Furthermore, since K v = 0, it follows that u = 0, xeS. 
Hence from uniqueness of the solution of the Dirichlet ini­
tial-value problem it follows that u(x,t) =0, for xeDe or Di , 

t;;;.O. From the jump condition associated with the single­
layer potential term 10,17 in expression (14), 

[
au] + - = - 2v(x,t), xeS, 
an -

it follows that v=O, t;;;'O. Thus the null space ofK is empty, 
and K - I exists. 

The precise form ofK- 1 will now be established for the 
case of a plane surface. The following will be defined. 

Definition: If S is the plane surface X3 = const, then the 
transverse d' Alembertian DT associated with this surface is 
given by 

1 iF a2 a2 

D T=------ (15) 
c2 at 2 ax~ axi 

Theorem 3: If S is a plane surface, then 

(16) 

Proof Let S be the surface X3 = 0, and De the region 
X3 > O. Let u be a solution of Eq. (I) in the open region 
X3> - ~ (where ~> 0) containing the surface S, and let it 
satisfy the initial condition u = Ut = 0 there at t = O. Use the 
fact that if u is a solution ofEq. (1) in a homogeneous medi­
um, then aU/aX3 is also a solution, and apply the Kirchhoff 
formula (7) with u replaced by auf ax3. As before let 
xoeDe ..... xeSand, using the result au/an = aU/aX3 onS, ob­
tain (for the outgoing wave) 

~+K a
2
u =0 xeS, 

aX3 ax~ , 

which corresponds to Eq. ( 13) (upper sign) with u replaced 
byau/ax3' Since u satisfies Eq. (1) for xeS and u = Ut = 0 
for t = 0, it follows that 
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au ( a) -+K OT+b- u=O, an at 
or 

~+ (OT +b~)KU=O, xeS. an at 
Comparing this last equation with Eq. (13) for the outgoing 
wave (upper sign), it is seen that 

K-1=(OT+b %JK=K(OT+b %J. (16') 

• 
The problem of splitting a solution of the dissipative 

wave equation into two wave components crossing the sur­
face S can now be considered. 

From the identity 

u =![u -Mu -Kun ] + Hu +Mu +Kun ], 

it is seen that u can be decomposed as follows: 

u = u+ + u-, 

where 

u± =H(I+M)u=FKun]' 

(17) 

(18a) 

For the case of a plane surface (since M == 0) the two compo­
nents are given by 

u ± = H u + Ku n ] , S a plane. (18b) 

For the latter case of a plane surface (say X3 = 0), if u 
satisfies the· dissipative wave equation in a region in the 
neighborhood of X3 = 0, then since a/an = a / ax3, and a / 
aX3 commutes with the operator K (its kernel does not con­
tain x 3 ), it follows that 

the last result following from Eq. (16'). This implies that u + 
and u- satisfy, respectively, the conditions for an outgoing 
and incoming wave on a plane surface. Hence we have the 
following theorem. 

Theorem 4: If u satisfies the dissipative wave equation (b 
and c constant) in an open region D containing a plane sur­
face S, u = U t = 0 for t.;;;O, then u can be split up into two 
components u+ and u- given by Eq. (18b), which satisfy 
the outgoing and incoming wave condition across S. 

What about the case of a general smooth surface S? Do 
u+ and u- satisfy the outgoing and incoming wave condi­
tions on S? For the case of the nondissipative wave equation 
where b = 0, the answer is yes. The proof, which is very long 
and tricky, is given in the previous paper. 10 Since the major 
part of the analysis in the remainder of this paper pertains to 
the planar case, the proof of the corresponding theorem on 
wave splitting on a smooth surface S for the dissipative wave 

2208 J. Math. Phys., Vol. 29, No.1 0, October 1988 

equation will be left to later work. However, for the remain­
der of this section and in the initial part of the next section we 
will work with the decomposition given by Eq. (18a) for a 
general surface, before specializing to a plane surface. 

It is convenient to express the decomposition in vector 
form as 

where the matrix operator Tis given by 

T=J...[(I-M) 
2 (I + M) 

-K] K . 

The inverse of T is given by 

T- 1 _ [ 1 
- -K-1(I+M) 

IV. FACTORIZATION OF THE DISSIPATIVE WAVE 
EQUATION IN A PLANAR-STRATIFIED MEDIUM 

(19) 

(20) 

(21) 

The splitting developed in the previous section (and 
proved only for the planar case) can be used to factor the 
dissipative wave equation in a stratified medium in a similar 
manner as was done for the nondissipative case in paper. 10 

The stratified medium is composed of a one-parameter fam­
ily of smooth (nonintersecting) nested surfaces. With a be­
ing the parameter, the surfaces are characterized by 
a = const, and for such a stratified medium the variables in 
Eq. (1) representing material properties will be a function of 
a only, i.e., c = c(a) and b = b(a). In generalizing the wave 
splitting to a stratified medium, the same operators K and M 
developed in the previous section for a homogeneous medi­
um will be used with the surface S given by a = const. How­
ever, these operators will be modified by replacing the mate­
rial constants c and b by functions of a, namely, c(a) and 
b(a), respectively. Any identities involving these operators 
acting as a mapping from the surface S (a = const) to the 
same surface will still hold. This includes the inverse relation 
(16) for a plane-stratified medium. With these modifica­
tions to the operators K and M, the wave splitting for a strati­
fied medium will take the same form as for the homogeneous 
medium, i.e., the appropriate splittings are still given by the 
system (20). 

In order to apply the wave splitting to the factorization 
of Eq. (1) for a stratified medium, additional identities or 
relations involving the operators M,K have to be developed. 
As in the previous paperlO the normal derivatives a K/ an, 
a M/ an of the operators have to be defined and their proper­
ties established. 

However, instead of analyzing the general stratified me­
dium, the remainder of this paper will concentrate on the 
special case of a plane-stratified medium with the purpose of 
establishing the usefulness of such factorization in the in­
verse problem. 

Great simplification results for the plane-stratified me­
dium, since the operator M==O, and the operator aK/an is 
easy to define and obtain. 

Let the plane-stratified surfaces be given as X3 = const; 
hence c = c(x3 ), b = b(x3 ). As in Refs. 1,2,9, and to, the 
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factorization of the dissipative wave equation is achieved by 
combining the identity 

au au 
-=-
aX3 an 

together with the dispersive wave equation written in the 
form 

a 2u au 
--=OTu+b-
ax~ at 

to obtain the vector formulation 

where OT is given by Eq. (15). 
Substitute the relation into Eq. (22) 

(22) 

and premultiply the resulting system by the matrix operator 
T to give 

~ [u:] = w[u:], 
aX3 u u 

where 

w ~ r [ (Dr: b ;,) 

Using the relation 

and 

T aT -I = _ aT T- 1 
aX3 aX3 

aT 1 [0 
aX

3 
=2" 0 

(23) 

T-1- T aT - . 1] 1 

o aX3 

together with expression (20) for T (with M == 0) as well as 
relation (16) for the in verse operator K - I, expression (23) 
can be reduced to the following: 

where 

(25) 

This is the sought-for factorization of the dissipative 
wave equation. 

v. REFLECTION OPERATOR FOR A PLANE­
STRATIFIED MEDIUM 

In a homogeneous region exterior to a scattering body 
(characterized in this paper by a stratified medium) u+ 
would correspond to the scattered wave produced by the 
wave u-, which is incident upon the scattering body. A lin­
ear relationship between the two waves exists in the form 
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u+ = Ru-. In this section the equation that must be satis­
fied by the reflection (or scattering) operator R will be 
sought for the case of a plane-stratified medium. This equa­
tion plays a key role in both the direct and inverse scattering 
problems. 

The formal equation satisfied by the operator R is ob­
tained in the usual manner2

•
9.10 from the factorized system 

(24). First, u + is replaced by Ru - in this system. Then, 
since the operator R contains X3 as a parameter, the term 
a(Ru- )lax3 appearing on the left-hand side of the first 
equation of the system is replaced by (aRI 
ax3 )u- + R au-lax3• Finally, the second equation of sys­
tem (24) is used to eliminate au - I ax3 • The resulting system 
is a single equation involving u- only. It takes the form 

aR u- + (RK- 1 + K-1R)u­
aX3 

+! (RK'K- 1 - K'K-1R)u-

= ~ RK'K-1Ru- - ~ K'K-1u-, 

which is the Ricatti integral-differential equation. 

(26) 

Noting that u- is an arbitrary function vanishing at 
t = 0, the formal equation for the reflection operator [just 
Eq. (25) with the term u - omitted] is easily obtained. How­
ever, for a complete analysis one needs the precise form of 
the operator R. For one-dimensional cases, it can be shown 
from studying the initial-value problem that the reflection 
operator is the form of a convolution in the time variable 
with the spatial variable remaining a parameter. In the pre­
vious paper9 for the nondissipative wave equation in a plane­
stratified medium, it takes the form of an operator acting on 
a convolution (in time and transverse spatial variables), 
with the variable that changes in the direction of the stratifi­
cations remaining a parameter. 

The precise form ofR will not be given here. This will be 
done elsewhere. As will be shown in the remaining sections 
(following the work of Buzdin 13) one does not need to know 
the precise form of the reflection operator to solve the in­
verse problem for a planar-stratified medium; one only needs 
to know the precise form of two of its moments (with regard 
to the transverse variables). However, the form of the reflec­
tion operator relating the outgoing wave to the incoming 
wave across a plane surface will be needed in the generaliza­
tion of the wave-splitting concept from the case of a planar­
stratified medium to that of a general nonhomogeneous me­
dium. In fact, ongoing research has shown that for the case 
b==O (no dissipation), Eq. (26) may be generalized to hold 
for a nonhomogeneous medium by suitably modifying the 
operator K. Hence Eq. (26) will be important for future 
research in inverse scattering in a nonhomogeneous medi­
um. 

VI. EQUATIONS FOR THE MOMENTS OF THE 
REFLECTION OPERATOR 

The moments of interest will be the zeroth and second 
moments. The first moment will not be used, since it will 
yield the same equation as the zeroth moment. 

The zeroth moment ofu(x,t) will be defined as follows: 
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(27) 

The corresponding zeroth moments of the operator K- 1 and 
K'K- 1 (obtained in Appendix A) are given by 

(K'K-1u)0= 1 ae ( ) h ( ) ( + - - Uo x 3,t + 0 x 3,t *uo x 3,t), 
e aX3 

(29) 

where the star indicates convolution in the time variable 
( with X3 remaining as a parameter), and 

kO(x3,t) = - (b 2e3/4)e- 7J11(7J)/rl, (30) 

(31) 

with 

7J = be2t /2. (32) 

Here 11 ( 7J) is the modified Bessel function of order 1. 
The equation for the zeroth moment of the reflection 

operator can be obtained in two ways. However, to get its 
form, the approach that must be taken is to take the zeroth 
moment of system (24). Using the results ofEqs. (28) and 
(29) for the zeroth moments of the operators involved in the 
system, it follows that the resulting system is a one-dimen­
sional system involving uo+ and uo- only. Hence the zeroth 
moment of the reflection operator takes the form of a convo­
lution in the time variable 

(33) 

The equation for the zeroth moment can be obtained 
directly by taking the zeroth moment of Eq. (26) and em­
ploying operator relations of the type 

(RK'K-1u)0 = Ro*(ho*Uo + J.-.!!:.. Uo), 
e aX3 

RK-1 R (1 auo be k- ) ( u)o= 0* --+-uo + o*Uo , 
e at 2 

-I (1 a be) -(K Ru)o = --+ - Ro*uo + ko*Ro*uo. 
e at 2 

In addition, if interchange of order of integration (in the 
convolution) and differentiation given by 

!... (Ro*uo) = aRo *uo + R O(x3,0)uO(x3,t), 
at at 

R auo aRo R 0 
0* - = -- *uo + 0(x3, )UO(x3,t) 

at at 

is employed, the resulting system reduces to one of the form 

_ [2 1 ae] _ r*uo + -RO(X3'0) + -- Uo (x3,t) = 0, (34) 
e 2e aX3 

where r is given by the left-hand side ofEq. (35). Since uo- is 
an arbitrary function vanishing at t = 0, the differential-in­
tegral equation can be obtained for Ro by setting r = 0, giv­
ing 
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(35) 

and the initial condition for Ro can be obtained by setting the 
coefficient of Uo (x3,t) in Eq. (34) to zero, giving 

1 ae 
RO(x3,0) = - - - . 

4 aX3 
(36) 

The system made up of the two equations (35) and (36) 
is the sought-for system for determining Ro. It can be used in 
the direct scattering problem (as in the initial-value problem 
with coefficients band e known) to determine Ro, or in the 
inverse problem (more to be said of this in the next section). 

Note that if b = 0, then ko = ho = 0, and system (35) 
and (36) reduces to the previously developed one-dimen­
sional system for the nondissipative wave equation.5 

The second moment, defined as 

will be considered next. It is shown in Appendix A that the 
second moments of the operators K - 1 ,K'K - 1 are given by 

(38) 

(39) 

where 

(40) 

h
2
(X

3
,t) = 2 ~ (1 - e-

27J
), 

aX3 b 
(41 ) 

with 7J given by Eq. (32), and 10 the modified Bessel function 
of order zero. 

From this the form of the second moment of R can be 
easily ascertained. Take the second moment of each equation 
in system (24) and employ relations (38) and (39). This 
will result in a one-dimensional linear system involving ut , 
u2- , uo+ , and uo- . Since uo+ = Rouo- , this implies that uz+ is 
a linear combination of uz- and uo. When the arbitrary 
function u - is chosen so that uo- is zero, the system corre­
sponds to the exact system for the zeroth moments but with 
the pair uo+ , uo- replaced by u2+ , u2- • Hence it follows that 

u2+ = (RU-)2 = R 2uO- + Rou2-

= R 2*uO- + RO*u2- • (42) 

The equation for the second moment R2 of the reflection 
operator can be easily obtained by taking the second moment 
of Eq. (26) with the arbitrary function u2- set equal to zero. 
The second moments of the particular terms in Eq. (26) are 
given as follows (with u2- = 0): 
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+ (ko*R2 + k2*Ro)*uo-, 

(RK'K-'u- - K'K- 1Ru-)2 = 0, 

,1 (2ac RR (RKK- Ru-h= +-- 0* 2 
e aX3 

+ 2Ro*ho*R2 + Ro*h2*Ro )*Uo- , 

(K'K-'u- h = h2*uO- • 

On integrating by parts the following term is reduced as fol­
lows: 

lauo- la 
R 2*---+ - - (R2*uO- ) c at cat 

2 aR2 - 2 R ( 0) - ( ) = ---*uo + - 2 X3' Uo x 3,t. 
e at c 

Finally, employing all these relations, the second moment of 
Eq. (26), with u2- = 0, has the form 

rl*uo- + (21c)R2 (X3,0)uO (x3,t) = 0, (43) 

where r 1 is given by the left-hand side of Eq. (44). Since uo-
is an arbitrary function vanishing at t = 0, the equation for 
R2 can be obtained by setting r 1 = 0, yielding 

(~ + ~ i. + he) R2 + (2ko - .!..!!.... Ro - ho*Ro)*R2 
aX3 c at c aX3 

- 1 1 44 + 2k2*Ro - - h2*Ro*Ro + - h2 = o. ( ) 
2 2 

The initial condition is obtained by setting the coefficient of 
uo- (x3,t) in Eq. (43) to zero, giving 

R2 (x3,0) = O. (45) 

VII. INVERSE SCATTERING 

The results of the previous section will now be applied to 
the inverse problem of determining the coefficients e(x3 ), 

h(x3) in the portion - L <X3 <0 of the planar-stratified 
half-space X3 < 0, from data on the reflected field at X3 = O. 
Due to the absorption of the wave as it moves into the medi­
um, it is clear that only the leading portion of the reflected 
wave that is produced will be useful in the inverse problem; 
hence only the properties of the outer portion, or skin, of 
thickness L of the medium can be meaningfully determined. 
The depth of penetration L is the order of the e-fold distance 
of a wave traveling into the medium. For a homogeneous 
dissipative medium, L is the order of (he) - I. The physics of 
this is clearly iIlustrated by the exact solution (produced by a 
source at time to) 

(
c) [ hc

2
(t - to) ] ( z) u(z,t) = - 2" exp - 2 Io(;)H t-to-~ 

(46) 
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(where; = bC[ (t - to)2 - (Z/C)2] 1/2/2) of the one-dimen­
sional initial-value half-space problem 

1 a 2u au a 2u 
c2 at 2 + hat - ar = 0, t> 0, z> 0 , 

au 
u = - = 0, for t = 0, z> 0 , at 
au 
- = lJ(t - to), for z = 0, t> o. az 

[The solution can be obtained directly from expression (7) 
by integrating out the XI' X 2 variables, substituting in the 
boundary conditions, and setting X3 = z.] It is easily seen 
that the head of the pulse at time t = to - z/ e + 0 has the 
value 

Thus the amplitude of the leading edge of the pulse is re­
duced by a factor e- I in a distance of2/(bc). 

The inverse problem is comprised of two parts. The first, 
or preliminary, part is a deconvolution process, which is to 
determine the reflection operator on X3 = 0 from the mea­
surements of the scattered field. The measurements may be 
made either on the surface X3 = 0 or elsewhere in the homo­
geneous region X3 > o. In particular, for the analysis here the 
deconvolution process would involve the recovery of 
Ro(O,t) and R 2 (O,t), for a finite time interval O<t < T, from 
measurements of the moments of the scattered field 
uo+ (O,t), u2+ (O,t) produced by an arbitrary incident wave 
u - . It should be noted that the process of taking moments of 
the scattered field would tend to smooth out the data. Also, if 
the incident field is produced by a point source (or source 
with compact support), then because of the initial-value na­
ture of the time-dependent problem, measurements of the 
scattered field need only be made over a finite portion of the 
surface X3 = o. 

The deconvolution process will not be addressed here. 
Instead the main problem of determining the coefficients 
c(x3 ), h(x3 ) from knowledge of Ro(O,t) and R 2(O,t), 
O<t < Twill be analyzed. To formulate the inverse problem, 
a change of the dependent variable, 

i
x, 1 

t= - --dy, for X3<0, 
o c(y) 

(48) 

will be employed. Note that t>O, and the inverse transfor­
mation is given by 

X3= - is edt. 

In addition, it is convenient to set 

bC=B(t) . 

(49) 

(50) 

Equations (35) and (44) for Ro the zeroth moment and 
for R2 the second moment take the form 

(
a a ) 1 aB -271 --2--B Ro=Q,(Ro)*Ro+--e , at at 4at 

(51) 
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(:s - 2 :t - B )R2 = Q2(Ro)*R2 + S(Ro) , (52) 

where, for m = 1,2, 

Qm(Ro) = _B 2e-"JI(TJ) 
(2TJ) 

+m~R _m~-2"'*R 
2c as 0 4 as 0' 

S(Ro) = (- 4c2e-"'Io(TJ) + P*Ro)*Ro - P, 

P(S,t) = ~[ C
2
(1-Be-

2
"')] , 

(53) 

(54) 

(55) 

with 10 , II being modified Bessel functions and TJ = Bt /2. 
The initial conditions are given by 

Ro(S,O+)= +~(4c)-I, 
as 

R 2 (S,0 + ) = 0 . 

(56) 

(57) 

The inverse problem can now be stated as follows. 
Inverse Problem: Given the values of Ro(O,t) and 

R 2(0,t) for O<t < T, and the values of c and B at S = 0 de­
noted by Co and Bo, respectively, solve the nonlinear system 
(51), (52), (56), and (57) for Ro(S,t), R 2(s,t) in the trian­
gular region O<t<T, 0<2s<T - t, and recover Band c as a 
function of s. 

Equation (49) may then be used to obtain Band c as a 
function of x 3• 

Unfortunately initial conditions (56) and (57) do not 
contain the quantity B explicitly. To obtain the initial condi­
tions that contain B lett -+ 0 + in Eq. (51), yielding 

Ro(s,O + ) = J...(~ - B )Ro(s,O + ) - J... aB (58) 
2 as 8 as' 

where the dot indicates the differentiation with respect to t. 
Combined with Eq. (56), initial condition (58) reduces to 

. 1 ( a ) a 1 aB 
Ro(S,O+) =8 as -B as Inc- 8 as· (59) 

Equation (52), in the limit as t-+O +, yields 

R2 (s,0 + ) = o. (60) 

To get a nonzero initial condition for R 2 , differentiate Eq. 
(52) with respect to t and let t-+O + to give 

.. 3 ac 
R 2(S,0+) =-c-. (61) 

2 as 
Now there may be a difficulty in using Eq. (59) due to the 
term (a 2/as2)ln c, which may lead to an instability in the 
solution of the problem, since it involves the derivative of one 
of the unknown functions (a / as) In c. To alleviate this, Eqs. 
(59) and (61) will be combined in an appropriate manner. 
However, before obtaining the appropriate initial condition, 
the corresponding equ3;tions for Ro and R2 must be sought. 

The equation for Ro is obtained by differentiating Eq. 
( 51), giving 

( a a ). 
as - 2 at -B Ro 

. 1 ac B aB 
= QI(Ro)*Ro +---QI(Ro) ___ e- 2.". 

4 cas 4as 
(62) 
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Noting that 

1 ac i'· Ro(S,t) = - - + Ro(S,r)dr, 
4c as 0 

(63) 

Eq. (62) has the general form 

(~ _ 2 ~ _ B)R - G (R 1 ac aB) (62') 
as at 0 - I 0' -; as 'as ' 

where G I is an integrable function involving quadratures (no 
derivatives) of the variables R o, a/as In c, aB / as. 

.psing the fact that R2 = R2 = 0 at t = 0, the equation 
for R2 can be obtained by differentiating Eq. (52) twice to 
yield 

(
a a).. .. a 2 
as - 2 at - B R2 = Q2(Ro)*R2 + at 2 S(Ro) , (64) 

where 

a2s (R ) 
at 2 0 

= - 4c2[:t22 (e- "'Io(TJ»)]*Ro + 2C2BRo - 4c2Ro 

[
a (2B - 2.,,)] R ac

2 
- as c e * o*Ro + as Ro*Ro 

a + _ (c2Be- 2.,,) • 

as 
The equation for R2 has the general form 

(~-2~-B)R - G (R R 1 ac aB) (64') 
as at 2 - 2 0' 2' -; as 'as ' 

where G2 is an integrable function involving quadratures (no 
derivatives) of the variables Ro, R 2, (1/ c) (ac/ as), aB / as. 
This will be made use of in subsequent analysis. 

The remaining initial condition can now be obtained. 
Lett-+O + in Eq. (64), giving 

2R2(S,0 + ) = {( ~ - B )R2 - 2C2BRo + 4c
2RoL=0 

a (2 -- cB). 
as 

Combining this with Eqs. (56), (59), and (61) yields the 
resulting initial condition, 

(65) 

An alternative mathematical statement of the inverse prob­
lem can now be given. 

Inverse Problem (Alternative Form): Given the values of 
Ro (O,t) and R2 (O,t) for 0< t < T, and the values of c and B at 
S = 0 denoted by Co and Bo, respectively, solve the nonlinear 
system (62), (64), (61), and (65) for Ro(s,t) and R 2(s,t) 
in the triangular region 0<1< T, 0<2s<T - t, and to re­
cover Band c as a function of S. 

In a numerical treatment of the alternative form of the 
inverse problem, one difficulty may arise due to the fact that 
the condition (65) requires a derivative of R2 (S,t) to be 
computed at t = o. This may lead to an instability. However, 
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it is shown in Appendix B that the derivative R2 (5,0) can be 
computed by quadratures from R2(s,t) and Ro(s,t). 

A possible numerical approach to solving the nonlinear 
system could be modeled after the approach taken by Cor­
ones and Krueger et ai.S

•
7 This approach needs to be looked 

into in more detail, and will be left to future analysis and 
computation. 

However, to complete the analysis of the inverse prob­
lem in this paper, a sketch of a proof indicating that the 
inverse problem has a unique solution for T sufficiently 
small will be presented. 

Essentially what has to be shown is that the system of 
integral-differential equations (61), (62), (64), and (65) 
can be transformed into a system of integral equations of the 
form 

X; =X?+F;(XI,X2,X3,X4), i= 1, ... ,4, (66) 

where the unknown quantities are given by 

XI (S,t) = Ro(s,t) , (67) 

X2(s,t) = R2(s,t) , (68) 

X 3 (s) = ! ~;, (69) 

aB 
X4 (s) = -, (70) as 

with the quantities X?, F;o i = 1, ... ,4, to be determined. 
Here XI' X2 are continuous functions over the domain 

D, where 

D = {(s,t)10";;2s";;T - t, O..;;t..;;T} , 

with norms 

IIX; IL" = sup IX; (s,t) I , 
s,lED 

and X 3, X 4 are continuous functions over the interval 
0<.5"..;; T /2 with norms 

IIX;II", = sup IX;(s)l· 
O<'s<.T 12 

To transform the differential equations (62'), (64') into 
a strictly integral formulation, the following solution 

/(s,t) = eP<s>.to(t + 25) 

+ is ePW - fJ<S')g(s ',25 - 25' + t)ds' , (71) 

where 

{3(s) = is B(s')ds' , 

of the system 

(~ - 2 :t - B ) = g(S,t) , 

/(O,t) = Io(t) 

will be employed. 

(72) 

(73) 

(74) 

Let the values of Ro(s,t) and R2(s,t) at 5 = 0 be given 
by 

Ro(O,t) = Roo (t), R2(0,t) = R20(t) . (75) 

Then Eqs. (62') and (64') can be put in the form 
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Ro(S,t) = ePw Roo (t + 25) 

+ is ePW - fJ<S'>GI(s',2s - 25' + t)ds' , 

(76) 

R2 (s,t) = ePw R20(t + 25) 

+ is ePW - fJ<S')G2(s',2s - 25' + t)ds', 

(77) 

where GI and G2 are given by the right-hand sides of Eqs. 
(62) and (64), respectively. 

Note that, from Eqs. (69), (70), and (72), 

B(s) = Bo + is X4(s')ds' , (78) 

s s' 
{3(S) = BoS"+ i i X4 dS" ds', (79) 

(80) 

where Bo and Co were defined previously as the values of 
these quantities at 5 = O. Thus it can be seen that if one sets 

X? = Roo (t + 2s)eBoS, X~ = R20(t + 2s)eBoS, (81) 

FI = (ePw - eBnS)Roo (t + 25) 

+ is eP<s) -fJ<S')G.(S',2S - 25' + t)ds', (82) 

with F2 given by expression (82) with Roo, G I replaced by 
R20, G2, respectively, and employs the forms of GI , G2 as 
indicated by Eqs. (62') and (64'), then as functions of the 
variablesX;, i = 1, ... ,4 (noting, however, that FI is indepen­
dent of X 3 ), 

FI = FI (XI' X2, X4), F2 = F2(XI, X2, X3, X4) . 

Thus Eqs. (62) and (64) can be placed in the form of Eq. 
(66) for i = 1,2, where F I ,F2 contain no derivatives of the 
variables X; = 1, ... ,4. Also, as T --0 +, the domain D 
shrinks to zero. Since 0";;5";; T /2, it is easily seen that 
F.--O(n, F2 --0(n. 

The third equation of the set given by Eq. (66) is ob­
tained by dividing both sides ofEq. (77) by 2(5) and letting 
t --0, and substituting it into condition (61). Condition (61 ) 
can then be placed in the form 

X3=X~ +F3(XI,X2,X3) ' 

where 

X~ (5) = 2/(3Co )R20(2s)eBnS , 

F3 = {ePw R20(2s) 

(83) 

+ rs 
ePw-fJ<S')G2(s',2s _ 2s')ds'} _1_ 

1 2(5) 

(84) 

To transform the remaining equation [namely Eq. 
(65)] into the form of Eq. (66), the result in Appendix B 
that R2 (s,0) has the form 
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R2(S,0) = eP(s)R2o(2s) 

+ is eP(s) -(J(s') a~2 (s',2s - 2s')ds' , 

(8S) 

where the integral term is shown to be a function of RO' /(.2' 
(llc)aclas, and aB las, is employed. On substituting this 
and expression (76) with t = 0, into Eq. (6S), Eq. (6S) 

takes the form 

X4 = X~ + F4 (XI, X2, X3, X4 ) , 

where 

X~ = SBoX~ - 6(X~)2 

+ 4eBos [R 2o(2s)/Co - 8Roo (2s)] . (86) 

Having shown that Eqs. (61), (62), (64), and (6S) can 
be placed in the form of Eq. (66), the inverse problem re­
duces to solving the system 

X = XO + F(X) (87) 

for the vector valued function X = (XI' X2, X3, X4 ) in the 
domain D, where F= (FI, F2, F3, F4 ). 

The form ofEq. (87) lends itself naturally to solution by 
successive approximations 

Xm=xO+F(X m- I), (88) 

starting with the initial approximation XO. Introducing the 
norm 

IIXII = max IIX; II 00 , 

;= 1 •... ,4 

the iteration process (88) will converge to a unique solu­
tion l9 in the ball U(Xo,r): IIX -Xoll <r if, for every 
X, YEU(Xo,r), there is a 0<8 < 1 such that 

IIF(X) -F(Y)11<8I1X - YII, 
IIF(Xo)II« 1 - 8)r. 

(89) 

(90) 

The basic problem, then, is to show that a nonzero value 
of Tcan be chosen so that an rand 8 < 1 can be picked so that 
inequalities (89) and (90) hold. The fact that this can be 
done for T sufficiently small follows from the result that 
F; -+ O( n as T -+ 0 + , which has been pointed out. This im­
plies (leaving out the details) that 

IIF(X) -F(Y)II<Tp(r,n IIX- YII, 
where p(r,n is a bounded function for finite values of rand 
T. In addition, sinceXo = Xo(s) andO<s<T /2, the follow­
ing bound can be shown: 

Hence taking 8 =!, inequality (90) is satisfied if 
r = 2m ( n, and inequality (89) is then satisfied provided 
that 

Tp(2m(n,T)<!. 

It is easily seen that since p is bounded, the inequality can be 
achieved for a sufficiently small value of T. This shows that a 
local solution to the inverse problem exists. 

2214 J. Math. Phys., Vol. 29, No. 10, October 1988 

ACKNOWLEDGMENT 

The research in this paper was supported by the Office 
of Naval Research Contract No. N-00014-86-K-0413. 

APPENDIX A: ZEROTH AND SECOND MOMENTS OF 
K-1 ANDK' 

The operator K has the form on the surface S 
(x3 = const) 

Ku[x,t] = f L 2 L k(r,x3,t - S)U(YI,y2,x3,s)ds dYI dY2 , 

(At) 

where 

k(r,x3,t) = {+8(t-~) 

+ b:r [1(t)H(t _ ~)} exp( _2~c2t 12) , 

(A2) 

where r = (XI - YI)2 + (x2 - Y2)2 and t = bc(C2t 2 

- r) 1/2/2. It can be shown that the zeroth and second mo­
ments of K are given in terms of a convolution in the time 
variable, as follows: 

(Ku)o = kO(x3,t)*UO(x3,t) = L kO(x3,t - s)uo(x3,s)ds, 

(A3) 

(Kuh = k2(X3,t)*UO(x3,t) + kO(X3,t)*U2(X3,t) , 

where 

kO(x3,t) =21T 100 

k(r,x3,t)rdr, 

k2(X3,t) = 21T 100 

k(r,x3,t)~ dr. 

(A4) 

(AS) 

(A6) 

On changing the yariable of integration from r to t, kO(x3,t) 
is evaluated as follows: 

ko(x3,t)=C[1+ f'[I(t)dt ]e-'I=ce-'I[o('1/), (A7) 

where 

'1/ = b~tI2. (A8) 

The second moment term is evaluated in a similar manner, as 
follows: 

k2(X3,t) =c3e-'I{1 + 1'1 [1- (~r][I('1/')dn}2 
= c3e- 'It 2[Io( '1/) - [2( '1/)] 

= 8'1/e-'I[I('1/)/(b 2c). (A9) 

The corresponding moments of the inverse operator 
K- I are easily obtained. From Eq. (16) it is seen that on 
integrating by parts (in the transverse variables) and using 
Eq. (A3), 

(K-Iu)o = D(Ku)o = D(ko*uo) , 

where 
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This can be further reduced to yield 

I (1 a be) -(K- u)o= --+- uo+ko.uo , 
e at 2 

(A12) 

with 

kO(x3,t) = - b 2e3e-"'ll(7J)/(47J). (A13) 

Similarly it follows that the second moment ofK- 1 can 
be obtained using Eqs. (A3) and (A4): 

(K- 1u)2 = D(Kuh - 4(Ku)0 

(A14) 

= --+ - U2 + kO.u2 + k2.uO ' (A15) (
1 a be) - -
e at 2 

where 

k2(X3,t) =Dk2-4ko= -2ee-"'lo(7J)· (AI6) 

The corresponding moments for K' can be easily ob­
tained from expressions (A3) and (A4), and recalling the 
fact that K' = (a lax3 )K, giving 

(A17) 

K' ak2 ako 
( uh=-·uO +-·u2· 

aX3 aX3 

(AIS) 

The zeroth moment of the composite operator K'K- 1 is 
obtained from (A 17) and (A lO), yielding 

K'K- 1 ako (K-1) ako D(k ) ( u)o=-. u 0=-. o.Uo · 
aX3 aX3 

(AI9) 

To reduce this further, the general result for the convolution 
of two functionsf(t) and g(t), 

D(f.g) = (Df).g 

+ ( l/e2)j(0) + bf(O»)g(t) + (l/e2)f(0)g(t), 
(A20) 

has to be used. Here the dot indicates differentiation with 
respect to t. Using the fact that UO(x3 ,t) vanishes at t = 0, 
and that the convolution terms commute (f.g = g.f), 
expression (A19) is reduced as follows: 

(K'K-1u)0 = D [ako .(ko.Uo)] = D [a.uol 
aX3 

= (Da).uo + (l/e2)a(x3 ,0)uO(x3 ,t) , 
(A21) 

where 

1 a 
a(x3,t) = -- (ko·ko) . 

2 aX3 

Inserting in expression (A7) for ko and changing the vari­
able of integration, the convolution ko.ko can be evaluated 
as follows: 

ko·ko = (~)e-'" Sa'" lo( 7J - 7J')lo( 7J')d7J' 

= (l/b)(1- e- 2",), 

where 7J is given by Eq. (AS). Expression (A21) can now be 
simplified to 
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where 

1 a(be) 2 
hO(x3,t) = - - -- exp( - be t) . 

2 aX3 

(A22) 

(A23) 

The second moment is obtained in a similar manner: 

(K'K-1uh = ako .(K-1u)2 + ak2 .(K-1u)0 
aX3 aX3 

= ako • [D(k2.uO + kO.u2) - 4ko.uol 
aX3 

ak2 D k +-. ( o·uo)· 
aX3 

(A24) 

With uo replaced by U2 in expression (AI9) and (A22) it is 
easily seen that the term involving u2 in expression (A24) is 
just 

1 ae 
hO.u2 +--u2 · 

e aX3 

Using relation (A20) and the fact that the convolution 
terms commute, the term involving Uo in expression (A24) 
reduces to 

D [~ (ko.k2).UO] - 2 ~ (ko.ko).uo . 
aX3 aX3 

The convolution ko.k2 is easily evaluated (using the Laplace 
transform, or otherwise) to obtain 

ko·k2 = (bI3~2) e-'" Sa'" lo(7J -7J')7J'll(7J')d7J' 

= (4/b 3e2){(7J-l) + (7J+ l)e- 2",}, (A25) 

where 7J is given by Eq. (AS). Since it can now be shown that 
the time derivative of a(ko.k2)/ax3 vanishes at t = 0, it can 
be shown that expression (A24) reduces to 

(K'K-1uh = h2.uO +.l.~ U 2 + hO.u2 , (A26) 
e aX3 

where h2 = D a(ko.k2)/ax3 - 2a(ko.ko)/ax3, which sim­
plifiesto 

a (1 - e- 2
",) h2=2- . 

aX3 b 
(A27) 

Note: To simplify the calculation for h2 use the following 
change of order of differentiation: 

a (1 a a
2 

a a) D- (ko.k2) = 2'--2 +b-- ko.k2· 
aX3 e aX3 at aX3 at 

APPENDIX B: ALTERNATIVE FORM OF R2(~'O) 

It will be shown here how R2(S-,0) may be computed by 
quadratures from R2(s-,t) and Ro(S-,t). Differentiate Eq. 
(77) with respect to t, then set t = ° to give 

R2(S-,0) = eP(s)R20(2S-) + f ePw -(3(6') a:r2 

X (S-',2S- - 2s-')dS-' . (Bl ) 

With G2(S-,t) given by the right-hand side ofEq. (64) it can 
be shown that 
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a3 
2' 2" + at 3 [S(Ro) + 4c Ro] - 4e Ro. 

It can be shown that all the terms except the last one depend 
upon R2 and Ro [noting Eq. (63)]. Thus aG21 at has the 
form 

aG2 = T (R R .!~ aB) _ 4e2R . (B2) 
at I 0' 2' e as' as 0 

To examine the critical term Ro, differentiate Eq. (76) to 
give 

Ro(s,t) = eP(s) Roo (t + 25) 

+ r ePW -{l(n aGI (5',25 - 25' + t)ds'. Jo at 
(B3) 

With GI given by the right-hand side of Eq. (62), it is seen 
that 

hence 

aGI _ T (R .!~ aB) 
at- 20'ea(as' 

Insertion of expression (B3) for Ro into Eq. (B2) results in 
the fact that aG21 at(s,2s - 25') in Eq. (B I) is a function of 
Ro, R2, (l/e)aelas, and aB las. 

APPENDIX C: LEMMAS ON PROOF OF COMPACTNESS 

Let S be a Lyapunov closed surface with total surface 
area A. Let A (XI' t l ; X 2, t2 ) be the area of the surface of S 
that lies inside the sphere of center X I and radius et I and 
outside the sphere of center X 2 and radius et2: 

A(xl, t l ; X2, t2) = Is H(etl -ixi - yl) 

X [I - H(et2 - IX2 - yl) ]dO"y . 
(Cl) 

Since the surface is smooth and A(xl, t l ; XI' t l ) = 0, it fol­
lows that at least for small values of t, A(xl, t l ; X2, t2) will 
satisfy a Lipschitz-like condition. It will be assumed that the 
parameter T will be such that such a condition holds for 
O<t< T, i.e., 

(C2) 

for XI' X2 eS, t l , t2 e[O,T]. 
The space C(S) XC(O.A) [O,T] of functions j(x,t), 

which are continuous in X and Holder continuous in t, with 
HOlder exponent A, ° < A < I, 

If(x,tl ) -j(x,t2)I<Ultl - t21A, 

for all xeS, t I #- t2 e [0, T], will be used. For this space the 
following norm will be employed: 
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Ilfllcxc(o.", = sup If(x,t) I 
XES 

tE[O,T] 

+ sup If(x,tl ) - j(x,t2) I/ltl - t21A . 
xeS 

I,.I,E[O,T] 

(C3) 

In the proof of the lemma that follows, we want to extend the 
definition of a functionj(x,t)eC(S) X ceo,A) [O,T] to a do­
main over negative values of t, as follows: 

F(x,t) = Ji(x,t) - j(x,O +), t>O, (C4) 
10, t <0. 

It can be easily shown that F(x,t) is Holder continuous on 
the interval [TI, T], where TI < 0, with the same Holder co­
efficient, i.e., 

sup IF(x,tl ) - F(x,t2) I/ltl - t21A 
xeS 

I"I,E[T"T] 

= sup If(X,tl)-j(X,t2)llltl-t2IA. (C5) 
XES 

I,.I,E[O,T] 

We will now prove the following lemma. 
Lemma 1: If Gj(x,t) = f sg(x,y)j(y,r)H( r)dO"y has 

the kernel g(x,y) = k(x,y) Ix - yl- a, where a < 2 and 
k(x,y) is continuous on S XS, r = 1 - Ix - yllc, then 

G: C(S) X CO,A [O,T] -+ C [S] xC [O,T] 

is compact, provided that the constant T is such that as­
sumption (C2) holds. 

Proof: Define the sequence of continuous kernels 
gn (x,y) = min(n,g(x,y») to avoid the singularity at X = y. 
Since S is Lyapunov, it can be shown that gn -+g in LI (S), 
since there are En -+ ° and a constant ko such that (Giinter20

) 

i l
E"l21T k 

Ign - gl dO"y < -2. r dr dO-+O , 
S 0 0 rx 

where (r,O) is a local polar coordinate system centered at x, 
and lying in the tangent plane. 

Let B be the ball in C(S) X CO,A [O,T] with unit norm. 
We shall show that Gn (B) = {h Ih = GJ,JeB} is bounded 
and equicontinuous, and hence, by the Arzela-Ascoli 
theorem, relatively compact.21 By definition, then, G will be 
compact. 2 

I 

Boundedness is easily shown. IfjeB, then 

IGJI< sup IIGJlloo 
XES 

tE[O.TJ 

<IIgnlk(s) sup If(X,I) I 
xeS 

tE[O,TJ 

To show equicontinuity, note that 

Ih(x l, 11) - h(x2, 12) I 

<Llgn(XI,y) -gn(x2,y)llf(y,rl )1 H(rl)dO"y 
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+ i Ign(x2,y)IIF(y, 1"1) -F(y, 1"2)1 duy 

+ i Ign (X2, y) Ilf(y, ° + ) IIH( 1"1) - H( 1"2) I duy , 

(C6) 

where 1"; =t; -IX; -yllcandFisdefinedbyEq. (C4). 
Sihcegn (x,y) is continuous on the compact spaceS XS, 

it is uniformly continuous; so for E> ° there is a {j I > Osuch 
that 

Ign (xI,y) - gn (x2,y) I <EI(3A), for IXI - x21 <{jl . 

Hence the first integral on the right-hand side of expression 
(C6) is bounded as follows: 

i Ign (xI,y) - gn (x2,y) Ilf(y,1"I) IH(1"I)duy 

<~ r H( 1"1)duy' sup If(x,t) I 
3A Js xeS 

IE[O.TJ 

«EI3)llfllcxc (o.,,) . (C7) 

To evaluate the second term, use the property of Holder 
continuity, relationships (C3) and (C5), and the fact that 
feB to give 

IF(y, 1"1) -F(y, 1"2)1 

<11"1 -1"2I
A 

Ilfllcxco." 

<{It I - t21 + (lie) IXI - x2W . 
Hence given an E>O, we can find a {j2' (2/e){j2 = [EI 
311gn IlL, ] IIA, such that for elt l - t21 <{j2' IXI - x21 <{j2' 

r Ign(x2,Y)IIF(y,1"I)-F(y,1"2)lduy<~. (C8) Js 3 
The third term in (C6) may be handled as follows: 

i Ign (x2, y) Ilf(y, ° + ) IIH( 1"1) - H( 1"2) I duy 

<llgnll"" {A(x l, t l;x2, t2) 

+ A (x2, t2; XI , tl )}Ilfllcxc<o.,,) 

<2l1gn II"" K{lxI - x21 + elt l - t21}, 

using relationship (C2). Hence given an E > 0, one can find a 
{j3' where {j3 = E/l2KlIgn II"", such that for IXI - x21 <{j3' 
elt l - t2 <{j3' 

Finally, one can combine the results of (C7)-(C9) to 
show that for feB, 

Ih(x l , t l ) - h(x2, t2 ) I <E, 

whenever IXI - x21 <{j, elt l - t21 <{j, where {j 
= min [{jl' {j2' {j3]' With this result we have shown equicon­

tinuity. 
Summarizing, the operator Gn is compact, and since 

Gn ..... G, G is compact. • 
Lemma 2: If 
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Hf(x, t) = if-riC h(x,y; t-s) 

XH(t-;)f(y,S)dSduy , 

withr= Ix - yl,hasakernelh(x,y; t) that is continuous on 
S X S X [0,11, then H is a compact operator mapping 
C(S) X CO,A) [0,11 into C(S) xC[O,11. 

Proof: Set 

h 
. _ {h(x,y; t) - h(x,y: ric), 

I(X,y,t)- 0, 

Then Hfcan be placed in the form 

Hf= iiT hl(x,y:t-s)f(y,s)dsduy 

t> ric, 
t<rle. 

+ f i h (x,y; ;)f~, 1" - ;)H(1" - ;)duy d1". 

Since the kernel h I is continuous on the compact domain 
S X S X [0,11, the first term is a compact operator. The sec­
ond term involves a bounded operator (the integral in t) 
acting on the operator 

i h (x,y; ;)f(y, t - ;)H(t - ;)dUy , 

which by Lemma 1 is compact mapping C(S) X CO.A [0,11 
into C(S) X C[ 0, 11. The resulting product of operators is 
compact.21 • 
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Solutions of Maxwell's equations with boundary conditions 
on the hyperplanez-ct=O 

Pierre Hillion 
Institut Henri Poincare, 75231 Paris. France 

(Received 30 March 1988; accepted for publication 15 June 1988) 

In homogeneous free space the electromagnetic field may be represented by a second rank 
spinor, each component of which is a solution ofthe wave equation. This makes it possible to 
solve the boundary value problem for the electromagnetic field when the data given on the 
hyperplane z - ct = 0 are entire functions. Two particular cases of boundary conditions that 
are not entire functions and that lead to a relativistic solution of Young's experiment are 
discussed. 

I. INTRODUCTION 

We consider the wave solutions to Maxwell's equations 
propagating along the Oz direction in homogeneous free 
space. We use Gaussian units, the transverse cylindrical c0-

ordinates r,O, and as longitudinal coordinates the cone vari­
ables S = z - ct and t = z + ct. We introduce the complex 

vector A = E + iH (i = Fl), where E and H are the 
(real) electric and magnetic fields. 

From a relativistic point of view A is a self-dual tensor l 

having a well-known connection 1.2 with a traceless second 
rank spinor t/I,. (r,s = 1,2). Explicitly one has 

A 'A 19.1). A 'A -19.1,1 
, - I 9 = e ¥'I' , + I 9 = e ¥'2' 

Let '11 denote the matrix 

'11 = 1 r/!: 
r/!~ 

r/li I. 
~' 

then '11 satisfies the Proca equation2 

D'I1 = 0, 

D = I. 2 ~ e- 19(a, - (i/r)a9) 1 ' 
e'9(a, + (i/r)a9) - 2 as 

(1) 

(2) 

(3) 

and a" a9 , as' ~d ~ are the partial derivatives with respect 
to r, 0, S, and S, respectively. It is easy to prove that the 
relations ( 1) and (3) imply that A satisfies Maxwell's equa­
tions. 

When the electromagnetic field is self-conjugate,3 A is a 
null vector A . A = 0, where the dot means the scalar product 
that implies 

IE 1= IH I, E'H = 0, r/lir/!~ - r/!: ~ = o. (4) 

We are now looking for solutions of the type 

A=A(r,O,s)elk~, 'I1='I1(r,O,s)e1~. (5) 

Taking (5) into account the derivative matrix D be-
comes 

D = I. 2ik e-
19

(ar - (i/r)a9) I. (6) 
e,9(a, + (i/r)a9) - 2 as 

Then from the equation D'I1 = 0 and from the traceless con­
dition, one deduces the following relations: 

r/!: = - ~ = - (i/2k)e- 19(a, - (i/r)a9)r/!L 

r/li = - (i/2k)e- 19(a, - (i/r)a9)~' 

while r/!~ is a solution of the wave equation 

.11 r/!~ + 4ik asr/!~ = 0, 

.11 = (1/r)a,(ra,) + (1/r)a~. 

(7) 

(8) 

Consequently, using relations (1) and (7), solutions of 
Maxwell's equations can be deduced from the solution r/!~ of 
the wave equation (8). 

We discuss here the boundary value problem for the 
electromagnetic field with data given on the hyperplane 
S = 0 when the boundary conditions are consistent with re­
lations (1). 

II. BOUNDARY CONDITIONS ARE ENTIRE FUNCTIONS 

We start with a summary of the results we previously 
obtained4 for the wave equation. One first notes that if r/! is a 
solution of the wave equation independent of 0, then 

r/!" = r" ~ (t/Je1,,9), n positive integer, (9) 
(ra,)" 

is also a solution. Consequently it is sufficient to consider the 
solutions r/!=r/!(r'S)elk~ with boundary condition ¢,(r) on 
s=O. 

These solutions are easy to obtain when ¢, is an entire 
functionS of order 1 and type 0 < T < 00 ofthe dimensionless 
variable v = -..t 2r. Then one has 

~ O);P 
r/!(v) = L -" v" 

,,=0 n! 
(10) 

and r/!(r,S) is given4 by the relation 

.1,( 1:") -I' 1 ~E f+ '"' d -a,r/4s ¥' r,~ - 1m - - s e 
E.....o 1r 1rS - '"' 

X So'" dO f(s + ir cos 0), (11) 

,with a E = E + 4ik, where E is a positive scalar, and 

i'"' '"' t" /(s + ir cos 0) = dt e - t L (- 1) II --
o 11=0 (2n)! 

X¢,,, (2s + 2ir cos 0)211. (11') 
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Let us give some examples. Starting with the entire function 
of type 1, ~(r) = e- (ki'la) (A 2 = k/a), we get from (11) 
and (11') 

(12) 

This expression mUltiplied by eikf; is the first focus wave 
mode solution6 of the wave equation. 

The entire function of type !, ~(r) = 10(Ar), where 10 is 
the modified Bessel function of the first kind of order zero, 
leads to 

t/J(r,s) = lo(Ar)eLl.
2
slk (13) 

while with the entire function 

~(r) = e- ki'/2al o(kr/2a) 

we get 

t/J(r,s) = [1/(a + is) 1/2]e- ki'/2(a+ is) 10(kr/2(a + is»). 
(14) 

Applying (9) to (12)-(14) supplies the corresponding solu­
tions depending on (J with boundary condition ~(r)eine. 

Let us now come back to Maxwell's equations. To solve 
the boundary value problem with data on the hyperplane 
5 = 0 consistent with the relations ( 1 ) one just has to identi­
fy t/Ji with t/J and to use relations (1) and (7). 

For instance, when t/Ji is identified with (12) multiplied 
by eikt, that is, 

t/Ji = [1/(a + is)]e - ki'l(a + is)eikt, (15) 

we get from (7) 

t/J: = - t/li = [ir/(a + is)2]e- ki'l(a+is)ei(kt -e), 

t/Ji = [rl(a + is)3]e- kr'l(a+is)ei(kt -2e). 
( 15') 

It is easy to check that the condition (4) is satisfied so that 
the electromagnetic field defined by (15) and (15') is self­
conjugate. Substituting these expressions into (1) gives 

A, - iAe = [rl(a + is)3]e- ki'l(a+is)ei(kt -e), 

A, + iAe = [1/(a + is)]e- ki'/(a+ is)ei(kt- e), (16) 

A
z 

= [ir/(a + is)2]e- ki'l(a+ is)ei(kt- e), 

which is the first focus wave mode solution of Maxwell's 
equations.7 A similar calculation gives, when one uses (13) 
multiplied by eikt as an expression of t/Ji, 

Xei(kt+it2Slk- e), 

A, + iAe = 10(Ar)ei(kf; + it 2S Ik - 0), 
(17) 

A3 = - (iA/2k)/I(Ar)ei(kt +it 2slk-O). 

With ( 14) one gets similar but more intricate results. Apply­
ing (9) to the previous expressions of t/Ji supplies the solu­
tions depending on (J. 

To sum up, using (10), (11), and (11') together with 
(1 ), (7), and (9) supplies a lot of solutions to Maxwell's 
equations among which the focus wave modes have won a 
special fame. 8 The behavior of solutions (16) has been dis­
cussed elsewhere9 as has the Poynting vector and the energy 
density. 
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For the focus wave modes the consistency of the bound­
ary conditions leads to the following relations: 

A A A A. 

(cos (J)(E, +Ho) + (sin (J)(Eo -H,) = (rla3)e- ki'la, 
A. A A A 

(sin (J)(E, + He) - (cos (J)(Ee - H,) = 0, 

(cos (J)(E, - He) - (sin (J)(Ee + H,) = (1/a)e - ki'la, 
A A. A A 

(sin (J) (E, - He) + (cos (J) (Ee + H,) = 0, 
A A 

(cos (J)Ez - (sin (J)Hz = 0, 

(sin (J)Ez + (cos (J)Hz = (r/a2)e- ki'la, 

where we used (16) together with the definition of A. 

III. YOUNG'S EXPERIMENT 

We ignore whether there exists a general method for 
solving the boundary value problem when the boundary con­
ditions on 5 = 0 are not entire functions. But in some simple 
cases the solution is easy to guess. For instance, let us assume 
that one has, on 5 = 0, 

~(x,y) = 8(x)8(y2 - d 2), (18) 

where 8(x) is the Dirac distribution and x,y are the trans­
verse Cartesian coordinates. The condition (18) means that 
~ is zero except at the pinholes (x = 0, y = ± d) as in 
Young's experiment. 

In Cartesian coordinates the relations ( 1 ), (7), and (8) 
become, respectively, 

Ax - iAy = t/Ji, Ax + iAy = t/JL 
Az = !(t/li - t/JD, 

with 

and 

t/J: = - t/li = - (i/2k)(ax - i ay)t/JL 

t/Ji = - (i/2k)(ax - i ay )t/li, 

(19) 

(20) 

(21) 

Consequently one has to find a solution of (21) with (18) as 
the boundary condition. 

For 5> 0 the Serendip method leads at once to 

t/J(x,y,s) = (1/2s )ei(klSJ(x2+ Y +d
2
) cos(2kdyls), (22) 

where we assume k = ko + iE with E> 0 in order to make 
( 18) possible. Let us remark that t/J as a function of x,y,s is 
not continuous at 5 = x = 0, y = ± d, if these points are 
approached along the paraboloids E(X2 + (y ± d)2) 
- 5 = 0, t/J goes off to infinity while t/J assumes the value 

zero when they are approached along the surface 
~/2(X2 + (y ± d)2) - 5 1/2 = O. It is trivial to check that 
(22) is a solution of (21). The solution in the half space 5 <0 
is obtained by changing k into - k. 

In the scalar representation of the optical fields the light 
intensity I(x,y,s) is proportional to 1t/J12, that is, according 
to (22) for 5> 0, 

1= (1/4s2)e-2£/s(x2+Y+d2) 

X cos (2kdyls) cos (2k *dy/s) , (23) 

where the asterisk denotes the complex conjugation; in the 
limit E .... 0 this expression reduces to 
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(23') 

which gives the interference pattern obtained in Young's ex­
periment lO except that the variable 5 takes the place of 2z 
as expected since the paraxial approximation of the wave 
equation is obtained by changing 5 into 2z. 

Consequently (23') may be considered as the relativistic 
expression of Young's experiment. 

Let us now identify ¢'~ with (22), which we write as 

¢'~ = (1I25)(cos a)eP, a = 2kdY/5, 

{3 = (ik /5)(x2 + y2 + d 2). (24) 

Substituting this expression into (19) gives 

¢': = (eP /25 2)(d sin a + (x - iy)cos a, 

t/li = - (eP/25 3)[(x-iy)2-d 2)cos a (24') 

+ 2d(x - iy)sin a]. 

Since the condition (14) is not fulfilled, this field is not self­
conjugate. From (19), (24), and (24') we get for the elec­
tromagnetic field 

Ax = (eP /45 3
) «(52 + d 2 + (x - iy)2)COS a 

- 2d(x - iy)sin a), 

Ay = - (ieP /45 3 )«(5 2 
- d 2 + (x - iy)2)COS a 

+ 2d(x - iy)sin a), 

Az = (eP /25 2)(x - iy)cos a + d sin a). 

(25) 

These expressions are valid for 5 in the half space 5> O. For 
5 < 0 one has to change k into - k, that is, {3 into - {3. Since 
k is complex Re {3 < 0 and the components of A are bounded 
in the transverse direction. 

Let us now use (25) to discuss Young's experiment. 
Because of the short wavelength of visible light the interfer­
ence pattern may be observed in practice only if d is much 
smaller than 5. One may also assume x and y small compared 
with 5 since the amplitudes Aj decrease as exp [ - (E/ 
5)(x2 + y2 + d2)]. 

Consequently neglecting terms of second or higher or­
derind /5,x/5,y/5, and their products, the expressions (25) 
reduce to 

Ax = (eP /25)cos ao, 

Ay = - (ieP /25)cos a o, ao = 2kodY/5, (26) 

Az = (eP 1252)(d sin a o + (x - iy)cos a o, 

since A; is negligible the electromagnetic field. (26) is self­
conjugate to second order. 

We now compute the Poynting vector and the energy 
density given by the relations 

Sj = - (icl41T)EjkIAkA:, j,k,l = 1,2,3, 

W= (1I41T)IAI 2, 
(27) 

where Ejkl is the permutation tensor. Substituting (26) into 
(27) gives 

Sx = - A(x cos a o + d sin a o), Sy = Ay cos a o, 

Sz =A5cos a o=cW; 

with 

A = (c/81Ts 3)e- (2E/S)(r+r+ d') cos a o. 
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(28) 

(28') 

IntroducingthevariablesSs = Sz - cW,St = Sz + cWo the 
previous expressions become, in the limit E~, 

Sx = Sy = Ss = 0 mod(curl U), 

St = (c/41T5 2)cos2 a o, 

where U is the vector with components 

Ux = Uy =0, 

Us = - (c/81T53)y(cosao)(xcosao + dsinao)· 

(29) 

(29') 

As is well known, 10 from a physical point of view curl U does 
not play any role. So we are left with St' which is the expres­
sion (23') of light intensity multiplied by C/1T. Two com­
ments can be made. 

(i) The fact that St and not So is the energy density of 
the electromagnetic field is in agreement with the asynchro­
nous formulation of relativity. 11 

(ii) The scalar theory may be used as long as d /5, x/5, 
and Y/5 are small. Let us also note that the case d = 0 corre­
sponds to a point source with the usual inverse square law. 

As another example of the boundary value problem we 
consider a boundary condition of the slot type: 

¢(x,y) = o(y). (30) 

The Serendip method still supplies the solution of (21 ) satis­
fying (30) for 5 = 0: 

¢'~ (x,y) = (1/jf)eikrls, 5>0, 

which leads to 

¢': = _ (iY/53/2)eikr's, 

./)._ y (y 1 )eikrls 
'f1 - 53 / 2 I- 2ky , 

and for the electromagnetic field to 

A =_1_(1 +L __ i_)eikrls 
x 2jf 52 2k5 ' 

Ay = 2--; ( 1 - ~ + 2~5) eikrls, 

Az = - (iy/53/2)eikr's. 

The components of the Poynting vector are 

S =~e-2EY'/s S =~e-2Erls 
x 81Tk53 'y 81Tk53 ' 

S =_c_(I_L ___ l_)e-2Erls 
z 81T5 54 4k252 ' 

So = 8:5 [(1 + ~ r + 4k~52] e-
2

EY'
/
s. 

(31) 

(31') 

(32) 

(33) 

Let us assume 5 very large so that, taking into account the 
exponential factor, one may neglect the terms Y/5 of second 
and higher order. We further assume k5> 1. Then we get 
from (34), in the limit E - 0, 

(34) 

One notes from (34) that St' which is still the energy den­
sity, decreases as 5 -1 instead of 5 -2 as in (29), a behavior 
typical of a slot antenna. 

Let us write the boundary condition ¢ (x,y) on the hy­
perplane 5 = 0 as 
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(35) 

Then, according to (20) and (21), the boundary conditions 
for the electromagnetic field are 

(36) 

The transformation E ~H, H ~ - E, which leaves 
Maxwell's equations invariant in free space, changes A into 
- A and (~1'~2) into (~2' - ~l)' Consequently the Babinet 

principle has a simple expression leading to further results. 

IV. CONCLUSION 

The present work suggests a statement and a conjecture. 
First the statement: the boundary conditions on the hy­

perplane 5 = 0 play the role of a source term. We shall dis­
cuss this statement elsewhere by appealing to the asynchro-
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nous formulation ofrelativityll that we already met when we 
proved that the component S, is the energy density. This last 
result that we obtained in Sec. III is also true9 for the focus 
wave modes (16). 

The conjecture starts with the remark that in Young's 
experiment, as described here, the wave-particle duality re­
duces to a different choice of boundary conditions on 5 = 0, 
d #0 versus d = O. This suggests the following conjecture: 
the mathematical description of experiments with photons 
require boundary conditions on space-time manifolds. 
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An infinite quantum system with correctly defined dynamics ".Q as an automorphism group of 
a C *-algebra '6' of observables is determined by any continuous unitary representation U( G) 
of a connected Lie group G, as well as by an arbitrary differentiable real function Q on the dual 
space g* to the Lie algebra 9 of G with the canonically defined Poisson flow tp Q on g*. For 
specific choices of Q and G, the system can be obtained as the thermodynamic limit of a net of 
finite lattice systems with the mean-field type interaction of Hepp and Lieb [Helv. Phys. Acta 
46, 573 (1973)]. A simple nontrivial model of this type is the quasispin BCS model of 
superconductivity in the strong coupling limit, or a corresponding model of the Josephson 
junction. A peculiar feature of the considered models is ".Q noninvaria9ce of the usually 
considered C *-algebra .d of quasilocal observables, as well as an important role of classical 
dynamics tp Q of a set of macroscopic (intensive) observables in the description of ".Q. The work 
is restricted here to norm-continuous representations U( G), in which case '6' is isomorphic to 
the tensor product .d ®A"'; where fis the commutative algebra of classical (intensive) 
observables of the considered infinite quantum system. 

I. INTRODUCTION 

Mean-field approximations to models in statistical me­
chanics were introduced at the beginning of our century I to 
obtain some description of phase transitions. Quantum mod­
els leading rigorously in the thermodynamic limit to quan­
tum mean-field dynamics as a consequence of a given net of 
local Hamiltonians appeared in a description of supercon­
ductivity.2 The simplest nontrivial model of the considered 
type is the strong coupling limit3.4 of the quasispin formula­
tionS of the BCS model. The correctness ofthe description of 
(the local perturbations of) equilibrium states by the linear­
ized Hamiltonian introduced by Bogoliubov6 was demon­
strated by Haag7 by using concepts of the algebraic formula­
tion of quantum theory. The study of the role of the 
Bogoliubov-Haag Hamiltonian in the description of time 
evolution was initiated by Thirring et al.8

-
1O It was shown in 

the framework of the C *-algebraic formalism that the de­
scription of the time evolution is representation dependent, 10 

and that it can be described in equilibrium states by an auto­
morphism group of the weak closure of the corresponding 
Gel'fand-Naimark-Segal (GNS) representation of the C *­
algebra .sf of quasilocal observables. II Studies of the ther­
modynamic limits of Gibbs states were performed and the 
existence and structure of phase transitions was determined 
(see, e.g., Refs. 10, 12, and 13). These quadratic models 
were generalized to polynomial ones and, in this general 
case, classical time evolution of macroscopic (intensive) 
quantities was established by Hepp and Lieb 14 for the restric­
tion to the subset of "classical states" IS of the set of all states 
of the infinite system; this was possible without knowing the 
microscopic evolution of all quasilocal quantities of the infi­
nite quantum system due to a specific way of taking the ther­
modynamic limit of time evolved intensive quantities. Let us 
note that the results obtained in Ref. 14 coincide with those 
derived from the microscopic evolution ".Q introduced be­
low. 

Further investigation of the dynamics of the mean-field 
models was restricted mostly to the dynamics oflocal pertur­
bations oflimiting Gibbs states. 16-18 Some of the conclusions 
of these works were rather unexpected: in some states the 
time evolution does not satisfy the semigroup property. 17.18 
In some attemptsl8.19 to define time evolution in the consid­
ered (polynomial) models the "SchrOdinger picture" was 
used. Rieckers with his collaborators2

0-
24 stressed the im­

portance of classical observables as well as a specific role of 
"symmetry breakdown" in the correct definition of time 
evolution in the GNS representations of the considered 
states. They proved u-weak continuity of the obtained time 
evolution automorphism group of the weak closures of the 
representations. The necessity of enlargement of quasilocal 
algebras and a role of their nontrivial center in descriptions 
of dynamics of systems with long range interactions was 
studied in Refs. 25 and 26. 

We shall consider in this paper a general class of the 
mean-field models that are generalizations of the models in­
troduced in Sec. 2 of Ref. 14 to nonpolynomial interactions. 
Our language will be that of the C *-algebraic formulation of 
quantum theory.27-29 An inspiring review of the history, 
methodological problems as well as possible perspectives of 
the formalism, and its applications to systems with many 
degrees of freedom is contained in Primas' book. 30 We shall 
investigate the thermodynamic limits of local time evolu­
tions ofthe considered (polynomial) models as well as gen­
eralizations of the limiting time evolutions. Since the ther­
modynamic limits do not exist8 in the strong topology in the 
algebra of quasilocal observables .sf, we shall work in the 
framework of the larger algebra .sf**, and the limits will be 
considered in the u-s*-topology generated by a subset So of 
the normal states on .sf**. The set So is contained in the set 
of classical states,14 which contains all the permutation in­
variant states lS as well as all the states for which the above 
mentioned considerations and conclusions 18-24 were ap­
plied. The states {J)ESo are specified by the existence of all the 
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relevant intensive observables obtained from their local 
forms by strong operator limits in the strong closures 
'IT OJ (d)" of the corresponding G NS representations 'IT OJ' Sg 
seems to be the maximal set of states for which the time 
evolution of all the considered models can be defined simul­
taneously in a unique "natural" way.31 The resulting time 
evolution of the infinite quantum system can be described as 
a one-parameter group ofthe *-automorphisms of a C *-alge­
bra 'C contained in d** and containing the usually consid­
ered quasilocal algebra d. Hence any pathological looking 
features of the considered models appearing in previous 
works are either missing or naturally explained in the frame­
work of our approach. Let P G be the smallest projection in 
the center of d** with the property w(PG) = 1 for all wESg • 

Then'C is a proper subset of PGd**, which allows us to 
prove better continuity properties of the tim6evolution auto­
morphism group then were stated for limiting evolutions of 
weak closures of some GNS representations of d in Refs. 
18-24. A crucial role of a kinematical group G of the systems 
is revealed in our definition of the dynamics. 

The sets of bounded observables and states of the con­
sidered systems (i.e., the "kinematics") together with a set 
of their natural symmetries are introduced in Sec. II. Any of 
the considered systems ofSecs. II and III can be regarded as 
a union of a countable set of equal quantum mechanical sub­
systems. Each of these subsystems ofa given composed infi­
nite system is determined by a weakly continuous unitary 
representation U( G) of a connected Lie group G in a separa­
ble Hilbert space H. We shall consider in this paper only the 
cases of norm-continuous U( G) although the general case 
can be dealt with with the help of more technical ap­
proaches.25 The usually considered l5,28 C*-algebra d of 
qUllsilocal observables is the infinite tensor product of a 
countable number of copies of the algebra .if (H) of all 
bounded operators on H defined as the C *-inductive limie2 

of W*-tensor products of any finite numbers of copies of 
.if (H). The action U( G) on H induces a naturally defined 
automorphism group 0'( G) of d with a canonical extension 
to an automorphism group of the double dual d** of d. 
The commutative C *-algebraff of considered macroscopic 
(intensive) observables is generated by the simplest Cesaro 
means (in the strong topology of PGd**) of copies of the 
generators of U( G). The algebra ff belongs to the center fr 
of d** and it is isomorphic to the algebra C(E) of all con­
tinuous complex-valued functions on an Ad*(G)-invariant 
subset E of the dual space g* to the Lie algebra 9 of G. The 
isomorphism is given by a fr valued, 0'( G) - Ad*( G)-equi­
variant projection valued measure Eo on g* (with supp Eo 
= E) via the standard functional calculus: f [EC(E) ] 

,-... E g (j) (Efr). One has also P G = Eo (g*). If we consider 
d canonically embedded into d**, then the C *-algebra Ctf 

of observables convenient for the description of dynamics in 
the considered models is generated in PGd** by the subal­
gebras P G d and ff. Ctf is isomorphic to the tensor product 
d ®ff [in the case of norm-continuous U(G)]. The alge­
bras Ctf, d, andff are invariant with respect to (w.r.t.) the 
action of 0'( G), e.g., O'(g) (ff) cff for all gEG. 

The set of differentiable functions on g'" is endowed with 
a natural structure of Poisson brackets (also called the "Ber-
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ezin brackets") coming from the Kirillov-Kostant symplec­
tic structure33.34 on orbits of the coadjoint representation 
Ad'" (G) in g"'. This Ad'" ( G) -invariant Poisson structure35 

associates with any differentiable function Q on g'" the Ham­
iltonian vector field A(2 and the corresponding flow rp Q of 
Poisson morphisms on g"'. The rp Q invariance of Ad"'-orbits 
allows us to represent the action of the group rp Q on any 
element of g'" by an action of the Ad"'-representation of G 
taken on values of a cocycle gQ: R X g"' ......... G (cf. Sec. II B). 
This fact together with the G equivaIiance of Eg as well as 
with the structure of the algebra of observables 'C leads to a 
natural possibility to define an automorphism group 'TQ of 'C 
with the help of the group 0'( G): 'TQis a kind of transfer of the 
classical evolution rp Q specified by the cocycle gQ [if 0'( G) 

and Eg are given] . In Sec. IV the above mentioned definition 
of'TQ is described, and Sec. III is devoted to the determina­
tion of the time evolution with the help oflocal Hamiltonians 
corresponding to the choice of polynomial Q 'so The proof of 
the identity of both the definitions of 'TQ is made by compar­
ing the infinitesimal generators (i.e., the derivations36 ) of 
the corresponding automorphism groups. 

The resulting picture of the behavior of the infinite 
quantum-mechanical system corresponding to the dynamics 
'TQ agrees with the common image 1 of the mean-field theo­
ries: The time evolution of any finite subsystem can be de­
scribed by a Schrodinger-type equation with a time-depen­
dent Hamiltonian (depending on the "external" mean field 
consisting of the classically evolved intensive observables 
with values in g'" as well as on a given initial state of the 
infinite system). The mean field is, however, an exact conse­
quence of the internal structure of the interactions in the 
infinite system, and no external field is put into the consid­
ered models by hand. 

Let us note eventually that we have not mentioned here 
some important works connecting the presently discussed 
mean-field dynamics with other interesting problems of 
physics, e.g., with the question of sources of irreversibili­
ty,14,37 and with several differently posed questions of con­
nection of quantum and classical mechanics, cf., e.g., Ref. 25 
for some citations. A discussion of these problems supple­
mented with corresponding citations is postponed to later 
work. 

II. KINEMATICS OF THE SYSTEM 

We shall specify here the "kinematical structure" of the 
considered systems by specifying, as usual, the sets of "ob­
servables" and "states" as well as some rules for their inter­
pretation. In the framework of the C "'-algebraic description 
of physical systems the set of all bounded observables con­
sists of all self-adjoint elements of a given C "'-algebra Ctf, and 
the set of all states of the system is described either by the set 
S( Ctf) of all positive normalized functionals on Ctf or by a 
conveniently chosen subset of S( Ctf), e.g., for a W"'-algebra 
Ctf the set S. (Ctf) of normal states on Ctf might be in some 
situations sufficient to describe the relevant physical situa­
tions. Since the algebra Ctf of any of the presently considered 
systems has the tensor product structure d ® ff, we shall 
discuss in Sec. II C the relation of S( Ctf) to S( d) and 
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S(5). The standard rule of the interpretation of the 
numbers w (c) [with weS( 1f ), ceC] as expectations for the 
observables c in the states w will be complemented here by a 
scheme of giving physical meaning to specific ce1f . This will 
be done by choosing a distinguished symmetry group G of 
the system: The group G might be identified with a group of 
transformations of a set of measuring devices. The action of 
the group G on the considered infinite quantum system al­
lows us to specify a classical subsystem of a distinguished set 
of intensive observables with a natural Poisson structure.35 

Consideration of this classical subsystem is useful for intro­
duction of dynamics into the considered type of models. 

A. The large quantal system 

Let 11 be an infinite countable set and let n denote the 
set of all finite subsets of 11, IJ I: = cardJ for JeD. Let U( G) 
be a norm-continuous unitary representation in a separable 
Hilbert space H (for the usually considered spin systems His 
finite dimensional). Let up: H - Hp (pel1) be unitary map­
pings onto copies Hp of H, Up (g): = 17'p( U(g») for all geG 
and pel1 with 17'p(A): = upAup- t, Ae.st'(H): = bounded 
operators on H. Let d be the C *-inductive limit (cf. 1.23.11 
in Ref. 32) of the net of the W*-algebra d J (JeD) given by 
the W*-tensor products32,38 

d J
: = ® 17'p(.st' (H») . 

pEJ 

The C*-algebra d is simple, cf. 2.6.20 of Ref. 28. Each d J 

(JeD) will be considered as a ("local") subalgebra of din 
the canonical way. Then d becomes a quasilocal algebra.28 

Let CT( G) be the range of the strongly continuous homomor­
phism CT of G into *-aut d: = the automorphism group of 
d. The morphism CT is determined by the action of CT( G) on 
finite linear combinations of the elements xed of the form 

x: = ® 17'p (xp )' xpe.st' (H), JeD, 
pEJ 

by the formula 

CT(g)(X) : = ® 17'p(U(g)XpU(g-I»), geG. (2.1) 
pEJ 

The strong continuity of CT means that the functions 
g t--+CT(g) (x) (xed) are continuous in the norm topology of 
d. LetgbetheLiealgebraofGandletXp =X~e.st'(H) be 
the generators of U: 

exp( - itXp) : = U(exp(tp»), /3eg. (2.2) 

The continuity of CT is a consequence of the assumed 
boundedness of Xp (/3eg). The adjoint representation 
Ad( G) on g is defined by the formula 

Ad(g)/3:=.!!...1 [gexp(t/3)g-l], geG, /3eg. 
dt 1=0 

The generators Xp depend linearly on /3eg, and their trans­
formation properties under U( G) are 

Xpt--+U(g)Xp U(g-I) = XAd(g)P . (2.3) 

Let us also write X(/3) for Xp and let 

X J (/3) : = IJIXflJ : = I 17'p(Xp), /3eg, JeD. (2.4) 
pEJ 
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The expressions (2.4) represent elements of d J (hence of 
d) in a canonical way. Then we have from (2.1) and (2.3) 

CT(g)(X J (/3») =XJ (Ad(g)/3). (2.5) 

Let S(d) be the set of all states (i.e., positive linear 
normalized functionals) on d. For any weS(d), let 
[17'"" H"" 0",] be the corresponding GNS triplet (the tech­
nicalities on C*-algebras and their representations can be 
found in Refs. 27-29, 32, 38-40). Let [17'u,Hu] be the uni­
versal representation of d, i.e., the orthogonal sum of all the 
17'", [weS(d)]. Thedoublecommutant 17'u (d)" of17'u (d) 
in .st' (Hu) is isomorphic as a Banach space to the double 
topological dual d** of d, hence d** is canonically en­
dowed with the structure of a von Neumann algebra. We 
shall identify d** with 17'u(d)". Let ir:=17'u(d)" 
n17'u (d)' be the center of d**. Any state weS(d) can be 
uniquely extended to an (equally denoted) normal state 
weS* (d**) CS(d**) and the corresponding W*-repre­
sentation 17' OJ of d** is the unique normal extension of 
17'", (d) to d**, cf. Ref. 32, Proposition 1.21.13. We can 
consider 17'", as a subrepresentation of 17' u' and for the exten­
sions we have 17' OJ (d**) = 17'", (d) ". For any representa­
tion 17' of d, there is a unique projection 
c( 17') = c( 17') * = c( 17')2eir called the central cover of 17', 
Ref. 39, paragraph 3.8.1, such that c( 17') d** is isomorphic 
to 17'(d) " = 17'(d**), and 1T(c(17'») = 17'(1) [1 is the unit 
element 17' u (id.cl' ) of d**]. The algebra d is isomorphic to 
its universal representation 17'u (d) but, due to the simpli­
city of d, it is isomorphic also to any nonzero representation 
17'( d). Hence d can be identified either with 17' u (d) or 
with any of its nonzero subrepresentations c(17')17'u (d). 

The "local Hamiltonians" for the description of dynam­
ics r of elements in the subalgebras d J (JeD) are expressed 
in the considered polynomial models 14 in terms of elements 
from (2.4). Hence the thermodynamic limit of dynamics 
can be expected to exist in (and only in) the subset of states 
Sg CS(d) in which limits for J-11 ofthe nets [XflJ: JeD] 
for all /3eg exist in some suitable sense (for general interac­
tions of the considered type; for a specific interaction, the 
limiting dynamics can be defined in those states in which the 
limits do exist for all such/3's for which the X flJ enterinto the 
local Hamiltonians). Let us note that the existence of norm 
limit ofthe net [XflJ: JeD] is excluded for Xp different from 
a scalar multiple of the identity in H: Since the norm limits of 
all commutators [x, XflJ] (xed) vanish and d is simple, 
any norm limit zp of XflJ would be a scalar multiple of identi­
ty of d. This would imply 

limw(XflJ ) =zp, forallweS(d). 
J 

But the spectrum of Xp contains at least two distinct points; 
hence there are normalized vectors <pjeH (j = 1,2) such 
that (<PI,xP<PI) ¥= (<P2,xP<P2), and for the product statesw l •2: 

wj (® 17'p(Xp»): = II(<pj,xp<Pj)' xpe.st' (H), j= 1,2, 
pEJ pEJ 

one obtains the desired contradiction: 

lim WI (XflJ ) ¥=lim w2(XflJ ) . 
J J 

However, it can be easily shown that strong operator limits 
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s-lim 'IT OJ (X{JJ )E'IT ... (d)" 
J 

(2.6a) 

exist for many states WES(d), e.g., for all permutation in­
variant states, i.e., the states CiJ for which the values 

CiJ(:' 'lTj(p) (Xp »), for any JEll, xpE.Y(H) , 

and any bijectionj: n -> n are independent ofj.17 Examples 
of permutation-invariant states are CiJ1.2 defined above. 
There are states CiJ, on the other hand, for which the strong 
limit of 'IT", (X{JJ) does not exist, e.g., the product states 
CiJ : = ® pell wP, in which an infinite number of the restric­
tions wP to the local subalgebras d P : = .Y (Hp) coincides 
with911 [i.e., wP('lTp (x)} = (911' x (11) for all XE.Y (H) ], and 
also an infinite number of CiJq coincides with 912 defined 
above. 

The existence of the limit in (2.6a) is equivalent41 to the 
existence of that limit with CiJ replaced by a (quasi-) equiva­
lent state,39.40 i.e., by a state with the same central cover 
c( 'IT",) of its GNS representation. After the identification of 
XEd with 'lTu (X)Ed**, we make a natural identification of 
'IT", (x) with xc( 'IT OJ) : = 'IT u (x )c( 'IT",), and the existence of 
the limits in (2.6a) is equivalent to the existence of the limits 

s-limX{JJPEg', /3Eg, (2.6b) 
J 

withP = c( 'IT",). The limits in (2.6b), if they exist, belong to 
the center g' of d** since the netsJ~ [x, X{JJ] converge to 
zero in norm for any XEd, where [x, y] : = xy - yx is the 
commutator. The existence of the limits in (2.6b) for some 
projection PEg' implies the existence of the limits in (2.6a) 
for all such CiJ, for which c( 'IT",) <P. Let P G be the largest of 
all such projections P for which the limits in (2.6b) exist. Let 

X PII : = s-lim X{JJPG . (2.7) 
J 

Due to the linear dependence of X,8I1 on /3Eg, the mapping 

/3~xp(i X,8I1 )EPGg' (2.S) 

is a norm-continuous unitary representation of the additive 
group 9 in the Hilbert space P GHu' According to the Stone­
Naimark-Ambrose-Godement (SNAG) theorem (see Ref. 
42, § 140, p. 375, or Ref. 43, Theorem VIII. 12, or Ref. 2S, 
Sec. 3.2.3), there is a unique projection valued measure Eo 
on g* [the dual of the linear space 9 can be identified with the 
dual group 9 of the additive group 9 by the association with 
any F Eg*, the character X F: fJ---+ X F (/3): = exp(iF (/3)}] 
with values in P G g' such that 

X PII = f F (/3) Eo (dF), /3Eg. 
Jo• 

(2.9) 

Let us denote E: = supp Eo the minimal closed set ECg* 
such that Eo (E) = PG [ = Eo (g*)]. The set E is compact 
due to the boundedness of Xp's. The set C(E) of complex­
valued continuous functions on supp Eo is a commutative 
unital C*-algebra generated (by the Weierstrass theorem) 
by the functions/p (/3Eg) , where 

/p(F) :=F(/3), FEg*, (2.10) 

are linear functions on g*. Let Eo denote also the mapping 
from C(E) into PGg' given by 
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Eo : /(EC(E)"r-~Eo (/) : = f / (F) Eo (dF). (2.11) 

A direct consequence of the standard functional calculus of 
normal operators42.43 is the following lemma. 

Lemma 2.1: The mapping Eo from (2.11) is a *-isomor­
phism of C(E) onto the C *-subalgebra ff of g' generated 
by the elements 

X,8I,=Eo(Jp), /3Eg. (2.12) 

Now we shall introduce two C *-algebras suitable for 
description of dynamics of mean-field theories, and then we 
shall prove isomorphisms of these algebras. 

Definition 2.2: (i) Let 'lTG denote the canonical embed­
ding of the simple C*-algebra d into PGd**: 

'lTG : X(Ed)~'lTG(x) : = 'lTu (x)PG . (2.13) 

Let CIf be the C *-subalgebra of P G d** generated by 'IT G (d) 
and by ff : = Eg (C(E)}. Let us denote by ClfJ (JEll) the C *­
subalgebra of ~ generated by 'IT G (dJ

) and ff. ~ is called 
the algebra 0/ observables for u( G) -mean-field theories, and 
ff is the algebra 0/ u( G) -intensive quantities. 

(ii) Let d ®ffbethe (unique) C *-tensorproduct; itis 
isomorphic32 to the C *-algebra C(supp EOJ.,d) = C(E,d) 
of d -valued norm-continuous functions / on E with the 
norm II III : = supp [ II I (F) II: FEE] and with the pointwise 
algebraic operations. 

The algebras ff and d are naturally embedded into 
C(E,d) by 

Eo (/)(EJI/')~J; with/(F): =/(F )id,oI (2.14) 

for all/ECCE), and 

X(Ed)~J; with/(F): =X (for all FEE) . (2.15) 

The assertions of the next two lemmas are taken from Ref. 
3S, Proposition IV.4.7 and Lemma IV.4.IS, resp. Exercise 
IV.4.2. 

Lemma 2. 3: Let d be a unital C *-algebra, ff a commu­
tative C*-algebra, and let 'TA : d -> CIf and 'TN: ff -> CIf be 
homomorphisms into a C *-algebra CIf with commuting 
ranges. Then there is a unique homomorphism 'T of the C *­
tensor product d ® ff into CIf such that 

'T(x®z) = 'TA (x)'TN(z), XEd, zEJI/', 

and the image 'T( d ® ff) is the C * -subalgebra of CIf genera­
ted by 'TA (d) and 'TN (ff). 

Lemma 2.4: Let ~ be a unital C *-algebra generated by 
commuting unital C *-algebras d andff,ff commutative. 
If xz = 0 implies Ilxllllzll = 0 for any XEd, zEJl/', then the 
homomorphism 

L Xj ® Zj (Ed ® ff)~ L xjzjECIf 
j j 

can be extended to an isomorphism of d ®ff onto ~. 
With the notation of Definition 2.2, we then obtain the 

following proposition. 
Proposition 2.5: There is a unique *-isomorphism Eg of 

C(E,d) onto ~ extending the mappings Eo of (2.11), and 
'IT G of (2.13l. It can be expressed by the formula 

Eo (I) =: f I(F) Eo (dF), IEC(E,d). (2.16) 

Note: The formula (2.16) is used here to define the inte-

PavelB6na 2226 



                                                                                                                                    

gral. It can be defined, however, independently and equiv­
alently by a limit in a weaker-than-norm-topology o( a se­
quence ofintegrals of step-function approximations to I [cf. 
Proposition 6.3.6 of Ref. 25(a»). 

Proof It suffices to show that for any nonzero I eC(E) , 
the equality 1T G (x )Eg (I) = 0 implies x = O. Let 
1(F»~/(Fo»O for all FEIloCE, with FoEllo and 
Eo (Bo) #0. Then 

O<;1TG(x*x)(Eg (I) - !/(Fo»)Eo (Bo) 

= - ~/(Fo)1TG(X*x)Eo (Bo), 

and this implies 1TG (x)Eo (Bo) = O. The mapping 
Xl--+1T G (x )Eg (Bo) (xed) is a nondegenerate representation 
ofthe simple C*-algebra d, hence its value is zero only for 
x=O. Q.E.D. 

The isomorphism Eg maps C(E, d J) onto C(fJ (Jell), 
endowing the algebra C(f of observables with a quasilocal 
structure (Ref. 28, Definition 2.6.3) coming from that of d. 
In the case of C(f, however, the "local algebras" C(fJ contain 
also intensive (Le., "global") observablesAi. Let u( G) also 
denote the extensions of the mappings from (2.1) to the cor­
responding *-automorphism group of d U . From (2.5) and 
(2.7) one has u( G) invariance of P G as well as the relation 

u(g)(XpII ) = XAd(g)PII' peg, geG. (2.17a) 

This can be rewritten in the form of the G equivariance of the 
projection-valued measure Eg on Borel sets BCg*, 

u(g)(Eg (B») = Eg (Ad* (g)B ), geG. (2.17b) 

We can see from this that C(f and AI are u( G) -invariant 
subalgebras of d U . Hence we can deal with AI as with a 
"kinematically independent" subsystem algebra of a classi­
cal subsystem of the large quantal system specified by the 
action u( G) of the chosen group G. 

B. The classical subsystem of a(G)-lntenslve quantities 

We shall introduce here the canonical structure of Po is­
son brackets on the algebra AI, which is Ad* (G) invariant. 
This structure will be used to determine the classical dynam­
ics on AI corresponding to any given differentiable QEC(E). 
Then we shall define a cocycle g Q which will be used to trans­
fer the classical dynamics to an evolution of the large quantal 
system in Sec. IV. The coordinate free differential calculus 
on manifolds of Cartan33

,44 will be used for brevity and clar­
ity of the expression. 

Let [p,X) be the Lie bracket of elements 13 and X of the 
Lie algebra 9 of the group G. The tangent space TFg* to the 
dual g* of 9 at the point Feg* will be identified with the linear 
space g* itself by using the identity mapping on g* as a chart. 
Then the cotangent space T1-g* can be identified with the 
Lie algebra 9 = g**; we shall also transfer the Lie-bracket 
structure from 9 to T1-g* by this identification. Let dFI 
eT1-g* = 9 be the value at Fofthe exterior differential dlof 
leC 00 (g*, R). A Poisson structure3S on g* is given by the 
Poisson bracket 

[J,h](F) : = - F([ dFI,dFh p, Feg*, J,heCoo (g*,H). 
(2.18) 

This bracket [J,h) eC 00 ( g*, R) satisfies all the properties of 
the Poisson bracket on symplectic manifolds44 (i.e., bilinear-
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ity, antisymmetry, derivation property, and Jacobi identity) 
except nondegeneracy. It associates a unique Hamiltonian 
vector field AQ on g* with any QEC "" (g* ,R) by the formula 

df(AQ) : = [Q,j], feC ""(g*,R). (2.19) 

Let fjJ be a diffeomorphism on g*, and let fjJ *: C( g*) -+ C( g*) 
be the "pullback" of fjJ, i.e., fjJ * I: = IOfjJ. Then fjJ is called a 
Poisson automorphism iff 

fjJ * [J,h ) = [fjJ * J,fjJ * h ), J,heC 00 ( g* ,R) . 

Any Hamiltonian vector field generates a family of local 
Poisson automorphisms fjJ ? determined by classical Hamil­
ton equations 

d 
dt!,(F) = [Q,!,](F), Feg*, terF, leCOO(g*), 

(2.20) 

where!, : = fjJ ?" J, and r F is an open neighborhood of zero 
on the real axis. The vector field A Q is complete iff r F = R for 
all Feg* iff fjJ Q forms a one-parameter group of Poisson auto­
morphisms: fjJ ?+ s = fjJ ?ofjJ ~ for all s,teR. For any compact 
group G each AQ is complete. In any case we shall choose Q 
such that AQ will be complete. 

The algebra C(E) is generated by restrictions to E of the 
linear functions Ip (Peg) from (2.10). The Poisson bracket 
of such functions is (since d F Ip = 13) 

[Ip,fx] (F) = - F( [p,X]) = - fip,xJ(F), P,Xeg. 
(2.21) 

The adjoint action Ad (G) is a Lie algebra automorphism 
group4S of g, i.e., Ad(g) (geG) form a linear representation 
with 

Ad(g)[p,X) = [Ad(g)p,Ad(g)X), geG, P,Xeg. 
(2.22) 

This implies that the coadjoint action Ad* (G) on g*, 

Ad*(g)F(p) : =F(Ad(g-l)p), peg, geG, (2.23) 

consists of a group of Poisson automorphisms leaving the 
orbits 

Ad*(G)F: = [Ad*(g)F: geG) Cg* (2.24) 

invariant. The restriction of the Poisson structure (2.18) to 
any nondegenerate Ad * (G) orbit converts this orbit to a 
symplectic manifold.33.34 Any Hamiltonian flow fjJ Q leaves 
the Ad*-orbits invariant.3s Due to the G equivariance 
(2.17b) of Eg, the set E = supp Eg is also left invariant by 
any fjJ Q. Hence fjJ Q" is an automorphism group of C(E) 
that determines a unique *-automorphism group of AI 
= Eg(C(E»). 

Let us now introduce the cocycle gQ' The fjJ Q invariance 
of any Ad* orbit implies the existence of a function gQ: 
R X g* -+ G such that 

fjJ?(F) = Ad*(gQ(t,F»)F, teR, Feg*, (2.25) 

.We shall look for differentiable solutions of (2.25) with the 
"cocycle property" 46 

gQ(S,fjJ ?(F) )gQ (t,F) = gQ (s + t,F), gQ (O,F) = e, 

(2.26) 

for all s,teR and all Feg*, with e : = the identity of G. Let 
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(2.27) 

By differentiation of (2.25) in t = 0, and with the help of the 
definition of the Ad ( G) -representation as well of the com­
mutator in g,33,45 we then obtain 

F( [ f3 ~ - d FQ,X] ) = 0, for all XEg, FEg*. (2.28) 

This implies that a necessary condition for the validity of 
(2.25) is the fulfillment of the relation 

f3~ = dFQ + f3~, FEg*, (2.29) 

where f3~EgF is some of the generators of one-parameter 
subgroups of the stationary subgroup G F C G for the point F 
at Ad*-representation: Ad*(exp(tf3~»)F=F(tER), and 
the dependence Ff-..+ f3 ~ is differentiable. By differentiation 
of (2.26) one gets the differential equation on the group 
manifold for gQ: 

d (tF)-T(R )f3Q (OF) (230) dt gQ' - e gQ(/,F) F,' gQ ' = e, . 

for all FEg*, tER; here F,: = rp ?F, Ra is the right action of G 
onto itself: Rg(h): = hg(g,hEG), and Te(j) maps 
9 = Te G into Tf(e) G for any differentiable mapping j: 
G-Gby 

Te(j)f3:=~1 j(exp(tf3»). (2.31) 
dt /=0 

Equation (2.30) is a finite-dimensional ordinary differential 
equation for gQ' The uniqueness of the solution of 
(2.30),44,47 with f3 ~ from (2.29), together with the unique­
ness of the solution rp Q of (2.20), prove the fulfillment of 
(2.25) as well as of (2.26) by the solutiongQ of (2.30). Let 
us note that (2.30) can be rewritten [equivalently for faith­
ful U( G) ] with the help of a unitary representation U( G) as 
a linear (time-dependent Schrodinger) equation for the uni­
tary family U(gQ (t,F)), cf. the notations (2.2) and (2.4): 

i ~ U(gQ(t,F)) = X(dFQ + f3~) U(gQ(t,F)), (2.32) 
dt I I 

with the initial condition U(ga (O,F)) = U(e). We shall see 
in the following sections that the thermodynamic limits of 
the local evolutions by the Hepp-Lieb Hamiltonians corre­
spond to the choice f3 0 = o. 
C. States and modifications 

The algebra of observables ~ was defined in Definition 
2.2 with the help of the limits (2.7) existing in the subspace 
of Hu determined by the projection Pa. We can distinguish 
two disjoint subsets of states on the C *-algebra .s;/: The sub­
set Sg represented by nonzero vectors lying in P aH u' and the 
subset S: represented by vectors in H u orthogonal to P aH u' 

The restriction to ~ CPa.s;/** ofthe unique normal exten­
sion of mESg to a state on.s;/** is a canonically defined (and 
equally denoted) state mES( ~). The same procedure per­
formed with any mES: gives the zero function on ~: 
m(P a) = O. Let us denote by So also the subset of states on 
~ obtained from the corresponding states on .s;/ by the 
above mentioned procedure; the states mESo CS( ~) will be 
called the 1T G -normal states on ~ .28 It will be seen in the next 
section that the thermodynamic limit of an arbitrary polyno­
mial mean-filed dynamics can be "naturally" defined in 1TG -
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normal states only: The s*-topology used in (3.11) and 
(3.13) is determined by the seminorms (3.5) defined by 
states mESo' Any state mES(.s;/) can be extended, however, 
to a state on the C *-algebra ~ , since .s;/ is considered to be a 
C *-subalgebra of ~ in a natural manner, cf. Definition 2.2. 
Although the resulting time evolution rQ obtained in Sec. III 
by a thermodynamic limit is an automorphism group of ~ , it 
might look "unnatural" to define by m/ (y) : = m(r?( y)) 
the evolution in the states mES( ~ ) obtained by an extension 
to ~ of those states on .s;/ for which the limits corresponding 
to (3.11) and (3.13) in the G NS representations do not ex­
ist. One of the most disturbing aspects of this unnaturality of 
the definition of time evolution in "improper states" is the 
apparent possibility of existence of such states mES( ~), in 
which the evolution of intensive observables mt(Eg (j,8») is 
not approximated by the nets m/ (X,BJ) (JEll) of time 
evolved local approximations of Xpn = Eo (j/1)' cf. (2.12) 
and (2.7). It will be shown here how to overcome this diffi­
culty by a choice of "proper extensions" of states on .s;/ (in­
cluding those in S:) to states on ~. We shall restrict our 
attention to pure states, since the w*-limits of them (resp. of 
convex combinations of them) constitute the sets of all 
states. First we describe the structure of pure states on ~. 

Proposition 2. 6: Let ~ be the C *-algebra generated by its 
C *-subalgebras .s;/ andA"', let A'" be contained in the center 
of ~, and let ~ be isomorphic to the C *-tensor product 
.s;/ ®A"'. Then the state mES( ~) is pure iff 

m(xz) = m.o/ (x)m. / (z), for all XE.s;/, zEA"', (2.33 ) 

where the restrictions m.o/ (resp. m. 1 ) of m to the subalgebra 
.s;/ (resp. toA"') are both pure. If we write A'" = Eg(C(E») 
for a Hausdorff compact E, cf. Lemma 2.1, then any pure 
state m. /ES(A"') is of the form 

m./(Eg (f») =j(Fw )' fEC(E), (2.34) 

where FUJEE is a fixed point determined by the pure 
mES( ~) uniquely. 

Proof: The first assertion is an immediate consequence 
of Theorem 4.4 and Lemma 4.11 of Ref. 38, Chap. IV. The 
second assertion is a simple consequence of the Riesz-Mar­
kov theorem (cf. Theorem IV.17 of Ref. 43): The pure states 
on the commutative C*-algebra C(E) are described by the 
Dirac measures t>F:jf-..+ t>F(j): = j(F), jEC(E), on the 
compact E. This gives (2.34). Q.E.D. 

Identification of ~ with .s;/ ® A'" allows us to rewrite 
( 2.33) in the form m = m.sf ® m.ff. Hence to obtain a pure 
extension mES( ~ ) of m.o/ ES(.s;/), one has to choose an arbi­
trary F wEE, and the m. I corresponding to F Cd by (2.34). For 
Wt/ESg , there is, however, a unique "physically natural" 
choice of m / . given by 

(2.35 ) 

The formulas (2.33) and (2.35) determine the 1Ta -normal 
extension of m.t/' since pure states on commutative C *-alge­
bras are characters. We intend to define natural extensions 
of pure states m.(,1ES: given formally by (2.33) and (2.35), 
only by reinterpreting the circuit in (2.35). Before proceed­
ing in this way, let us mention possible modifications of the 
interpretation of the formalism presented in this paper. 

Remark 2. 7: The essential tool in the definition of classi-
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cal observables Eg (/p) = Xpn as well as of the algebra Crf, 
and of the time evolution rQ (cf. Sec. III), is the existence of 
the limits in (2.6) and (2.7). Those are limits of the nets 
[ X tu: JEll], where II was taken to be the set of all finite 
subsets of the countable set n directed by the set inclusion: 
J < K iff JCK, J,Kell. One can obtain a nontrival reinter­
pretation of the whole formalism by taking II to be a specific 
directed subset of the naturally ordered set of all finite sub­
sets of n. A choice of such a subset II might be connected 
with some structure by which the set n could be endowed. 
Let, e.g., the set n be endowed with the structure of the m­
dimensional lattice Z m; then a natural choice of II is the set 
of cubes in zm centered at the origin. The limits in (2.6a) 
then exist for a larger set Sg of states meS(.!if) than before, if 
J is taken there from such a conveniently chosen subset II of 
the set of all finite subsets of n; the projection P G in (2.7) 
would be then larger than before. Let, e.g., n: = Z, and let 
II: = [( - m, - m + 1, ... ,m - 2,m - I,m): mEZ+]; then 
any product statem: = ®pEZmp on.!if [mpeS.(2'(Hp»)] 
with mp + k = mp for allpeZ (here Hp+ k is naturally identi­
fied with Hp via the unitary mapping up U p-+I k ) belongs to the 
(newly defined) set Sg; hence it is represented by a vector in 
P GH u (with the new P G)' Such periodic states with minimal 
period k larger than 1 did not belong to Sg in the previous 
case of the limits (2.6) taken for the next Xtu indexed by all 
finite subsets J of n. All the general formalism and results of 
this paper remain unchanged after a redefinition of the set II 
(and the corresponding redefinitions of the limits of the nets 
with indices Jell) in the above mentioned sense. The only 
important change will be an increase of the projection P G 

from (2.7); hence an enlarged domain of applicability of rQ 
in a physically natural way. 

Remark 2. 8: Let us mention another possible reinterpre­
tation of limits of the nets indexed by Jell that could further 
enlarge the projection P GEZ. Let of be an arbitrary directed 
set and letJ: of -- II be such a mapping that to any Kell there 
is an iKef such that i> iK implies J(i) -::JK. Then the net 
[ X tu(i) :ief] is a subnet of the net [X tu: Jell] . One could 
require then only the existence of the limits 

s-lim Xtu(i)Pe..P', for all Peg 
ie.F 

(2.36) 

instead of (2.6b), and define PG as the least upper bound in 
..P' of all the projections Pin (2.36). This kind of limit can be 
used also in Sec. III in taking the thermodynamic limit of 
7'{(i) defining the evolution rQ. . 

We shall now proceed to definitions of physically natu­
ral extensions of arbitrary pure states m.rf eS(.!if) to states on 
Crf. 

Proposition 2. 9: There is a subnet [Xtu(i): ief, PEg] [of 
is a directed set and J: i(ef)~J(i) is as in Remark 2.8] of 
the net [Xtu : Jen, Peg] such that the formula 

m. ,.(Eg (/p»): = lim m.<y" (Xtuu», PEg, 
iE-I 

(2.37) 

determines a unique pure state m.,v onff: = Eg(C(E»), for 
an arbitrary pure state m.rf on .!if. The pure state meS( Crf ) 
determined from these m.rf and the corresponding m.,v by 
(2.33) satisfies the relation 
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mvJ/"(Eg (q;~. i p») = lim m(r?(X(JJ(i) »), PEg teR; 
ie.F 

(2.38) 
here q; Q is determined in (2.20), and r~ *-aut Crf is deter­
mined by (4.2) and (4.6) [in the present case I(F) 
: = X(JJ(i) for all Fee]. 

Proof: For any fixed Peg, the net [X(JJ: JEn] is a uni­
formly bounded net in .!if** (by the canonical inclusion of 
.!if into .!if * * ). Since closed balls in .!if** are compact in the 
u-weak topology [i.e., in u(.!if**, .!if*) topology] by the 
Banach-Alaoglu theorem (cf. Theorem IV.2 of Ref. 43), 
and the association P~Xtu is linear, there is a subnet 
[Xtu(i): ief,PEg] of [X(JJ] convergent in w*-topology of 
.!if** , 

w*-limX(JJ(i) = :Xf3JE..P'. (2.39) 
iEJ 

The belonging of the limits X{JJ to the center ..P' of .!if** 
follows as in (2.6b). Since m4 is pure, the right-hand side of 
(2.37) determines a unique element F",Eg* which in turn 
determines the pure state m. / . : 

m dEg (ip »): = F., (P) : = m.<y" (Xf3J ), Peg. (2.40) 

Let us calculate the right-hand side of (2.38) for m given by 
(2.33). The pure state meS(Crf) =S(C(E,.!if») is concen­
t,!'ated on the one-point subset FweE in the sense that for any 
iEC(E,.!if) one has 

m(Eg(/» =m.(l1'(/(F.,»), IEC(E,.!if). (2.41) 

Applying this to I (F): = o(gQ I (t,F») (X(JJ(i» obtained 
from (4.2), and by the use of (2.5), (2.37), (2.40), and 
(2.25), one gets 

~ m(r?(X(JJ(i)) = ~ m.(l1' (o(gQ I (t,F", »)(Xtu(i») 

= ~ m"" (XJ(i) (Ad(gQ I (t,F",»).8») 

= FlU (Ad(gQ i(t,FlU »).8) 

= Ad*(gQ(t,F.,»)F., (P) 

= q; ?F., ( P) = mf(Eg (q;? i p »), 

(2.42) 

since m. reS (C(E») is given by the Dirac measure on E con­
centrated on F.,. Hence (2.38) is proved. Q.E.D. 

One can show that the net [Xtu : JEll, PE g] has more 
than one w*-cluster point in.!if** [resp. in 2' (g,.!if** )-to 
be more precise] for any of the specific choices of II men­
tioned in Remark 2.7. This means that the choice of the 
subnet [X(JJ(i): ief, PEg] in the last proposition is non­
unique, and there the described physically natural extension 
meS( ct) of m4 is nonunique as well. Ifwe consider infinite 
systems obtained by thermodynamic limits as mere conven­
ient approximations to large but finite physical systems, then 
the above mentioned ambiguity can be interpreted as a con­
sequence of ambiguity in these kind of approximations. 

III. THE THERMODYNAMIC LIMIT OF LOCAL 
EVOLUTIONS 

Let [Pj:j = 1,2, ... ,dim G] be a fixed basis of g, and a 
polynomial QEC(g*,R) in thevariablesl'j : = F( P) begiv­
en. Let 
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j = 1,2, ... ,n : = dim G, Ken. (3.1) 

Assume that an ordering of the multiplication of variables Fj 
in the polynomial Q(F,.F2, ... ,Fn ): = Q(F) is prescribed in 
such a way that the elements Q Ke.sf, 

QK : = IK IQ(X'K,X2K , ... ,xnK)' Ken (3.2) 

obtained by the substitution of ~K for Fj in Q( F), are all self­
adjoint: Q K' = Q K. We define the one-parameter groups rc 
C *-aut .sf oflocal time evolutions by 

r,'(x) :=exp(itQK)xexp( _itQK), xe.sf, leR, (3.3) 

for any finite Ken. We are interested in a proof of the exis­
tence of suitably defined (thermodynamic) limits 

r?(x) : = (some topology)-lim r,'(x), xe.sf, (3.4) 
K 

for K -> n, with a general polynomial Q. A necessary prereq­
uisite for the existence of rQ for any Q is the existence of the 
limits of X/1K (/3eg). We have seen, however, in Sec. II A 
that X/1K cannot have a limit in .sf, and weak limits for all the 
X/1K'S in the algebra .sf** exist only in the strong topology 
generated by the states meSg CS. (.sf**): = the set of nor­
mal states on .sf * * , for which the central covers c( 1T'ru) are 
majorized by Pae.!f, cf. (2.7). This topology (called here 
also the s*_topology32) is determined by the family of semi­
normsp", andp! on .sf**, meSg : = PgS. (.sf**), 

Pru (x) : = ~m(x*x), p! (x) : = ~m(xx*), xe.sf**. 
(3.5) 

It is clear that on the subset of self-adjoint elements of .sf** 
thes*-topology coincides with thes-topology determined by 
the seminorms Pru only. These topologies are Hausdorff on 
the subalgebra P a.sf" = 1T' a ( .sf ) ", and we shall work in 
the framework of this von Neumann subalgebra of .sf" 
identifying .sf with 1T' a (.sf), cf. Definition 2.2. 

Notation 3.1: Let [/3j:j = 1,2, ... ,n: = dim G] be a fixed 
basis of g, and let c'j; be the structure constants of g: 

[PpPd =crlcPm' (3.6) 

Let X( I/}: =X/1 (Peg) with the norm IIX( /3)11 from 
Y (H). Let the polynomial Q be written in the form oflinear 
combination of p monomials of the maximal degree q with 
the upper bound M> 1 of the absolute values of the coeffi­
cients. Let us denote 

(i) b: = max [ 1 + IIX( /3)II:j = 1,2, ... ,n]; 
(ii) c : = max [lcJk I :j,k,m = 1,2, ... ,n]; 
(iii) aK : = max [nc, 21K Ib ], Ken; 
(iv) b(x) : = max[b,lIxll], xe.sf; 
(v) BK: = .sfKU [XPL: ,Beg, Len]. 

We shall also use for multiple commutators in .sf, 

[ y,x] (m + 1) : = [y, [ y,x]] (m), 

[y,x](O) : = x, [y,x]: =yx - xy. 

For the generators X f we then have the relation, 

(3.7) 

[XI', Xfj = icfo X!, Ken, j,k,(m) = 1,2, ... ,n. (3.8) 

By multiple use of this formula, and by recursive calcula-
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tions of degrees and numbers of monomials in variables X f, 
and variables [Xf"[Xj" ... ,[Xf,,x] .. ·]] (xe.sfJ

) and 
[Xf"[Xf,, ... ,[ Xf,xkL]"']] (Len) occurring in the 
multiple commutator [Q K,x] (m), one obtains from elemen­
tary properties of the norm [cf. Lemma 6.2.4 in Ref. 25 (a) ] 
the following lemma. 

Lemma 3.2: Let Jen, xeB J, Ken, and let m be any 
positive integer. Then the following estimate is valid: 

II[QK,x)(m)1I < [b(x)/q](m - 1)!(Mpq2b Q-'aJ )m, 
(3.9) 

where Notation 3.1 was used. 
Now we can prove existence of the limits in (3.4) for 

small t depending on the choice of xe.sf. 
Lemma 3.3: Let rK: = (Mpq2b QaK)-' (Ken), and let 

It I <rJ, xeB J for any fixedjen. 

(i) The sum 

r,'(x) = i (it)m [QK,x]<m) 
m=O m! 

(3.10) 

is convergent in norm in .sf, and the convergence is uniform 
on the Cartesian product ofthe sets [K: Ken], [t: It l<rJ]' 
and [xeB J: IIxll<a) with any aeR+. 

(ii) The following limit exists in Pa.sf**: 

r?(x): = s*-lim r,'(x). (3.11 ) 
K 

Proof: (i) is a consequence ofthe estimate (3.9) which is 
independent of Ken and the corresponding majorizing pow­
er series is uniformly convergent on the Cartesian product of 
the three sets as stated in the assertion. 

The uniform boundedness in Ken of the multiple com­
mutators in the right-hand side of (3.10) together with (2.7) 
and (3.1) imply the existence of 

s"'-lim [QK,X) (m)ePa.sf**. 
K 

This fact combined with assertion (i) leads to (ii). Q.E.D. 
Proposition 3.4: The restriction to .sfJ of the mappings 

r? from (3.11) for real t, It l<rJ , are "'-homomorphisms of 
.sfJ into 'ifJ [cf. Definition 2.2(i)]. 

Proof: The mappings r,' are inner automorphisms of .sf, 
and their canonical extensions to .sf** leave elements of .!f 
(hence also P a) invariant, so that r,' can be considered as 
inner automorphisms of P a.sf**. The properties of the s"'­
convergence32

,38,39 imply then that r? are "'-homomor­
phisms of .sfJ = 1T'a(.sfJ) intoPa.sf**. Each multiple com­
mutator [Q K,X] (m) (xe.sfJ, K-:JJ) is a polynomial in the 
variables XpK , and in some of the variables of the form 
[ Xf., [Xi, , ... , [X!,,x] ... ] ] e.sfJ which are independent of 
K. ThestronglimitsofX/1K areelementsofff,cf. (2.7) and 
Definition 2.2 (i). Hence the sums of the norm-convergent 
series 

"" ('t)m 
r?(x) = L _l-,_s"'_lim [QK,x)(m), xe.sfJ, (3.12) 

m=O m. K 

are elements of'ifJ. Q.E.D. 
Proposition 3.5: Let Itl<r, (: = rJ with IJI = 1), fER. 

The limits 

(3.13) 
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exist in ff and have a unique extension to the *-automor­
phism group 7"Q of ff given by the formula 

(3.14 ) 

where rp Q is the Hamiltonian flow on g* generated by the 
Hamiltonian function Q. 7"Q is strongly continuous on ff. 

Proof: Let us calculate the right-hand side of (3.13) ex­
plicitly. Let [Q,J] be the Poisson bracket on g* (2.18), and 
let 

[Q,J](m+ I): = [Q,[Q,J](m)], [Q,j](0): =/ 
First, we intend to prove the equality 

for all mEZ+, peg. Using the Lie algebra representation 
property (with LCK), 

[X%,Xxd =iX1P.X]L' P,Xeg, (3.16) 

and the relation (2.21) as well as (2.7) and (2.9), we obtain 

(3.17) 

Since Qis a polynomialin/p (peg), one obtains (3.15) with 
a help of the algebraic properties (i.e., bilinearity, antisym­
metry, derivation property, and fulfillment of the Jacobi 
identity) of both the commutators and the Poisson brackets 
as well as due to the morphism properties of the mapping En 
from (2.11). Then the norm convergence in (3.10), the 
properties of the s*-convergence, the equality (3.15), and 
the norm continuity of the mapping Eo give, for small teR, 

7"~(Eo (/p») = f ':';-Eo qQ,Jp] (m» 
m=O m. 

where 

= EoCto ~ [Q,Jp] (m») =Eo(/Pt) , 

(3.18 ) 

(3.19) 

It is easily seen that/pt satisfies (2.20), hence/pt = rp ~ /p. 
The morphism and continuity properties of the mappings 
rp ~ and Eg on C(E) generated by /p (Peg) imply the exten­
sionof(3.18) to (3.14) for short times t. The group property 
of rp Q$ C·-aut C(E) together with the fact that Eg : 

C(E) -ff is an isomorphism, prove that there is a unique 
one-parameter group 7"Q such that (3.14) is valid for all teR. 
The strong continuity of 7"Q on ff is a consequence of the 
uniform continuity on compacts of the flow rpQ ,44b.47 since 
E = supp Eg is compact. Q.E.D. 

The proposition gives a natural extension of the family 
of mappings 7"~: d J 

-+ 'C J of Proposition 3.4 to an evolution 
group of the algebra ff of classical observables. Further ex­
tension of 7"Q leads to the following theorem, which is the 
main result of this section. 

Theorem 3.6: There is a unique C·-automorphism 
group 7"Q = [7"~: teR] of 'C extending the mappings 7"~ of 
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Proposition 3.4 as well as of Proposition 3.5. The group 1'Q is 
strongly continuous on 'C, and the restrictions of 7"Q to 
'C J (JeD) are one-parameter automorphism groups of the 
C·-subalgebras 'C J of 'C. 

Proof: Let us choose any JeD, and let I t I <r J for a given 
teR. Then we can apply Lemma 2.3 with d replaced by 
d J,7"A replaced by 7"~ofProposition 3.4, and 7"N substituted 
by 7"~ of Proposition 3.5. By a simultaneous use of the struc­
ture of 'C J according to definition 2.2 as well as of the map­
ping from Lemma 2.4, we obtain a unique homomorphism 
7"~: 'C J 

-+ 'C J extending those of Propositions 3.4 and 3.5. We 
shall now prove the group property of these *-homomor­
phisms 7"~ of C(J J for small real t (invertibility of 7"~ will then 
also be proved in this way), i.e., 

7"~+t2(Y)=7"~(7"~(Y»), ye'C J
, max(lttl,lt21)<!rJ • 

(3.20) 

Due to the structure of 'C J, it is sufficient to prove (3.20) for 
the elements of the form y = xz, xedJ

, ZEJV. But 
7"~(xz) = 7"~(x)7"~(z), and the restriction of 1'Q to ff satis­
fies (3.20). Hence it is sufficient to prove (3.20) for 
y=xedJ

• 

We shall first prove the equality 

7"~(s.-lim rf (X») = s·-lim 7"~(rf (x») . 
I K 2 K I 2 

(3.21 ) 

(Remember that we have not proved the s*-s*-continuity of 
the morphism 7"~: 'C J 

-+ 'C J 
.) By considering that Q is a 

polynomial, that the product in P G d·· is s·-continuous on 
bounded sets, and by repeated use of (2.7), (3.13), (3.14), 
as well as of the morphism property of 7"~, one obtains 

7"~(s*-lim [Q K,X] (m») = s.-lim 7"~ ( [Q K,x] (m» • 
I K K I 

(3.22) 

The equality (3.21) is obtained from (3.22) by the uniform 
norm convergence in (3.10) as well as by the norm continu­
. f Q Ity 0 7"t

l
• 

Since r;; (x) ED J for all xedJ and all KeD, we can apply 
Lemma 3.3 to obtain 

s*-lim 7"~(rf(x») 
K I 2 

= s·-lim s·-lim r,(rf (x») 
K L I 2 

• l' • l' ~ (itl)k (it2 )m 
=s -lms -1m £.. -----

K L k.m=O k! m! 

X [QL,[QK,X](m)](k). (3.23 ) 

The estimate of the form (3.9) with m replaced by m + k on 
the right-hand side can be proved for the multiple commuta­
tors in (3.23) in the same way as in Lemma 3.2. Hence the 
sum in (3.23) converges in norm uniformly in L, KeD. Con­
sidering again the specific structure of ~ and OX and the 
s·-continuity of the algebraic product on bounded sets, we 
can set L = Kin (3.23) and obtain 
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rQ, (rQ, (x») = s*-lim rf(7{' (x») 12K I 2 

=s*-lim i (it!)k (it2)m [QK,x](m+k) 
K k,m=O k! m! 

*1' ~ (t! + t2)k ['QK )(k) 
=s-Im~ I,X 

K k=O k! 

=r~+'2(x) , (3.24) 

where the last equality is valid according to Lemma 3.3. This 
proves the group property (3.20) for small tER, hence, since 
such rf are defined on the whole CC J

, rf can be uniquely 
extended to an automorphism group rQ C*-autCC J for any 
Jell, and these in tum have a unique extension to 
rQC*-aut CC due to norm continuity of any rf (determined 
now on the union of all CC J

, Jell, for any fixed telR). 
The strong continuity of the group rQ means 

lim\lrf(y) - yl/ = 0, for allyeCC . ,_0 (3.25) 

For yeJ4{J (Jell) the validity of (3.25) follows from the uni­
form convergence in (3.12), and this together with norm 
continuity of any morphism rf implies (3.25) for all yeJ4{. 
The strong continuity of the restriction of rQ to.Al" was 
proved in Proposition 3.5, and the continuity (3.25) for gen­
eral elements yeCC can be obtained easily from that for 
y = XZ, xeJ4{, zevY. Q.E.D. 

Let us calculate the infinitesimal generator of 
rQ C *-aut CC, 48 i.e., the derivation28•39 t5Q of rQ, 

(3.26) 

where D(t5Q) is the domain of t5Q, and the limit is taken in 
the norm of CC, cf. Ref. 28, Consequence 3.1.8. The explicit 
form of t5Q obtained in the next proposition will enable us to 
prove in Sec. IVan explicit expression for the time-evolved 
element rf(y) for an arbitrary ye1!f. 

Proposition 3. 7: Let t5Q be the infinitesimal $enerator of 
rQ, and let yeD(t5Q) be of the form y = Eg if) for some 
/eC(E,J4{J), Jell. Then the element t5Q (y)eCC is expressed 
by the formula 

t5Q(Eg (f» = f(i[ XJ(dFQ),f(F)] 

+ jt! t5j f(F) [Q,lj] (F) )Eg (dF), (3.27) 

where the first square bracket is the commutator in J4{J, the 
symbol [Q,lj) (F) denotes the Poisson bracket of the func­
ti~ns Q and lj: F-+F(Pj ) on g* in the poi~t Feg*, and 
t5j'(F) is the value of the partial derivative of/with respect 
to the component Fj of F in the point F. 

Proof' The formula (3.12) is valid for all x~; by its 
differentiation at t = 0 one obtains 

t5Q(X) =s*-lim UQK,x), xeB J, Jell. 
K 

(3.28) 

The derivation property of the commutator, the polynomial 
form of Q as well as the formulas (2.7) and (2.12), lead for 
xeJ4{J to 
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" t5Q(x) = iL Eg (t5j Q) [XI,x] 
j=! 

(3.29) 

where t5j Q is the partial derivative with respect to Fj. 
The vector field AQ is the derivation of the strongly con­

tinuous (cf. Proposition 3.5) automorphism group tp Q$ of 
C(E) introduced by (2.20). Let D(AQ) be the domain of 
AQ • By the norm continuity of the mapping Eg from (2.11), 
we obtain from (2.19) 

(3.30) 

Combining (3.29) with (3.30), one obtains (3.27) for ele­
ments Eg (f) with f: = 1: XJk for any finite number of 
xkeJ4{J,fkeD(AQ). Let &' (E) C C(E) be the set of poly no­
mials in /p (peg). The considerations leading to (3.18) 
show that/p's are analytic elements28 for AQ • Since analytic 
elements of any derivation on an algebra form a subalgebra 
and t5Q is bounded on J4{J accoridng to (3.29), cf. also 
!-emma 3.3, the set Ctff~ of elements Eg (f) of 'ljJ with 
/: = 1: XJk [xkeJ4{J,fke&' (E)] forms a norm-dense sub­
set of CC J of analytic elements for t5Q which is t5Q invariant: 
t5Q Ctff~ C Ctff~ • The union of all the 'Ij~ (Jell) is then a t5Q-
invariant norm-dense subset of Ctff consisting of analytic ele­
ments for t5Q • Let this union be denoted by Ctff p. According 
to 3.1.20 of Ref. 28, CC p is ~ core for t5Q • Then the expression 
(3.27) is valid for all Eg (/)e'lj p, 

t5Q(Eg (1:XJk») 

= L(t5Q(Xk)Eg(/k) +xkEg([Q,fd)) 
k 

= ~Eg(t! (it5j Q [Xf,xd/k +Xkt5j'dQ,ljP), 

x keJ4{J. (3.31) 

The c10sedness of t5Q now gives the result, since the operator 
in (3.27) ofthe form 

L [Q,lj ]t5j : D(AQ) -+ C(E,J4{J) 
j 

is just an alternative form of the derivation AQ of tp Q$ on 
C(E,J4{J). Q.E.D. 

Remark 3.8: The notation 1:j [Q,lJ ]t5j for AQ is unam­
biguous on the set of continuously differentiable functions 
C 1 (E). For a general feD(AQ) the symbol 1:J [Q,lj ] t5j 
should be understood as lhe directional derivative in the di­
rection of AQ (given by the vector components [Q,lj ] in the 
basis [t5j :j = 1,2, ... ,n] of TFg*) at any noncritical point F, 
i.e., Peg* in which dFQ #0. For any critical F, dFQ = 0, the 
value of Ar,:/= [Q,f]eC(E) is taken to be zero, 
[Q,f] (F) : = 0, for allfeD(AQ ). The domain D(AQ) con­
sists of suchjeC(E), for which the mentioned directional 
derivative can be continuously extended to the whole E with 
zero values at critical points. 
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IV. THE DYNAMICS OF GENERALIZED MEAN-FIELD 
MODELS 

Let .xff be an arbitrary C *-algebra, and let 
q( G) e *-aut .xff be a strongly continuous representation of 
a connected Lie group G. Let Eg be a projection-valued mea­
sure on g* with values in the center ~ of .xff** [identified 
with 1T' u (.xff) II as before]. Assume that Eg is G equivariant, 
i.e., 

q(g)(Eg (B») = Eg (Ad* (g)B ), geG, Borel Beg·, 
(4.1 ) 

and that the representation 1T' u (.xff)Eg (B) of.xff is faithful 
for any open Be supp Eg. Set P G : = Eg (g*). Let us assume, 
moreover, that E: = supp Eg is compact and contains at 
least one nontrivial (i.e., of a positive dimension) orbit of the 
Ad*-representation of G. We shall identify .xff with 1T' G (.xff) 
as in preceding sections. 

Let QeC "" (g* ,R), and gQ be a differentiable function 
satisfying (2.25) and (2.26), or equivalently, gQ is the solu­
tion of (2.30) with f3 ~ from (2.29). Let C(E,.xff) and 
5: = Eg(C(E») be as in D~finition 2.2. 

Proposition 4.1: Let IEC(E,.xff), fER. The function 
It: E -.xff determined by 

It(F) :=o1gi'(t,F»)(/(cp~F»), FEg*, (4.2) 

is norm continuous: ItEC(E,.xff). The mappings 
fi..-..lt (tER) form a one-parameter group of ·-automor­
phisms ofC(E,.xff), 

(It)s =It+., forallt,sER, 

and this group is strongly continuous, 

lim Iltt - III = 0, IEC(E,.xff). t_O 

(4.3) 

(4.4) 

Proof: The support Ee g* of Eg is left invariant by 
Ad· (G) transformations due to (4.1), hence E is also cpQ 
invariant. The differentiability of cpQ and gQ on R X g*, and 
the strong continuity of q( G) together with the norm conti­
~uity of each q(g)E·-aut.xff, lead to the continuity of 
It, i.e·./tEC(E,.xff). If we consider, in addition to the listed 
continuity properties, the compactness of supp EG , we ob­
tain (4.4). 

The morphism properties of the mapping I-It of the 
C·-algebra C( E,.xff) into itself are due to morphism proper­
ties of cp ~E* -aut C( E,.xff), the morphism properties of each 
q(g) E·-aut .xff, as well as the pointwise character of algebra­
ic operations in C(E,.xff), e.g., (ith) (F) : = it (F)h(F). 

The group property (4.3) is obtained from the group 
property of the flow cpQ, from the cocycle property (2.26), 
as well as from the group representation property of q(g) , 

q(g,g2) = q(g,)oq(g2)' g,,g2EG. (4.5) 

The group property implies invertibility. This shows that the 
considered mappings I-It form a strongly continuous one­
parameter group of ·-automorphisms of C(E,.xff). Q.E.D. 

The assumptions of this section left the conditions of 
validity of Proposition 2.5 unchanged. Let '6' be given as in 
definition 2.2. The following theorem is an immediate conse­
quence of Propositions 4.1 and 2.5. 
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Theorem 4.2: the mappings -r~: '6' - '6' (tER) deter­
mined by 

-r?(Eg(/»):=Eg(lt), }eC(E,.xff) , teR, (4.6) 

form a strongly continuous one-parameter group of ·-auto­
morphisms of the C·-algebra '6'. 

Proof: The morphism and continuity properties of the 
automorphism group of Proposition 4.1 are conserved by the 
·-isomorphism Eg: C(E,.xff) - '6' of Proposition 2.5. 

Q.E.D. 
Proposition 4.3: Let q( G) be locally faithful, i.e., the 

kernel [hEG: q(h) = q(e)] is discrete. Assume thatgQ sat­
isfies (2.26). If the function 

F(EE)t--+O'(gi '(t,F»)(x), IER, xE.xff, (4.7) 

are all constant, thenf3Q: = f3~ from (2.27) is a constant in 
g. Hence the restriction ofQ to any Ad*-orbit in Eis identi­
cal to the restriction of the linear function Q( F): = F(f3 Q ) , 
FEg*, up to an additive constant. 

Proof: The constancy of ( 4. 7) together with (2.26) im­
ply that the function t ~gQ (t,F) )E·-aut .xff is a one-pa­
rameter group independent of F. There is an isomorphism of 
g onto one-parameter subgroups of q( G) due to the local 
faithfulness; hence u{gQ (t,F») = o1exp(tf3Q ») for some 
f3QEg. The continuity of gQ in F, the continuity of q( G), and 
the boundary condition gQ (O,F) = e imply f3 ~ = f3Q (for 
all FEE), so that dFQ = f3Q - f3~, according to (2.29). The 
differentials dFlx (XEg) of the functions Ix (F): = F(X) 
contain a basis of the cotangent space to the Ad*-orbit 
through any FEE. Hence any function Q ° on the orbit with 
zero Poisson brackets [Q 0, Ix] = 0 for all XEg on the orbit 
equals a constant function on the orbit, 

QO(Ad·(g)F) = QO(F), for all geG. 

We have for the Q used in the definition of gQ in (4.7), 

- [Q'/x](F) =F<[dFQ,dFlxP 

= F<[f3Q - f3 ~,X]> = F<[f3Q,X p, XEg, 

since F( [f3~,X] ) = 0 (FEg·, XEg) due to the definition of 
f3~, cf. the text below (2.29). Hence [QJ'x] = [Q'/x] for 
all XEg, and the restriction of Q 0: = Q - Q to any Ad*-orbit 
in E is a constant function. Q.E.D. 

Corollary 4.4: Let q( G) be locally faithful, and let gQ be 
as above. The one-parameter group -rQ from (4.6) leaves the 
C·-algebra .xff invariant: -r~ ( .xff)= .xff, iff 

Q(Ad·(g)F) = Ad·(g)F(f3Q) + QO(F), for all geG, 
(4.8) 

for some f3QEg, and some Q °EC"" (E) constant on the orbits 
of Ad·(G) lying in E, and dFQo= -f3~(FEE),cf. 
(2.29). 

Proof: The -rQ invariance of .xff means the constancy of 
all the functions in (4.7), as is seen from (4.2) and (4.6), 
and from the identity of .xff with the E image of constant 
functions in C(E,.xff). The necessity of (4.8) for this invar­
iance was proved in Proposition 4.3. Assuming (4.8), one 
obtains from (2.29):f3~ = f3Q,and the unique solutiongQ of 
(2.30) is independent on the parameter FEg.: 
gQ(t,F) = exp(tf3Q) . The constancy in (4.7) is now clear. 

Q.E.D. 
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Let us now derive the explicit form of the derivation l>Q 
of the automorphism group rQ introduced in this section. 

Proposition 4.5: Let l>q (P) (/3Eg) be the derivation of 
the strongly continuous one-parameter group 
t~o(exp(tp») of automorphisms of d, and let AQ be the 
derivation of the strongly continuous one-parameter group 
q; Q* of automorphisms of the C·-algebra C(E,d), in the 
notation of Sec. III. Let rQ C·-aut '7f/ be given by (4.6). 
Then the infinitesimal generator (i.e., the derivation) of rQ is 
expressed by the formula 

l>Q(Eo(/» = f(AJ"(F) -l>q(P~)(/(F»)Eo(dF), 
(4.9) 

where P ~ (FEE) is given in (2.29), and D(l>Q) is the do­
main of the derivation l>Q. 

Proof: Due to norm A continuity of the mapping Eo, it 
suffices to prove that for fEE 0- I(D(l>Q») one has 

:J=O/I(F) =AJ"(F) -l>q(P~)(/(F»), for FEE, 

(4.10) 

where the derivative should be taken in the norm topology of 
d (and uniformly in FEE). By differentiation of (4.2) at 
t = 0, we obtain 

dl A _dl A Q -d fl (F) - -d f(q; I 'F) 
t 1=0 t 1=0 

+ :rI.=o o(gQ I (t,F»)(/(F») . ( 4.11) 

The first term on the right-hand-side of (4.11) gives the first 
term on the right-hand sideof( 4.10), which is an immediate 
consequence of the definition of AQ • We can write according 
to Remark 3.8, 

AJ"(F) = ± [Q,Fj] (F) l»(F) . (4.12) 
j= I 

The second term on the right-hand side of (4.11) is the de­
rivative of the composite function t ~o(go( t») with 
go: = gQ I at any fixed FEE. The derivative of t~gQ I (t,F) 
is, according to (2.27), equal to - P ~eg. The derivative of 
~O'(g) at g = e is the linear mapping l>q from the tangent 
space 9 to G at the identity e to (in general unbounded) 
derivations l>q (P) (Peg) on the C·-algebra d. The compo­
sition of these two differentiations gives the second term on 
the right-hand side of ( 4.10). This result can be obtained in a 
more explicit way by introduction of normal coordinates on 
a neighborhood of the identity ofG. Q.E.D. 

Corollary 4.6: Let d and 0'( G) be defined as in Sec. II. 
Let rQ of (4.2) and (4.6) correspond to P ~ = d FQ (Feg*) 
for any differentiable QeC(E). Then the value of the 
derivation l>Q from (4.9) taken for leC(E, d J

) 

nE g- I(D(l>Q») (Jen) can be written in the form (3.27). 
Proof: The first term in the right-hand side of ( 4. 9) can 

be written in the form of the second term on the right-hand 
side of (3.27), in accordance with (4.12). The linearity of l>q 
as well as an explicit expression of P ~ give us 

n 

l>u(P~)(x) = L l>jQ(F) l>u(Pj)(x), xedJ
• (4.13 ) 

j= I 
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The derivations l>q (P) (/3Eg) are easily calculated from 
(2.1) and (2.2). ForxedJ one has 

l>q(P) (x) =- i[XJ (P),x] . (4.14) 

Insertion of the obtained expressions into (4.9) gives (3.27). 
Q.E.D. 

According to the Hille--Yosida theorem,28 a continuous 
one-parameter group rQ of automorphisms of a C·-algebra 
~ is determined uniquely by determination of its generator 
l>Q on some of its cores in ~. Hence the preceding corollary 
shows that the set of evolution groups rQ on ~ defined in 
this section contains the subset of evolutions obtained in Sec. 
III as thermodynamic limits of local Hamiltonian evolu­
tions. The specification of the general case to the models 
considered iri Sec. III consists of (i) substitution for d of 
the infinite tensor product C·-algebra ® pell .!f (Hp) deter­
mined in Sec. II; (ii) choice of 0'( G) in the form (2.1 ) with a 
norm-continuous unitary representation U(G); (iii) taking 
P~ : = 0 (for all FEE) in (2.29); and (iv) the choice of 
QeC(E) to be a polynomial in variables Fj: = F(p}), 
j = 1,2, ... ,n = dim G. 

A general discussion of equilibrium thermodynamics of 
the considered models, and an analysis of specific simple 
examples is supposed to be published in forthcoming papers, 
cf. also Ref. 25(a). 
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A theorem is presented on the location of the essential spectrum of certain intermediate 
Hamiltoni;.lns used to construct lower bounds to bound-state energies of multiparticle atomic 
and molecular systems. This result is an analog of the Hunziker-Van Winter-Zhislin theorem 
for exact Hamiltonians, which implies that the continuum of an N-electron system begins at 
the ground-state energy for the corresponding system with N - 1 electrons. The work 
presented here strengthens earlier results of Beattie [SIAM J. Math. Anal. 16,492 (1985)] in 
that one may now consider Hamiltonians restricted to the symmetry subspaces appropriate to 
the permutational symmetry required by the Pauli exclusion principle, or to other physically 
relevant symmetry subspaces. The associated convergence theory is also given, guaranteeing 
that all bound-state energies can be approximated from below with arbitrary accuracy. 

I. INTRODUCTION 

Variational techniques for obtaining upper bounds to 
eigenvalues of a multiparticle Hamiltonian H are well devel­
oped and can often yield quite accurate estimates to eigen­
values of interest. However, upper bounds alone cannot pro­
vide complete estimates of the error in the approximations to 
the eigenvalues. To do this one must bracket the eigenvalues 
of interest by also computing complementary lower bounds. 

In general, the computational effort is greater for lower­
bound estimation, and the related analysis more subtle, than 
that required in standard approaches for upper-bound esti­
mation (such as Hartree-Fock and configuration interac­
tion methods). Furthermore, lower-bound procedures 
usually require some form of additional a priori spectral in­
formation. For example, Temple's inequality1.2 can often 
yield a reasonably tight lower bound to a particular eigenval­
ue provided that the eigenvalue of interest can be explicitly 
isolated from the next larger eigenvalue, which requires a 
good estimate on the next eigenvalue. Such needs for a priori 
spectral information often become problematic in practical 
circumstance. The method that we consider here, the meth­
od of intermediate Hamiltonians, has by contrast fairly re­
laxed requirements for a priori information, though effective 
use of this information may offer distinct computational 
challenges. 

The method of intermediate Hamiltonians was used 
with great success by Bazley and Fox3

-6 to obtain lower 
bounds to He, and by HilF to prove that H - has only one 
bound state. Extensions to three-electron problems proved 
more difficult, although some results have been obtained.8-11 
This method requ~es a decomposition of the self-adjoint op­
erator H as Ho + H, where informatio~ on the discrete spec­
trum of Ho is explicitly avai~ble and H is a symmetric posi­
tive-definite operator (Le., H~O). Those eigenvalues of Ho 
that lie below the infimum of the essential spectrum of H 
[Le., the bottom of the continuum, denoted here as..i. (H)] 

are lower bounds to the corresponding eigenvalues of H. Be­
cause these bounds invariably tend to be quite cru~e, one 
seeks improved bounds by carefully approximating H from 
below (in the sense of quadratic forms). As originally con­
ceived, this was done with an increasing chain of positive 
semidefinite finite-rank operators. The resulting problem 
was equivalent to the evaluation of the spectrum of a degen­
erately perturbed operator with known spectrum. 12 A de­
tailed discussion of intermediate operator methods can be 
found in Refs. 13-15. 

The principal difficulty in applying standard intermedi­
ate operator techniques to multiparticle Hamiltonians is that 
the lowest point of the essential spectrum of the base opera­
tor, ..i. (Ho), often lies below the lowest eigenvalue of H. 

A 

Since finite-rank approximations to H produce compact per-
turbations of Ho that leave the essential spectrum of Ho un­
perturbed, the method as originally developed in Refs. 4 and 
5 cannot yield convergent lower bounds. Fox16 developed a 
modification of the standard intermediate operator ap­
proach utilizing noncompact perturbations of the base oper­
ator Ho, yet retaining the critical property of producing com­
putationally resolvable intermediate operators. Recently 
Beattie17 showed that a variant of Fox's construction yields 
intermediate Hamiltonians for which ..i. (Ho) can be made 
arbitrarily close to..i. (H), the lowest point of the essential 
spectrum of the exact Hamiltonian. This allows, at least in 
principle, tight lower bounds to all eigenvalues of the Hamil­
tonian. These results were obtained for the full Hamiltonian 
operator without considering the permutational symmetries 
of the system. In calculations for real atomic and molecular 
systems, one wants to consider Hamiltonians that are re­
stricted to appropriate symmetry subspaces so that the Pauli 
exclusion principle is satisfied. In this paper we show that the 
results of Ref. 17 can be extended to such symmetry-restrict­
ed Hamiltonians. The crucial point is to extend Beattie's 
analog of the Hunziker-Van Winter-Zhislin (HVZ) 
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theorem to intermediate Hamiltonians restricted to appro­
priate symmetry subspaces. 

In addition, we discuss extensions to systems containing 
several species of identical particles, and to molecular sys­
tems. Finally, we show that the lower bounds obtained via 
this construction converge to the exact eigenvalues of H. 
Thus all bound states of H can, at least in principle, be ap­
proximated from below with arbitrary accuracy. 

The behavior of a single particle with spin s is described 
by a Hamiltonian operator acting on a suitable dense subset 
of the Hilbert space JiY' = L 2(R3 ) ® (;2s+ I. For real elec­
trons, which have two spin states, we have JiY' 
= L 2(R3

) ® (;2. The Hamiltonian for N identical particles 
then acts on an appropriate subspace of 

JiY'N = JiY' ® JiY' ® JiY' ® JiY' ® ... ® JiY' , 

i.e., the tensor product of N copies of JiY'. Ifthe particles are 
bosons (s = integer), the N-particle Hamiltonian must be 
restricted to the symmetric subspace of JiY'N, which we de­
note as JiY'~. If the particles are fermions (s = half-in­
teger), the N-particle Hamiltonian must be restricted to the 
antisymmetric subspace of JiY'N, which we denote as JiY'~ . 

The multiparticle Hamiltonians that we consider have 
the form 

N 

HN = I [-11; + W(r;)] + IV(r; - rj ), (1) 
;= 1 ;<j 

where 11; is the three-dimensional Laplacian acting on co­
ordinates of the ith particle, and Wand Vare suitable poten­
tial functions. The restriction of H N to JiY'~ or JiY'~ will be 
denoted H N. + or H N. _ , respectively. For N electrons in the 
field of a fixed nucleus of charge Z, W(r) = - Z Ir and 
V(r) = l/r, where r = Irl. For molecular systems with M 
fixed nuclei of charge ZI"",ZM at positions R1, ... ,RM, 

M -Z I 
W(r) = I J and V(r) = -. 

J=,lr-RJI r 

In the molecular case, tractable intermediate Hamiltonians 
appear to exist only for homonuclear diatomic molecules, in 
which case the Schrodinger equation for the Hamiltonian 

h = -11- Z/lr - R,I - Z/lr - R21 

can be solved exactly. 
We require that the potentials in both the atomic and 

fixed-nuclei molecular cases satisfy conditions sufficient to 
assure convergent spectral approximations, as follows: 

(a) Wand VEL 2(R3
) + [L 00 (R3

) le , 
(b) V>O almost everywhere in R3 , 

(c) the self-adjoint operator corresponding to 
h = - 11 + W is bounded below and has as its 
spectrum negative eigenvalues of finite multiplic­
ity, and essential spectrum [0,00 ). 

Although practical applications generally require that h 
actually have some negative eigenvalues, the analysis re­
mains valid if some hk possesses only essential spectrum 
[0,00). 

(In the case of diatomic molecules with finite nuclear 
mass, for example, it might actually be useful to consider 
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hJ = - I1J>O; unfortunately, other difficulties prevent us 
from extending these techniques to molecular systems with 
finite nuclear mass at present. In the extension to several 
species of identical particles discussed at the end of Sec. IV, 
the charge of all particles must have the same sign.) 

II. INTERMEDIATE HAMILTONIANS 

Following earlier work, we consider intermediate Ham­
iltonians that can be expressed in the form 

N 

H'f:P = I h7a + I zig , (2) 
;= 1 i<j 

where h ~a and zig denote, respectively, approximations to 
h; = - 11; + W(r;) and Veri - rj ) having the following 
key properties. 

(i) The approximation h ~ has the form 
Tka +Ak+l(h)Ekl, where Ak+l(h) is the kth 
eigenvalueofh = -11 + W(r),Ek is the orthogo­
nal projection onto the span of the eigenspaces cor­
responding to eigenvalues A1, ... ,Ak of h, 
E k 1 = I - E k' T ka is symmetric and has finite rank 
(k + a) with range denoted r ka' and 
Tka + Ak + 1 (h )Ek 1 < h in the sense of quadratic 
forms. 

(ii) The approximation zig has finite rank with range 
np ® np for some explicitly known/3-dimensional 
space np CJiY', and zig < Veri - rj ) in the sense of 
quadratic forms. 

[Although the analysis in Ref. 17 is given for operators on 
L 2(R3

), it can readily be extended to operators on 
JiY' = L 2(R3 ) ® (;2s+ 1. However, we note the following 
changes in notation: 

np-.. np , ~k Vspana{A~qv}-+rka.] 

The construction of Tka depends on the spectral resolution 
of h and the choice of a finite-dimensional subspace 
Oa cJiY': 

Tka = hEk + [h - Ak+ t<h)]E/Qa, 

where Q a is a nonorthogonal projection operator with range 
Qa and kernel {[ h - Ak+ 1 (h) ]Ek loaF. The approxima­
tion zig is defined similarly as Veri - rj)R~, where R ~ is a 
nonorthogonal projection with range A~ and kernel 

C. Beattie and M. B. Ruskai 2237 



                                                                                                                                    

{V(fj - fj )A~P. A more complete description and analysis 
may be found in Refs. 16-18. 

Define the subspace J/kaf3 = r ka V nf3. Notice that for 
a simple two-particle intermediate Hamiltonian given by 
H;af3 = h ~a + h r + vIt, a full set of explicit reducing 
spaces may be constructed as J/kaf3 ® J/kaf3, J/ kaf3 
® [J/kaf3 ]\ [J/kaf3 ]l®J/kaf3, and [J/ kaf3]l ® [J/ kaf3]l. 
It is not hard to see that on the last subspace, H ;af3 reduces to 
a scalar multiple of the identity I, while on the first subspace 
it is essentially a matrix operator. On the remaining two sub­
spaces, H ;af3 is effectively a direct product of a matrix opera­
tor and a scalar multiple of /. This means that the spectrum 
of H ;af3 can be computed explicitly through a matrix diago­
nalization. However, these subspaces will not be reducing 
subspaces for H ;~~ . To obtain reducing subspaces with the 
correct permutational symmetry, the first and last subspaces 
above must be replaced by their symmetric or antisymmetric 
components, while the middle two spaces must be replaced 
by 

%;~~ ± = J/kaf3 ® [J/kaf3] 1 ± [J/kaf3] 1 ® J/kaf3 . 

The construction of reducing subspaces in the N-parti­
cle case follows a similar pattern. To construct reducing sub­
spaces for H ~~~ we let 

'Jrt~ .. s, =./V1 ®./v2 ® ... likYN (3) 

describe a subspace of )7t"'N with 

./Vj = J/kaf3, if iE{sl, ... ,sJ , 
and 

./Vi = [J/kaf3 ]\ if iEl:{s" ... ,sJ. 
If permutational symmetry is not considered, then 'Jr~~~.s, 
will be a reducing subspace for H ~af3. However, 'Jr~~~.s, will 
not be a reducing subspace for the symmetry-restricted in­
termediate Hamiltonians H ~~~ . Therefore we now define 

% kaf3 _ Ell W kaf3 
N,r - SI •...• S" 

SI ... ·'S' 

i.e., %';:.t is the span of the unions of all subspaces of the 
form (3) with exactly r copies of J/ kaf3 and N - r copies of 
[J/kaf3 ]1. Let %~~f. ± denote the symmetric and antisym­
metric subspaces of %';:.t. Then'%~~f. ± is a reducing sub­
space for H ~~~ for all r, and 

N 

crpN '" C'f/'kaf3 
c7l ± = IJ7 Jl N,r, ± . 

r=O 

III. LOCATION OF ESSENTIAL SPECTRUM 

(4) 

Let A. (A) = inf 0' ... (A) and Al (A) = inf O'(A). For 
Hamiltonians of the form ( 1 ), the celebrated HVZ 
theoreml9 is equivalent to the statement 

A.(HN) =AI(HN _ I ), 

i.e., the essential spectrum of the Hamiltonian of N particles 
in the field of a fixed nucleus (or several fixed nuclei) begins 
at the lowest eigenvalue of the corresponding system with 
N - 1 particles. In the case of symmetry-restricted Hamilto­
nians, H N. ± ' this result becomes 

A.(HN.±) =AI(HN _ I,±)· 
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Beattie l7 gave an analogous formula for intermediate Hamil­
tonians without symmetry restrictions. The extension of 
Beattie's formula to symmetry-restricted intermediate 
Hamiltonians is the following theorem. 

Theorem 1: A. (H~ ) = Al (H';:!! I, ± ) + Ak+ I (h). 
Before proving this result, it will be useful to make some 

observations about the spectral properties of H ';:,f. ± ' by 
which we denote the restriction of H 'fvaf3 to %';:,f. ± . All ei­
genfunctions of H ';:,f. ± have the form 

~ ± {G(xl,oo·,xr)gl(Xr+ I )"'gN-r(XN )}, (5) 

where Xi = (ri,si) represents the space and spin coordinates 
of the ith particle, G is an eigenfunction of H ':::~± ' the gj are 
in [J/kaf3]\and~± projectsonto)7t"'~. ThusH~~± has 
pure point spectrum consisting of eigenvalues of the form 

e-val(H~~ ± ) = e-val(H~ ) + (N - r)A k + I (h). (6) 

However, because h ka is a multiple of the identity on the 
infinite-dimensional space [J/kaf3]l, the eigenvalues of 
H ';:.f. ± have (i) finite multiplicity, if r = N; and (ii) infinite 
multiplicity, if r < N. Thus H ~~. ± has only discrete spec­
trum, while H ';:.f, ± has only essential spectrum when N> r. 

To prove Theorem 1, we first note that (4) implies 

Al (H':::~ ) = minr=o, ... ,n Al (H~~!!± ) . (7) 

Applying a similar analysis to A. (H';:.~ ) and using (7) 
along with the observations above, we find that 

A. (H';:.~ ) = minr=o, .... N A. (H';:.f, ± ) 

=minr=o .... ,N_, A.(H~~±) 

= minr=o .... ,N_I {AI(H~~~± ) 

+ (N - r)Ak+ I (h)} 

=minr=o, ... ,N_I{AI(H':::~± ) 

+ [(N-l) -r]Ak+l(h)}+Ak+dh) 

= minr=o, .... N_ I {AI (H';:!! I,r, ± )} + Ak+ I (h) 

= Al (H'N!! Io± ) + Ak + dh) . 

IV. EXTENSION TO SYMMETRY SUBSPACES 

Our analysis thus far has not explicitly considered spin. 
The spin was present implicitly by the inclusion of C2s + I in 
)7t'" = L 2(Dl3

) ® C2s+ I. When spin is explicitly considered, it 
suffices to use trial functions IIJ in)7t"'~ that have the form 

T 

IIJ = I <I>,(rl,oo.,rN)~,(Sl>oo.,SN)' (8) 
'=1 

where <I>,E[L2(Dl3)]N and ~,E[C2s+I]N, and for which 
{<I>,} and {~,} are bases of irreducible representations of the 
symmetric group SN' It is then natural to ask if Theorem 1 
can be extended to this situation, i.e., to HN,u defined as the 
operator H N restricted to the subspace of [L 2 (R3 ) ] N corre­
sponding to the irreducible representation 0' of SN' Before 
showing that such an extension is possible, we point out that 
Theorem 1 actually suffices for most practical calculations. 
If one is interested in bound states belonging to a particular 
subspace 0', Theorem 1 implies that it suffices to consider 
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intermediate Hamiltonians restricted to the subspace K~, 
provided that the eigenvalues of interest lie below 
A.. (HN, ± ). However, the extension to other irreducible rep­
resentations, which we give here, is useful for several rea­
sons. 

(a) One is occasionally interested in bound states em­
bedded in the continuum, i.e" in energies Eu ' which lie in the 
region A..(HN,±)<Eu<A..(HN,u)' (Hill's proof 9 that 
H - - has no bound states in the quartet sector is an example 
of such a situation. ) 

(b) A similar analysis can be applied to other physically 
relevant symmetries besides permutational symmetry. 

( c) This analysis can be extended to consider several 
species of particles, as described below. 

(d) The spectrum of K~ is a subset of that for K~ . 
Hence restriction to K~ can reduce the density of eigenval­
ue clusters and increase the gap between computed eigenval­
ues, as compared to that when K~ is used. This improves 
both the conditioning and convergence rate of computa­
tional algorithms used ultimately to resolve the final matrix 
eigenvalue problem. 20 

Sigalov and Sigal21,22 have shown how to extend the 
HVZ theorem to Hamiltonians restricted to symmetry sub­
spaces. We summarize their analysis for Hamiltonians of the 
form H N,u' Let u and CtJ denote irreducible representations of 
S Nand Sn' respectively, with n < N, so that Sn is isomorphic 
to a subgroup of S N' Let CtJ < u indicate that the irreducible 
representation CtJ is present in the decomposition of u re­
stricted to Sn' Sigalov and Sigal21,22 showed that, in the case 
of Hamiltonians of type ( 1 ), 

)".(HN,u) =min",<u).,I(HN _ I,,,,). (9) 

The corresponding generalization to intermediate Hamilto­
nians is the next theorem. 

Theorem 2: 

).,.(H'N~) =min",<u).,I(H'N"~I.{U) +)"k+dh). (10) 
Proof" We first note that eigenfunctions of H'f.::: have 

the form 

~u {G(xw .. ,x,)gl (x,+ I)" 'gN- ,(XN)}' 

where the notation is as in Theorem 1, except that udenotes 
the restriction to the subspace K~ corresponding to u, and 
G is an eigenfunction of H ~':! with CtJ < u. The proof of 
Theorem 1 can then be easily extended to this more general 
case. We omit the details. 

It should be clear that our analysis could easily be ex­
tended to symmetry subspaces corresponding to several spe­
cies of identical particles instead of N electrons, e.g., NI elec­
trons and N2 muons with NI + N2 = N. In this case, - Ai 
would be replaced by - A;lmi in (1), where m; is the mass 
of particle i, and H N would act on K~ ® K"!:. . 

V. CONVERGENCE 

The question of what conditions on the approximating 
subspaces A~ and fla are sufficient to guarantee convergent 
estimates has been addressed in more general settings by 
Beattie,18 Greenlee,23 Beattie and Greenlee,24 and Brown.2s 

In our setting, the derived density criteria sufficient to guar­
antee convergence may be succinctly stated: 
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(1) lim A~ is dense in [W 2
•
2 (R3) ® C2s + I] 

®[W2,2(R3 )®C2s + I J, (11) 

(2) lim fla is dense in W 2,2 (R3) ® C2• + I , (12) 

where W 2
•
2 (R3) denotes the second Sobolev space embed­

ded in L 2 (R3). In particular, these density conditions induce 
core conditions within every symmetry subspace K~ suffi­
cient to produce convergent spectral estimates for H ';:,t, 
provided one additional hypothesis holds. The convergence 
results cited above all carry the proviso that the lowest point 
of the essential spectrum of the intermediate operators must 
move up sufficiently to expose the eigenvalues of H N,u to 
convergent estimates. That such movement can be guaran­
teed for the full unrestricted Hamiltonian operator was 
shown in Refs. 18 and 24. We show here that this is also the 
case for Hamiltonians restricted to symmetry subspaces. 

Theorem 3: Under the density hypotheses (11) and 
(12), the family of intermediate Hamiltonians {H'f:.:}kafJ 
provides convergent lower-bound estimates to the lowest 
point of the essential spectrum of H N,u: 

(13) 

As a consequence, every lower eigenvalue of H N,u is accessi­
ble to convergent estimates, and 

limA.;(H~) =).,;(HN,u) , (14) 
kaP' , 

for every i such that).,i (H N,,,) <).,. (H N,u) . 
Proof" Consider first the case N = 2. We have from ( 10) 

A.. (Ht'!) = min",<u)"1 (Hr!) + ).,k+ I (h) 

=).,1 (H~aP) +).,k+ I (h) 

=).,I(h~) +).,k+dh) 

=).,I(h) +).,k+1 (h) =).,.(H2,,,) +A.k+1 (h). 

Since)., k+ I (h) -+ 0 as k -+ ex>, (13) holds for N = 2, and the 
density conditions ( 11) and ( 12) guarantee that ( 14) holds 
as well. Now make an induction hypothesis and suppose that 
(13) and (14) hold for all N < M, for some M> 1. We may 
then deduce that 

lim)".(H~~) = limmin{u<u).,I(H~I"') 
kaP 'kaP , 

=min",<u).,I(HM_1,{U) =).,.(HM,u)· 

Hence (13) holds for N = M, the density criteria again im­
ply (14) for N = M, and the induction step is completed. 
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Let iI be the closure of the restriction of the three-dimensional Laplacian - 11 on the domain 

CO' (R 3'\l:), where l: = UJ"= 1 aK(O,Ri ) and K(O,Rj ) is a closed ball of radius Rj centered at 
the origin in R 3. It is well known that H is a closed symmetric operator with deficiency indices 
( 00,00 ). In this paper all self-adjoint (s.a.) extensions of iI are constructed; these extensions 
contain as particular cases the quantum Hamiltonian describing concentric 8- and 8' -sphere 
interactions. It is also shown that the s.a. extensions of iI may be obtained as norm-resolvent 
limits of momentum cutoff and scaled separable potentials. 

I. INTRODUCTION 

In recent years there has been a lot of interest in studying 
sphere interactions in quantum mechanics; see Refs. 1-3 and 
the references therein. 

Consider in L 2 (R 3) the Laplacian - 11 on the domain 
D = C O'(R 3,\ UJ"= laK(O,Rj »), where K(O,Rj ) is a clos~ 
ball of radius Rj centered at the origin in R 3, and denote by H 

the operator iI = - I1 ID • In Ref. 2 it is shown that iI is a 
symmetric operator with deficiency indices (00,00), and 
that iI may be written in the form 

• 00 __ 

1
" -.. 

H= I~OU hl.{R}U®I, (1.1) 

where the transformation U is given by (2.3), and, for fixed 
leNo, theoperatorhl.{R} defined by (2.6) and (2.7) isasym­
metric operator with deficiency indices (N,N). Consequent­
ly hl.{R} admits an N 2-parameterfamily of self-adjoint (s.a.) 
extensions. A particular N-parameter subfamily of s.a. ex­
tensions corresponding to concentric 8-sphere interactions 
is discussed in Ref. 2. 

In this paper we study the general N 2-parameter family 
ofs.a. extensions of hl.{R}' In Sec. II, using the general theory 
of s.a. extensions of symmetric operators4 and the decompo­
sition (1.2), we obtain all s.a. extensions of hl.{R} and iI, 
respectively. Furthermore we show that these extensions 
may be obtained as norm-resolvent limits of momentum cut­
off (Sec. III) and scaled separable potentials (Sec. IV). 

II. CONSTRUCTION OF SELF-ADJOINT EXTENSIONS 

Consider in L 2(R 3) the closed, non-negative minimal 
operator 

iI= - I1CO'(R 3,\UJ"=laK(0,Rj »), 1 <.j<.N, (2.1) 

where K(O,Rj ) is a closed ball of radius Rj centered at the 
origin in R 3, and 

.) On leave of absence from 1FT, Uniwersytet Wroctawski, Poland. 
b) Permanent address: Department of Mathematics, University of Burundi, 

B. P. 2700 Bujumbura, Burundi. 

a 2 a 2 a 2 

11=-+-+-
aX7 axi ax~ 

is the Laplacian. 
Following, e.g., Ref. 5, p. 160, one can decompose 

L 2(R 3) with respect to angular momenta, 

L 2 (R 3
) =L 2(0,00);rdr)®L 2

(S2) (2.2) 

(S 2 is the unit sphere in R 3), and introduce the unitary trans­
formation 

U:{ L 2«~, 00 );r dr)->L 2(0, 00 »), 
!->(U!)(r) = r!(r) , r>O, 

(2.3) 

in order to get the following decomposition of L 2 (R 3): 

L 2 (R 3
) = ; U- 1L 2(0,00);dr)® [Y7'], 

1=0 

leNo, -1<.m<.l, (2.4) 

where [Yi] denotes the linear span of the spherical har­
monics. With respect to the decomposition (2.4), iI reads 

• 00 __ 

1
, -

H=/~oU hl.{R}U®l, (2.5) 

where 
. d 1(1 + 1) 
hl.{R} = - dr + r ' (2.6) 

!!J (hl.{R}) = {jeL 2(0,00 »)iJ,!'eAC1oc«0,00 »); 

!(O+)=O if 1=0; !(Rj±)=O; 

- f" + 1(/ + 1 )r- 2jeL 2( (0,00 ) )}, 

leNo, l<.j<.N, {R} = {R1, ... ,RN }. 

(2.7) 

Following Ref. 2 one can show that hl.{R} has deficiency 
indices (N,N) , and that the deficiency subspace N _ k is 
spanned by the N linearly independent functions 

r<.R j , 

1m k>O, 1 <.j<.N, 
r>R j , 

(2.8) 
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where Jv (z) and H ~I) (z) are, respectively, Besseland Han­
kel functions of order v (see Ref. 6). Therefore all self-ad­
joint extensions of hi. {R} are given by an N 2 -parameter family 
of s.a. operators. 

A particular N-parameter family of s.a. extensions of 
hl.{R} corresponding to the quantum Hamiltonian describ­
ing N 8-interactions with supports on concentric spheres of 
radii 0 < R I < R2' .. < R N has been extensively studied in 
Ref. 2. In this paper we investigate to which situation the 
other s.a. extensions of hl.{R} correspond. We will follow the 
strategy of Ref. 7 in the analogous treatment of point interac­
tions (cf. also Ref. 8). 

From the general theory of s.a. extensions of symmetric 
operators4 it follows that the s.a. extensions hl,u,{R} of hl,{R} 
are given by 

fP(hi,U'{R})={g+j~1 Cj [t,6I,H +j~1 Ujft,6/,j_] 

I gefP (hl,{R})' CjEC} , (2.9) 

hi,U,{R} {g + J~I CJ [t,6I,H + j~1 Ujft,6I,j - ]} 

= hl,{R} g + i j~1 Cj [t,6I,H - j~1 Ujft,6/,j -], (2.10) 

where Ujf' 1 < j,f <N, denotes a unitary matrix in C N, and 

t,6I,J± = t,6I,j (..[±l,r) , Im~ ± i > 0 provide a basis of 
ker [ h r,{R} + i], respectively. 

The case U = - 1, i.e., Ujf = - 8jf' gives the free ki­
netic-energy Hamiltonian for fixed angular momentum I: 

d 2 l(l+ 1) 
hi, - I,{R} = hl,o = - dil + il (2.11 ) 

fP (hl,o) = {jeL 2( (0,00»)1 J.I'eACloc (0,00 »); 

1(0+) =0 if 1=0, 

-/" +/(/+ l)r- 2jeL2((0,00»)}, leNo' 
(2.12) 

I 

From the above analysis we obtain a family of s.a. exten­
sions of iI given by 

co 
- -I -

HU,{R} = I~O U hl.U.{R} U® 1. (2.13 ) 

The particular case U = - 1 yields the kinetic-energy oper­
ator 

(2.14 ) 

[Hm'"(R 3) being the standard Sobolev space9 ]. 

We note that the above treatment trivially generalizes to 
n>2 dimensions using, e.g., Remark 2.1 in Ref. 1. Applying 
now Krein's formula4 we obtain 

N 

= (hl,o - k2)-1 + .? [MI(k)]jf 
J,J = I 

X (t,6I,j ( - k), )t,6I.j(k), 

k 2ep(hl,u,{R})' Imk>O, U# -1, IENo, 
(2.15 ) 

where t,6I,j(k,r) is defined by (2.8) and 

[MI(k)].i I - [MI(k')].i 1 

= - (k 2 -k'2)(t,6I.j( -k),t,6I,j(k'») 

= - (k 2 _ k,2)S/(k,k'), 

k 2,k'2ep(hi,U,{R}), Imk>O, Imk'>O. (2.16) 

Using the first resolvent formula 

(k 2 - k '2)gl,kgl.k' = gl,k - gl.k', 

1m k>O, 1m k'>O, 

where 

gl,k = (hl,o _k2)-I, Imk>O, 

denotes the free resolvent with kernel 

(2.17) 

(2.18 ) 

{ 
(i1r/2)rl/2H ~~ 112 (kr)r l /2J/ + 112 (kr), r <r, 

gl,dr,r) = (i1r/2)rl/2H~~ 112 (kr)rl /2JI+ 112 (kr), r>r' 
Imk>O, (2.19) 

we can rewrite (2.16) in the form 

[MI(k)].i I - [MI(k')].i 1 = [g/(k')]jf - [gl(k)]jf' 

where we have used the notation 

[gl (k)]jf = t,6I,j (k,Rj) = gl,k (RJ,Rj ). 

As a consequence of Eqs. (2.13) and (2.15) we infer that 
co / N 

(HU,{R} - k2)-1 = (H -I,{R} - k2)-1 + ED ED L [MI(k)]jf (l'I-It,6/,j ( - k) Yi, )1'1- 1t,6I,j(k)Yi, 
1=0 m = - I j,j = 1 

k 2ep(Hu,{R})' 1m k>O. 

From the relation 

(hi,U.{R} - k 2) [t,6I,H 

it follows that 
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N 

= (h"o + O-Ir/J/,j+ + .? [M,(R) l/j" (r/J/,j" + ,r/J/,j+ )r/JI,J-
j,j = I 

N 

= (2i)-I(r/J/,j+ -r/J/,j-)+ L [M,(R)b~(r/J'.r+,r/J',j+)r/JI,J-' 1 <j<N. (2.24) 

From (2.24) a straightforward computation yields 
N 

I,j" = I 

Ujl + 8.i1 = 2i L (r/J/.j+ ,r/Jv + )T [M/(R) l}" 1 <j,f<N, (2.25) 
j" = I 

since ther/JI,J _ are linearly independent. (HereM]; = M Ij denotes the transposed matrix in C N
.) We note that (2.25) may 

be rewritten in the form 

[M/(R) 1 -I = 2i(U T + 1)- ls,(R,Ii). (2.26) 

Therefore, using Eqs. (2.20) and (2.26), we infer 

[(M/(k)]-I = (U T + 1)-1 [g/(Ii) -g/(R)] +g/(R) -g/(k). (2.27) 

Equations (2.15) and (2.27) imply that the spectrum of hl,U,{R} is given by the absolutely continuous spectrum of h"o' and 
that the point spectrum is determined by 

O'p(h/,U.{R}) = {keC Idet[M/(k)] -I = O}. (2.28) 

The particular case 

[M/(k)]; 1= [aJi·18.i1 + (g/(k)).iI ]ff= I' - 00 <aj/<oo, (2.29) 

gives rise to the Hamiltonian describing a finite number of 8-interactions with support on concentric spheres,2 whereas 

[M/(k)]-I = [PJi·18.i1-~j,j(k,RI)]ff=I' - 00 <Pj/<oo, (2.30) 

_ _ {(itr/2)[rI/2H~~1I2(kr)]'lr=R/12J/+II2(kr), r<Rj> 

r/J"j(k,r) - (. 12) [ 1/2J (k ) ]'1 1/2H(I) (k) R 1m k>O, (2.31) 111' r / + 112 r r = R/ / + 112 r, r> j' 

yields the Hamiltonian of N8' -interactions supported by 
concentric spheres. 3 

III. APPROXIMATION OF h'.U.(R) BY MOMENTUM CUT OF 
HAMILTONIANS 

Here we define a family of operators hi'" and show that 
h"u,{R} (the operator h,.U.{R} in momentu~ representation) 

can be obtained as a norm-resolvent limit of hi,,,, as W--+ 00. 

Let 

A N 

h,.",=p2+.? [Ai].ilcprj(p)(cpr/')' (3.1) 
j,j = I 

cprj(p) = (R/211') I12X", (p)j/(pRj ) =X",(p)CPI.j(p), 
(3.2) 

wherej, (z) is the spherical Bessel function and X", is defined 
by 

X (p) = {1, if Ipl<w, (3.3) 
'" 0, if I pi >w. 

The resolvent of hi,,,, is given by 

(h - k2)-1 
I.", 

N 

X L [Mj(k)].illcprj)«p2_;{2)-lcpr/ l 
j,l= I 

N 

=(p2_k2)-I+ L [Mj(k)]g 
j.l= I 

XIX",F,.k.j)(X",F,.-k,jl, . (3.4) 
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I 
where 

(gj(k)).iI = (cprj,(p2 - k 2)cpr/) 

= _1_ (R.R ) 1/2 i p2 dp j, (pRj) j, (pRI ) 
2 J I 2 k2 ' 

11' Ipl<'" p -

1m k>O. (3.7) 

Let gj(k) be the N XN matrix with elements (gj(k)).iI' 
Then as w- 00, gj(k) converges to the matrix g/(k) with 
elements 

The integral in (3.8) can be performed explicitly, and indeed 
one gets (see Ref. 10, p. 119) 

_1_ (R.R )1/2 P Ph P j IJI P I = (R R ). L
CD 2 d . ( R ). ( R ) 

2 J 12k 2 g,.k i' I 
11' 0 P -

We note that in momentum representation the resolvent 
of h"u,{R} [cf. Eq. (2.15)] reads 
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N x.? [M, (k)]if 19?I,J) (p2 - k2)9?I,j I 
],] = I 

N 

=(p2_k2)-I+ I [MI(k)]p-IFI,k,j)(F,,_li,jl. 
j,J = I 

(3.9) 

A short computation shows that the rank-1 operator 
Ix of"k,j) (X ",F

" 
_ Ii,j I converges in Hilbert-Schmidt norm 

to the operator 1F"k,j) (F
" 

_ Ii,j I asw--+ 00 when 1m k> 0, i.e., 

lim IIlx",F"k,j) (X ",F
" 

_ Ii,j I - IF"k,j) (F
" 

_ Ii,j I liz = 0, 
"'-00 

Imk>O. (3,10) 

Consequently hi,,,, converges to h/,U,{R} in the norm-re­
solvent sense iff 

lim [Mi(k) lif = [M, (k)]iI' (3.11 ) 
"'- 00 

Therefore we have to choose the matrices Ai in such a way 
that (3.11) is fulfilled. Thus if we choose A, to be indepen­
dent of w and equal to 

- A /-
I = - [Ai]-I 

= [ g,(fi) - g,(f=i)] (U T + 1)-1 

+g,(f=i), (3.12) 

then (3.11) is trivially satisfied and we obtain the relation­
ship between the Hermitian matrix A, and the unitary ma­
trix U. We note that there is an interesting characterization 
of elements of the domain 9J (h"u,{R} ) in terms of boundary 
conditions, namely, for every function he9J (h/,U.{R}) the 
jump of the derivative of h at a fixed point Rje[O,oo) is 
given by 

N 

f;(Rj+ ) - f;(Rj _ ) = I [Adilh(RJ ), 
J=I 

(3.13) 

where A, represents coupling constants in front of 8 poten­
tials with nonseparated boundary conditions (called "non­
local" 8 potentials in Ref. 7). Locality of these potentials has 
been proved in Ref. 11. 

IV. APPROXIMATION OF h"U,(R) BY SCALED 
SEPARABLE HAMILTONIANS 

In this section we show that h"u,{R} can be obtained as a 
norm-resolvent limit of a family of scaled separable Hamil­
tonians. Let us define in L 2( (0, 00 ) ) 

N 

h1=h,.O +E-2 I [C/(E)]p-I"'L)("'L-I, E>O, 
J,J= I 

(4.1 ) 

where C, (E) denotes a Hermitian matrix and!/1j is centered 
around Rj> e.g., 

!/1j(r) =E- 1/2t/J/.j«r-Rj )/E), (4.2) 

for some function "",jeL I( (0,00»). The resolvent R k' of h 1 
is given by 

2244 J. Math. Phys., Vol. 29, No.1 0, October 1988 

(h 1 - k 2) - I = (h 1.0 - k 2) - I + 8R k' , 
N 

8R k,= I (h l,o-k 2 )-I[D, (E)]p_ 
j,J= I 

with 

- [D,(E)]P-;-I =E2[C, (E)].i/1 

(4.3) 

+ (!/1j,(h
"
o - k 2)-I!/1J)' (4.4) 

We observe that there is norm convergence: 
11 0 11 N 

8R k'-I [M,(k)]ifItPl,j(k»(tPl,J ( -k)l, Imk>O, 
E_Oj./ 

(4.5) 

if E- I [D,(E)] -I converges to [M, (k)] -I and So "",j (r)dr 
= 1 ¥O. This allows us to adjust theE dependence of D,(E). 

We may take the following dependence of [C, (E) ]iI: 

[C,(E)].i/ 1= (E- I + O(1»)(C/ ).i/ I. (4.6) 

Then the study of the limit 

lim CI[D,(E)]-1 = [M,(k)]-I 
£-...0+ 

gives 

- C ,-I = [g,(v'i) - g,(f=i)] (U T + 1)-1 

+g,(f=i). 

Again C, corresponds to coupling constants of 8 potentials 
with nonseparated boundary conditions. 
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Separable solutions of the perturbed cubic Schrodinger equation that are sinusoidal in time 
with frequency 0." are considered. Two processes associated with the integrable limit E -+ 0 are 
demonstrated. The first will be called a selection mechanism and is demonstrated for 
Ginzburg-Landau-type perturbations. The second is a resonant limit process and will be 
demonstrated for perturbations containing spatial driving terms of wave number q. Spatially 
chaotic behavior is studied in the limits 0." -+0. q-+O and 0." -+ ~. q-+ ~ such that q/o.~ 
= const. 

I. INTRODUCTION 

We consider separable solutions of the perturbed cubic 
Schrodinger equation. 

il/J, +I/Jxx + 11/J1 21/J=E!(X.t;I/J.l/Jx.I/J,.···) (E«I). (1.1) 

which are of the form 

( 1.2) 

The periodic standing-wave solutions of the unperturbed 
problem. E = O. are well known and have been studied pre­
viously. The perturbed nonlinear Schrodinger equation has 
been studied recently by a number of authors who. for the 
most part. focus on the fate of solitons under small perturba­
tions in their evolution equations. I

-
3 Generally speaking. 

these questions are important in discerning how sensitive 
certain solutions are to small changes in the model equa­
tions. a concept that is commonly termed structural stabil­
ity. Our purpose is to demonstrate two processes that are 
associated with the integrable limit E -+ O. The first will be 
called a selection mechanism and is demonstrated for Ginz­
burg-Landau-type perturbations. 

!(I/J.I/Jxx) = i(l/J+ I/Jxx -11/J1 21/J] . (1.3 ) 

This form of perturbation has the effect of complexifying the 
coefficients of the nonlinear Schrodinger equation. which 
introduces important new phenomena.4-12 The Ginzburg­
Landau (GL) equation in this form arises in the study of 
hydrodynamic stability theory (see references listed in Ref. 
5). The second process we call a resonant limit process. 
which will be demonstrated for simple linear functions. 

!(I/J.I/Jx) = YII/Jcos(qx) + Y2 cos(qx)exp(io."t) 

- Y3I/Jx (YI'Y2.Y3ER ;;;;.0). (1.4) 

Section II contains a brief review of known facts about 
the standing-wave solutions of the unperturbed and per­
turbed problems. We start by studying the separable solu­
tions (1.2) of the unperturbed problem. This leads to a sec­
ond-order nonlinear ordinary differential equation (ODE) 
for the spatial function Po whose solutions are given by peri­
odic Jacobian elliptic functions. After fixing the two con­
stants of integration. the solutions form a continuous family 
which can be parametrized by a similarity parameter A or. 
equivalently. by the temporal frequency 0.0 ' Thus it is shown 

that an extra mechanism is needed in order to fix the param­
eter A. thereby uniquely determining a solution of the unper­
turbed problem. We then study the separable solutions of the 
Ginzburg-Landau equation ( 1.1). ( 1.3). Results from Refs. 
4-6 are mentioned in which the periodic spatial part of the 
solution is given both asymptotically and numerically. Con­
trary to the unperturbed case. once the constants of integra­
tion are chosen. there are no remaining free parameters. In 
Sec. III we describe a selection mechanism by which distin­
guished values for the similarity parameter A and the fre­
quency 0.0 are picked out in the limit E -+ O. Explicit examples 
of how this selection mechanism works are given. In addi­
tion. it is mentioned that the selection process can also be 
viewed as a bifurcation problem in E. In Sec. IV we study 
perturbations of the form (1.4). Using a version of the Mel­
nikov technique13

•
14 we discuss the existence of spatially 

chaotic behavior in special regions of the parameter space 
(YI'Y2'Y3)' The results are summarized in Theorem 1. The 
chaotic regions are then studied as functions offrequency 0." 
and wave number q. In particular. a resonant limit process is 
introduced and summarized in Lemma 2. which describes 
the size of the chaotic regions as 0." -+ O. q -+ 0 and 0." -+ ~ • 
q -+ ~ such that q/o.~ = const. 

II. SPATIALLY PERIODIC STANDING WAVES 

Consider first the unperturbed cubic Schrodinger equa­
tion. 

il/J, + I/Jxx + 11/J1 21/J = O. (2.1) 

When (1.2) is substituted into (2.1). this yields an ordinary 
differential equation for the spatial function Po: 

.. 3 
Po = o.oPo - Po· (2.2) 

It is well known that this equation can be put in the form of a 
Hamiltonian system with one degree offreedom. 15 For pres­
ent purposes we will not pursue this approach. but instead 
integrate (2.2) directly. MUltiplying (2.2) by Po and inte­
grating once yields 

(i'o) 2 = E - V(Po) • (2.3) 

where E is an arbitrary constant of integration. The potential 
Vis given by 

V(Po) = !P~ - o.oP~ . (2.4) 
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There are three distinct solutions to (2.3) that depend on the 
constant of integration (energy level) E. 

(a) E<O: 

Po(x) = ±v21dn(1(x-xo),k), (2.5) 

(2.6) 

Here Xo is the second constant of integration, and k is the 
modulus of the even Jacobian elliptic function dn. The simi­
larity parameter 1 is related to k and 0 0 via (2.6). The ener­
gy level E is related to 1 and 0 0 by the formula 

E= 21 2(1 2 - 0 0 ) <0. (2.7) 

(b) E>O: 

Po(x) = ± ~Oo + 1 2 cn(1(x - xo), k), (2.8) 

k 2 = (00 + 1 2) /21 2 . (2.9) 

Here k is the modulus of the Jacobian elliptic function cn. 
The energy level E is related to 0 0 and 1 via the formula 

E=!(14-0~). (2.10) 

(c)E=O: 

Po(x) = ± v2 1 sech(1(x - x o»). (2.11 ) 

This is the limiting case of (a), (b) in which the modulus 
k-ol. 

We now focus our attention on the even solutions (2.5). 
Once the two constants of integration E and Xo are fixed, the 
solutions (2.5) form a continuous family parametrized by 
the similarity parameter 1 or the frequency 0 0 , This can be 
seen by solving (2.7) for 0 0 : 

00(1,E) = 1 2 - E /21 2. (2.12) 

Substituting (2.12) into (2.6) yields 

(2.13 ) 

Thus for a given value of E the parameter 1 can be chosen 
freely, which then fixes the modulus (2.13) and the frequen­
cy (2.12). Without loss of generality we set Xo = 0 in future 
considerations, and for definiteness we only consider the 
positive solutions. 

Consider now standing-wave solutions (1.2) of the 
Ginzburg-Landau equation (1.1), (1.3) with 0 < EO;;;; 1. 
Upon substitution this yields a complex spatial Duffing-type 
equation, which we write 

PE = (OE + iE) _ (1 + iE) IP 12. 
PE (1 - iE) (1 - iE) E 

(2.14 ) 

Now introduce polar coordinates PE (x) = R(x)exp(i8(x») 
and use the transformation 

(2.15 ) 

Note that by differentiating W once we see that W satisfies a 
complex Riccati equation, 

. 2" 
W + W = PE/PE . (2.16) 

Equating the real and imaginary parts of (2.14), (2.16) 
yields 

if = al - U 2 + y2 _ a2R 2 , 

V=PI - 2UY -P2R 2, 

where 
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(2.17) 

a l = (OE - ~)/ (1 + ~) , 
a2 = (1-~)/(1 +~), 
PI = E(1 + 0E)/(1 +~) , 
P2 = 2E/(1 + ~) . 

(2.18 ) 

Now equating the real and imaginary parts of (2.15) gives 

R = UR, (2.19) 

(2.20) 

The system of equations (2.17), (2.19) forms a closed sys­
tem of three equations in the three unknowns ( U, Y,R) that 
determines the spatial structure of standing-wave solutions 
( 1.2) to the Ginzburg-Landau equation (1.1), (1.3). It has 
been shown in Refs. 5 and 6 that this system supports a rich 
variety of solutions (see also Refs. 7-9). For our purposes it 
is sufficient to note that for E> 0, there is a range of frequen­
cies OE for which periodic solutions to (2.17), (2.19) of 
wave number q exist and are stable. In addition, a dispersion 
relation has been computed relating the frequency OE to the 
spatial wave number q. We refer the reader to Figs. 1 and 2 of 
Ref. 5 for plots of the periodic solutions and the nonlinear 
dispersion relation. Contrary to the unperturbed E = 0 case, 
there is no extra parameter in the problem; thus, once OE 
and E are fixed, a unique periodic solution is determined. 

III. SELECTION MECHANISM 

Our purpose here is to show how the limit E ..... O in( 1.1), 
( 1.3) selects a particular value for the similarity parameter 1 
in the solution (2.5) of the unperturbed problem (1.1). We 
will focus only on the spatially even solutions (2.5). For this, 
an extra relationship is needed for the E;fO problem relating 
the frequency OE to the spatial function PE • Thus we prove 
the following lemma. 

Lemma 1: For spatially periodic solutions of the GL 
equation (1.1), (1.3) of the form (1.2) (PE complex) we 
have 

(1 + OE) = 211PEII!/IIPEIIi , (3.1) 

liP 112 = (1 - ~) liP 114 _ (OE - ~) liP 112 (3.2) 
Ex (1 + ~) E 4 (1 + ~) E 2 , 

where 

IIPEII: = iL 

IPEI" dx, L = 2; = spatial period. (3.3) 

PrOOF Substitute ( 1.2) into ( 1.1 ), (1.3) to get an ODE 
for the spatial function 

P = (OE + iE) P _ (1 + iE) IP 1 2p . (3.4) 
E (1 _ iE) E (1 _ iE) E E 

Multiply (3.4) by the complex conjugate of PE and integrate 
over a period. Separating real and imaginary parts gives the 
result. 

We now show how the condition (3.1) is used in the 
limit E ..... 0 to provide an extra constraint on the relationship 
(2.12), (2.13), thus picking out a limiting frequency 0 0 and 
amplitude 1 for the solution (2.5). The limit E ..... 0 requires 
us to impose two compatibility conditions relating the sep­
arable solutions of the unperturbed problem to those of the 
perturbed problem. These two conditions are as follows. 
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( 1) Periodicity condition: 

2K /A, = 211"/q, (3.5) 

where K is the complete elliptic integral. This condition 
guarantees that the period of the Jacobian elliptic function 
solution (2.5) matches the period of the £:;60 problem in the 
limit £-0. 

(2) Selection mechanism: 

(3.6) 

This condition holds for all separable solutions (1.2) of the 
GL equation for £:;60; hence we apply the condition in the 
limit £-0. 

We now carry out this selection process for two specific 
cases. 

Example 1: Fix the wave number q of the £:;60 problem 
( 1.1 ), (1.3) such that q2 = 2. Then the limiting solution of 
the unperturbed cubic Schrodinger equation (1.1), for 
£ = 0, is the spatially independent solution 

1/10 = eit
• (3.7) 

To see this we must show that the limiting frequency 0 0 = 1, 
and that the spatial part of the solution (2.5) reduces to 
unity. This is most easily seen by fixing the modulus of (2.5) : 

P=O. (3.8) 

From a standard table of elliptic integrals,16 (3.8) ~ 

K = 11"/2 . (3.9) 

Using the periodicity condition (3.5) and (3.9) we get 

U=q. (3.10) 

Now using (3.8) and (2.6) gives 

U 2=00' (3.11) 

Using the selection criterion (3.6) and the fact that 
dn(x,O) = 1 gives 

!(1+00)=U 2 . (3.12) 

Thus (3.12) and (3.11) ~ 

0 0 = 1. (3.13) 

Furthermore, (3.13) and (3.11) ~ 

A,2=!. (3.14) 

Equation (3.14) combined with (3.10) ~ 

q2 = 2. (3.15) 

Finally, using (3.13)-(3.15) with (3.8) and (1.2)~(3.7). 
Example 2: Fix the wave number q of the £:;60 problem 

(1.1), (1.3) such that q = O. Then the limiting solution of 
the unperturbed cubic Schrodinger equation (1.1) for £ = 0 
is 

1/10 = Jf expq it)sech(.Jlx ) . (3.16) 

To see this we must show that the limiting frequency 0 0 = ~, 

and that the spatial part of the solution reduces to 
Jf sech(-/f x). This is most easily seen by fixing the modu­
lus of (2.5): 

(3.17) 

From a standard table of elliptic integrals,16 (3.17) ~ 

K = 00 • (3.18) 
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Using the periodicity condition (3.5) and (3.18) ~ 

q=O. (3.19) 

Now using (3.17) and (2.6) ~ 

0 0 = A, 2 . (3.20) 

Using the selection criterion (3.6) and the fact that 
dn(x,l) = sech(x) gives 

!(1 + 0 0) = 4A, 2/3. (3.21) 

Here we have used the identities 

100 

sech2 (x)dx = 1 , (3.22) 

sech4 (x)dx = -. l oo 2 

o 3 
(3.23 ) 

Thus (3.21) and (3.20)~ 

A,2=00=~' (3.24) 

Finally, using (3.17), (3.19), and (3.24) in (1.2) and 
(2.5) ~ (3.16). 

We remark that, equivalently, one can view this selec­
tion mechanism as a bifurcation problem in the parameter £. 

The limiting frequencies 0 0 of the unperturbed problem that 
are "selected" in the limit £ - 0 are the bifurcation points 
along the O~ axis. The periodic standing-wave solutions to 
the system (2.17), (2.19) are the bifurcated Jacobian elliptic 
functions of the unperturbed problem. 

IV. SPATIALLY CHAOTIC REGIONS 

We now turn to perturbations of the form (1.4) and 
discuss the existence of spatially chaotic behavior in certain 
parameter regions. When the separable solution ( 1.2) is sub­
stituted into (1.1), (1.4) one gets 
.. 3 • 
P~ = O~P~ - P ~ + E(r1P~ cos(qx) + r2 cos(qx) - r3P~), 

(4.1 ) 

An equation similar to this but with different perturbation 
terms is studied in Ref. 17, where it is shown that chaotic 
(temporal) behavior occurs for certain parameter regions, 
We first follow a similar analysis and view (4.1) as a pertur­
bation from a Hamiltonian system for £.( 1. This allows us to 
apply methods due to Melnikov13

•
14 to show under what pa­

rameter restrictions (r1,r2,r3) chaotic behavior occurs. 
After rescaling (4.1) such that 

(4.2) 

one arrives at the first-order perturbed Hamiltonian system 

£=G, 

G=F-F3 + £(.lLFcOS( qX) 
o~ A 

+ ....l.L cos( qX ) _11- G) . 
0!/2 A A 

(4.3) 

We study the phase space of the perturbed system (4.3), 
£.( 1, near the unperturbed separatrix solution: 

Fo(X) = '\12 sech(X) , 

Go(X) = - '\12 sech(X)tanh(X) . 
(4.4) 
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The phase space of the unperturbed problem, E = 0, pos­
sesses three fixed points: (F,G) = (0,0),( ± 1,0), where the 
origin is a saddle with a smooth separatrix orbit (4. 4) de­
scribing the stable and unstable manifolds. We briefly review 
the ideas described in Refs. 13, 14, and 17-19. To study the 
perturbed problem, the phase space can be extended to three 
dimensions (F,G,x) and the motion viewed in the Poincare 

section X = const (mod 21T$1;/q). The perturbed stable 
and unstable manifolds can still be identified in the surface of 
section but are made up of a sequence of distinct points. 
Generally speaking, they no longer join smoothly. If r3 is 
large enough, they will not intersect at all. However, if the 
ratio of the parameters r3/r2 (rl = 0) or r3/rl (r2 = 0) is 
sufficiently small, the stable and unstable manifolds will in­
tersect transversally. This process is called a homoclinic bi­
furcation and signals the onset of chaotic behavior. To check 
when a transverse crossing occurs, Melnikov introduced a 
function (now known as the Melnikov function) that mea­
sures the distance between the perturbed stable and unstable 
manifolds in the Poincare section. If this distance function 
has a simple zero, the manifolds intersect transversally and 
chaotic behavior results. This method and its application to 
equations of the form (4.1) is by now relatively standard, 
and we refer the reader to Refs. 14 and 19 for a more thor­
ough introduction to these ideas. 

We first show that for sufficiently small E, the condition 
for a homocIinic bifurcation to occur in the perturbed system 
(4.3) is 

~r3<H(q,OE)' (4.S) 
where 

H(q,OE) = rl1Tq2 CSCh(.3!!l..-) + Jir21Tq sech(.3!!l..-) . 
O!/2 2$1; O!12 2$1; 

(4.6) 

Since the analysis is standard, we only show part of the de­
tails. The Melnikov function measuring the distance be­
tween the perturbed stable and unstable manifolds in the 
Poincare section at the point to is computed from 

DUo) = - f"" dt (.1:L FoU - to)GoU - to) cos(L) 
- "" OE $1; 

Hmax 
2 

+ ....lL GoU - to) cos(L) 
O!/2 $1; 

- JL G ~ U - to») . 
$1; 

(4.7) 

FIG. 1. Threshold function H 2 {O) for fixed q, with chaotic region shaded 
and Om the most chaotic frequency. The 0 1 and Oh are the lowest and 
highest frequencies giving rise to chaotic behavior for H2 = A. 
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After substituting (4.4) into (4.7) and simplifying, we ob­
tain 

X tanh ( 1') sin(-q-1') 
$1; 

- Ji....lL sin(.-L to)f"" d1' sech( 1') 
O!/2 $1; - "" 

X tanh ( 1') sin(-q-1') 
$1; 

+ 2..1L f"" d1' sech2( 1') tanh2( 1') 
..;n: - "" 

(1' = t - to) . (4.8) 

Performing the remaining integrations yields the condition 
(4.S) for DUo) to have a simple zero. The results of this 
section are summarized in the following theorem. 

Theorem 1: The perturbed cubic SchrOdinger equation 
( 1.1 ), (1.4) supports a family of temporally sinusoidal, spa­
tially chaotic solutions of the form (1.2) for E sufficiently 
small, provided (4.S) is satisfied. The chaotic behavior is 
caused by the presence of transverse spatial homoclinic or­
bits in the associated Poincare map, which implies that the 
map contains Smale horseshoes.20 

We call the function H in (4.6) the threshold function, 
and study its behavior in the following section. 

V. RESONANT LIMITS 

First consider the case in which rl = 0; thus the thresh­
old condition (4. S) becomes 

r3 < 3Ji 1Tq sech(!!...-q-)=H (q 0 ). (S.l) 
r2 4 O!12 2 O!12 2' E 

The threshold function H2 is shown in Fig. 1, where we plot 
H2 as a function of OE for fixed q. It can be seen from this 
diagram, and is straightforward to prove, that limo_o."" H2 
.... O. Thus these limits reduce the size of the chaotic region in 
the parameter space. Furthermore, there exists a value Omax 

that we call the most chaotic frequency at which H2 achieves 
a maximum. This value can be computed by solving 

aH2 = 0 (S.2) 
aOE 

q 

FIG. 2. The wave number q versus 0 plane showing resonant limit sector 
for H,. Forq-O, O-Oorq_ 00, 0- 00 in theshadedregion,H, blows up. 
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q 

o 

FIG. 3. The wave number q versus 0 plane showing resonant limit sector 
for H2. For q .... O. 0 .... 0 in the shaded region. H2 blows up. 

for 0E' holding q fixed. It is worth noting that for a fixed 
value of the ratio Y3/Y21ying in the unshaded region marked 
"A" in Fig. 1, one can decrease the frequency OE and ob­
serve a window of chaotic behavior for OE E [O\ow' 0high ]. 

The values O\ow and Ohigh can be explicitly computed given 
the other parameters in the problem. Similarly, holding OE 
fixed one can study H2 as a function of q. It is easily seen that 
the behavior is similar to that shown in Fig. 1. Note that 
there exists a value qmax that we call the most chaotic wave 
number, which can be computed by solving 

aH2 = ° (5.3) aq 
for q, holding OE fixed. 

For the case Y2 = 0, the threshold condition (4.5) be­
comes 

Y3 31T q2 (1T q ) -<---csch --- =HI(q 0 ) . 
Y 4 0 312 2 0112 'E 

! E E 

(5.4) 

The behavior of HI as a function of each variable is similar to 
that of H 2; hence we do not show a separate diagram. We 
remark only that Omax and qmax can be computed as in 
(5.2), (5.3) with the obvious change of H2 to HI. 

We examine now the limits of ~ (j = 1,2) as a function 
of both the variables q, o. This behavior is summarized in 
the following lemma. 

Lemma 2: The following limits are taken holding q/O~ 
= const. 

(a) For q-+O, OE -+0, 

(i) lim HI = {oo, a>!, 
0, a<!, 

{

O' a <!, a > ~, 
(ii) lim H2 = 00, !<a <~, 

const, a = ~. 
(b) For q-+ 00, OE -+ 00, 

(i) limH! = {oo, a<!, 
0, a>!, 

(ii) lim H2 = 0, for all a. 

The shaded regions in Figs. 2 and 3 show the sectors in 
the (q,OE) plane in which H j -+ 00 as q-+O, OE -+0 and 
q-+ 00, OE -+ 00 forj = 1,2, respectively. Because the thresh­
old function blows up in these limits and thus provides no 
upper bounds on the ratios in (5.1), (5.4), we call these 
limits resonant limits and the corresponding exponent a the 
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resonant rate. The resonant limits demonstrate a coopera­
tion between the frequency OE and the wave number q, in­
creasing the size of the chaotic region in the given parameter 
space (YI'Y2'Y3), and should be contrasted with the individ­
uallimits mentioned earlier and shown in Fig. I. The proof is 
a relatively straightforward analysis of the functions Hj , and 
involves competing effects of exponential versus algebraic 
behavior; we therefore do not include it. 
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In a previous paper [D. L. Huestis, J. Math. Phys. 16,2148 (1975)] a superposition principle 
was developed that allows the representation of an arbitrary wave function in an explicit 
uniformly convergent expansion over the discrete Siergert states for finite-range potentials. 
Possible difficulties were identified that could arise for special values of the potential strength 
due to degeneracy of the complex Siegert eigenValues or vanishing of the norm of the Siegert 
state. In this paper these difficulties are addressed. By generalizing the Siegert eigenvalue 
problem, distinct orthogonal eigenfunctions with non vanishing norm are obtained, 
recompleting the Siegert basis. 

I. INTRODUCTION 

For potentials of finite range [V(r) = 0 for r> ro], Sie­
gert l completed the identification of resonance wave func­
tions with the poles of the S matrix through his eigenvalue 
problem, 

- if/' + U(r) 1/1 = k 21/1, 1/1(0) = 0, 1/1'(ro) = ikl/1(ro), 

where 

U(r) = (2mllf) V(r) and k 2 = (2mllf)E. 

This is simply SchrOdinger's s-wave eigenvalue problem 
with an outgoing right-hand boundary condition. Ifwe con­
sider the usual scattering boundary condition, 

l/1(r) --A exp(ikr) :+ B exp( - ikr), as r- 00, 

we see that the requirement that 1/1'(r) = ikl/1(r) for r>ro 
implies that B must vanish and that the S matrix defined by 

S= -AlB 

must have a pole at the resonance energy. 
Humblet2

,3 divided the Siegert poles into three groups, 
called a, b, and c (see also Refs. 4-6). The b poles are the 
bound states, with kb along the positive imaginary axis, kb 
= il kb I. The a poles, sometimes called the antibound or vir­

tual states, lie along the negative imaginary axis, ka 
= - ilka I. The c poles are the ordinary complex reson-

ances, sometimes called radioactive or decaying states. They 
are distributed in the lower half of the complex k plane, sym­
metrically about the imaginary axis. Humblet showed that, 
for potentials of finite strength and finite range, only a finite 
number of a and b poles exist, whereas the c poles constitute 
a denumerably infinite set. As the potential is made more 
attractive, the c poles approach from both sides of the nega­
tive imaginary k axis, eventually merging to form two a 
poles. As the potential is further strengthened, one of this 
pair moves up the imaginary k axis, eventually becoming a 
bound state, while the other moves down toward more nega­
tive imaginary k values, remaining an antibound state. This 
motion is illustrated in Fig. 1. 

In our previous study,7 we recast the Siegert eigenvalue 
problem in regular and dual two-component bases, 

A 1~~I)(r)1 At 1~~(I)(r)1 
CP" = ~~2)(r) , CP" = ~~(2)(r) , 

with boundary conditions 

~~I)(O) = 0, ;~I)(ro) = ~~2)(ro), 

~~(I)(O) = 0, ;~(I)(ro) = ~~(2)(ro), 

and functional 

(~~'~m > = ~ 1'0 (~!(I)~~) - ;!(2)~<';;», 
where we have added a factor of! to match the usual Schro­
dinger normalization for bound states (see also Ref. 8). The 
regular and dual eigenvalue problems are then written as 

~~2)' (r) 

L~" = (''' -ik ~ 
~~I)'(r) + J U(x)~~I)(x)dx - " " 

and 

~!(2)'(r) - U(r) i' ;!(2)(x)dx A 

o = ik"cP!. 
;!(I)' (r) 

For eigenvectors defined as above, we can easily show that 
• At A 

l(k" -km)(CP",CPm> =0, 

and thus as long as k" =/::km , we can define normalization 
constants such that 

At A _ 

(cP"'CPm> -Nm{j"m' 

This orthogonality allows us to expand arbitrary functions 
in the eigenbasis, 

4 1 ko 

.l< 

.§ 
o + k_2 k_, k, k2 -- --

k_1 . 
_4L-__ ~ __ ~ __ ~ __ -L __ -L __ ~ __ -4 __ ~ 

-8 -4 0 4 8 
Re k 

FlO. I. Trajectories of Siegert eigenvalues for the s-wave finite square well. 
Arrows indicate the direction of motion from U = - 15 to U = - 25; k I 
and L I collide at - ifor U == - 21.1907. 
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where 

(
At A 

a" = (liN,,) <I>",F). 

In our previous investigation, we explored the restric­
tions on the form of the function F necessary to obtain a 
convergent expansion, which imp"osed relations between the 

"'" upper and lower components of F. Further difficulties arise 
from either degenerate eigenvalues, k" = k m for n =1= m, or 

vanishing normalization, Nm = 0 for $m =1=0. As we noted, 
Dobson9 suggested that these two difficulties are expected to 
occur simultaneously. In our brief description above of the 
trajectories of the Siegert eigenvalues as the potential 
strength is increased, we indicated that the collision of pairs 
of c poles on the negative imaginary k axis is a normal result 
that is necessary for the creation of bound states. Thus we 
must modify the two-component formalism to account for 
these degeneracies. 

In addition to difficulties in orthogonality and normali­
zation, the confluence of eigenvalues leads to only a single 
eigenvector, while for nearby values of the potential strength 
we have two. As suggested by Friedman 10 and elaborated by 
Dobson,9 we might attempt to recomplete the vector space 
by generalizing the eigenvalue problem. In the present case, 
this generalization corresponds to considering solutions of 

A 2""""" A A 
(L - ik) <I> = 0 and (L .,. - ik)2<1>t = O. For nondegenerate 
eigenvalues, the "squaring" ofthe eigenvalue problem leads 
only to the eigensolution previously found [if we require that 

A A A A 

(L - ik)<I> and (L'" - ik)<I>t satisfy the boundary condi-
tions]. In the degenerate case, we get two distinct eigenvec­
tors, of which orthogonal linear combinations can be chosen 
having nonvanishing normalization. 

II. DEGENERATE SIEGERT STATES FOR THE SQUARE· 
WELL POTENTIAL 

Although degenerate antibound states are expected for 
all types of attractive finite-range potentials, we will develop 
our approach based on the specific example of the finite 
square well, 

U(r) = - Uo, O<r<ro = 1, 

U(r) = 0, r> roo 

The regular and dual Siegert wave vectors are (see Ref. 7) 

sin(k ~r) 

- i ~ cos(k ~r) + i(~ -~) cos(k') 
k ~ k ~ k" " 

A 

<I> = n 

and 

$t = I sin(k ~r) I 
" - i(k ~/k" )cos(k ~r) , 

where k ~ is the wave number within the well, k:2 = k! 

TABLE I. Some Sie~ert s-wave eigenvalUes for the finite square welI, depth 
U = - 21.1907, radIUS ro = I. 

na Rek. Imk. Rek~ 1m k~ 

0 0.0000 3.8301 2.5536 0.0000 
1 0.0000 -1.0000 4.4934 0.0000 
2 6.1959 - 1.3863 7.6753 - 1.1191 
3 9.8422 - 1.6683 10.8429 - 1.5143 
4 13.2390 - 1.8901 14.0030 - 1.7870 
5 16.5387 - 2.0728 17.1585 - 1.9979 
6 19.7889 - 2.2278 20.3111 - 2.1706 
7 23.0102 - 2.3626 23.4616 - 2.3171 

a The corresponding resonances with n < 0 satisfy k. = - k ~ •. 

+ Uo, and k ~ cos(k ~) = ik" sin(k ~) is the eigenvalue 
condition. The normalization constants are Nfl = (I + il 
k" )/2, which vanish for k" = - i and diverge for k" = o. 

We will first deal with the case of a bound state at zero 
energy, k" = 0, which does not result from collision of eigen­
valU~, but which prevents the choosing of ~!(I)(r) 
= ~~ >(r) as we previously supposed.7 In this case, which 

occurs for Uo = k:2 with k ~ = (n + P1T, the Siegert eigen­
vectors are (with N" = -!) 

$" = ISin(k~r) I and $'1' = I 0 I 
1 "k ~ cos(k ~r) . 

The second special case is the first occurrence of 
k" = - i, which happens for Uo = 1 and which also does 
not correspond to a degeneracy but merely the progression 
of the first antibound state on its way toward becoming a 
bound state. In this case we divide both the regular and dual 
eigenvectors by k;' and take the limit as k;' ..... 0, obtaining 
(with No = -!) 

$0=1!(1:~)1 and ~b=I~I· 
True degeneracies result for potential strengths 

Uo = 1 + k ~2, satisfying k ~ cot(k ~) = ik" = 1 for k ~ >0. 
The first occurrence of this condition is for Uo"",21.l907, 
resulting in the Siegert eigenvalues listed in Table I. In such a 
case we already have one eigensolution with a vanishing 
norm, 

y = I sin(k ~r) I 
" ( - 11k ~ )cos(k ~r) + ((Ilk ~) + k ~)cos(k ~) , 

and 

yt = I sin(k ~r) I 
" k~ cos(k~r) . 

T~ find ~ditional solutions of (L - ik)2~ = 0 and 
(L t - ik)2<1>t = 0 we consider 

A a A o =-<1> 
" ak' " 

" 

and at =~~t. 
" ak' " 

" 
These derivatives give 

0=" A I rcos(k'r) I 
" (1 + 11k :2)(cos(k ~r) - cos(k ~» + (rlk ~ )sin(k ~r) , 
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and 

®t = A I rcos(k~r) I 
" (1 + k ~2)cos(k ~r) - k ~rsin(k ~r) 

With some algebra we can confirm that 
A A A 

(L-ik")®n = -k~Yn 

and 
A A ,At 

(Lt-ikn )®! = -knY", 

and thus 

(1. - ik" )20n = 0 and (1. t - ik" )20! = O. 

We can also evaluate the functionals 

(Y!,Y,,) = 0, (0!,®,,) = - (1 + 3k ~2)/12, 
and 

(Y!,®,,) = (0!,Y,,) = - k~/4. 
At this point can we consider choosing linear combina­

tions of the pairs of regular and dual vectors to obtain the 
desired orthogonality and nonvanishing norm. One such 
choice is 

A '2 A A 

0" = (1 + 3k" )/(3k~)Y" -®" 
and 

A , A A-

O! = (1 + 3k ,,2)/(3k ~ )Y! - ®!, 

which gives 

(at 0 ) = (0t a ) = 0 n' n ,., n 

and 
At A '2 At A 

(On'O,,) = (1 +3k n )/12= - (®n'®")' 

Below we will use ~'1)" =0~t) and ~'!)n =a~t). 
Another reasonable choice of linear combinations is 

~t = (1 + 3k '2)/(6k ' )yt _ 0t 
+n n,," n' 

and 
A ~ A A 

<I> _" = (1 + 3k n )1 (6k ~ ) Y n - ® n' 

with 
At A At A 

(<I> + ",<I> _ ,,) = (<I> _ n' <I> + ,,) = 0, 

and 
At A _ At A _, 

(<I> + ",<1> +,,) - (<I> _ ",<1> _ n) - k ,,/4. 

This choice has the advantage that ~ +" and ~t_" are the 

+1 

-1 

o 

.... - ... '" , / , 

k=O 

, , 
' ... 

N=O 

, " ,_ ..... 
\ ( 
, I 

-" 
/ .... 

I , 
I 

FIG. 2. Expansion rPk (r) = l:~ Na. (k)~~I)(r) over square-well Siegert 
states for the first degenerate case, U"", - 21.1907, for k = 0,4,8. Dashed 
lines indicate the exact solutions; solid lines represent the partial expansions 
to ± N. The imaginary parts of the partial expansions cancel when the 
terms a.~. and a _.~ _. are included together. 

continuous limits of~" and ~! from nearby values of the 
potential strength. However, it removes the presumably nat­
ural symmetry between the upper, or physical, components 
of the regular and dual Siegert eigenvectors, ¢~I)(r) 
= ¢!(l)(r). 

III. GENERALIZATION OF THE SUPERPOSITION 
PRINCIPLE 

As in our previous investigation,7 we wish to expand in 
the Siegert basis the vector corresponding to the exact scat­
tering wave function: 

(Vk = La"(k)~,,. 
" 

With the same assumptions as previously, 

1.2(Vk = -k 2(Vk> tPkl)(O) =0, 

tPk1)(ro) = tPk2 ) (ro), tPkl)' (ro) = tPk2 ) , (ro), 

we can evaluate a" (k) = (~!,(V k ) IN" through the equality 

(k 2 - k! )2(~!'(Vk) = (~!,( - 1. 2 
- k! )2$k)' 

Using similar manipulations as previously,7 we obtain 

a k = [_ ¢!(2) (0) + <ft!(2)" (0) - (U(O) - k ~ )<ft!(2) (0)] tPk2) , (0) . 

,,( ) (k 2 _k!) (k 2 _k!)2 2N
n 

For nondegenerate eigenvalues, we have ¢!(2)" (0) 
= (U(O) - k! )¢!(2) (0) [see Ref. 7, Eq. (17)] and obtain 

the same expansion coefficients as previously (with an addi­
tional factor of! due to the present change in the definition of 
the "inner product" functional). In the degenerate case the 
expansion coefficients explicitly display the repeated nature 
of the eigenvalue. As we discussed above, the degenerate 
eigenvectors can be constructed in various ways. All consis-
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tent choices oflinear combinations will lead to the same ex­
pansions, but with different expansion coefficients. 

Figure 2 compares partial expansions with the exact 
wave functions for the first degenerate case of the finite 
square well, as described in Table I. The rate of convergence 
is much more rapid than for the much weaker potential stud­
ied previously (Uo = - 0.5)/largely because of the smaller 
imaginary parts of the Siegert eigenvalues. The curves la-
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be1ed N = 1 include the small contribution due to t/J~I)(r) 
and the sum of the contributions ofthe degenerate t/J~\ (r) 
and t/J'!..\ (r). We can see that not only is the present expan­
sion formula correct, but also that failure to generalize the 
Siegert eigenvalue problem would lead to significant errors. 

IA.1. F. Siegert, Phys. Rev. S6, 750 (1939). 
2J. Humblet, Mem. Soc. Roy. Sci. Liege 12, Part 4 (1952). 
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Inverse scattering for the mixed spectrum of 6 potentials 
Lin Jian-chenga) 

International Center for Theoretical Physics, 34100 Trieste, Italy 

(Received 6 October 1987; accepted for publication to February 1988) 

The inverse problem is studied in a system of mixed spectrum of which the continuous part 
coincides with that of a repulsive ~ potential and the discrete part coincides with that of an 
attractive ~ potential. 

From the standard analysis of the one-dimensional 
Schrodinger equation we know that in a repulsive ~ potential 
case, a reflection coefficient arises without any bound state, 
while in an attractive ~-potential case, a reflection coefficient 
arises with a bound state. The inverse problem for the spec­
trum containing only a continuous part that is the same as 
that of the attractive ~ potential has been studied in a recent 
paper. I In that paper they find that the corresponding poten­
tial still has the same ~ distribution, but besides there is one 
more repulsive piece to the right ofthe ~ distribution that is 
just enough to prevent the formation of a bound state. In this 
paper, we extend the inverse problem to a mixed spectrum 
case in which the reflection coefficient comes from that of 
the repulsive ~ potential and the discrete spectrum comes 
from that of the attractive one. We find that the factorization 
method can still be extended to solve this inverse problem. 
For the corresponding potential we find three terms: the first 
is the same repulsive ~ distribution; the second is an attrac­
tive piece to the right of the ~ distribution that is the same as 
that in Ref. 1 except for a negative sign (because of this, ~e 
think that this piece is responsible for creating such a bound 
state); the third, as shown in Fig. 1, is to the left of the ~ 
distribution. This term is to ensure that the potential also has 
the same reflection coefficient in the presence of the bound 
state. We are now going to give the details. 

For one-dimensional Schrodinger equation 

[ -::2 + Vex) ]<fo(X) = k 2
<fo(x) (1) 

with potential 

V_ex) = - 2a~(x), a>O, 

it is easy to obtain a reflection coefficient 

R_ (k) = ial(k - ia) 

(2) 

(3) 

and a single bound state with a discrete level p = a and the 
wave function 

(4) 

from which one can deduce the normalization coefficient 

(5) 

The spectral transform, thus, is 

S_ [V_ (x)] = {ial(k - ia), - 00 <k < 00, a,a}. 
(6) 

a) On leave of absence from the Institute of Theoretical Physics, Academia, 
Sinica, Peking, China. 

For the potential 

V+(x) = 2a~(x), a>O (7) 

it yields the following reflection coefficient: 

R+ (k) = - ial(k + ia) (8) 

and there is no longer any bound state. The corresponding 
spectral transform is 

S+ [V+(x)] = {- ial(k + ia), - 00 <k< oo}. (9) 

Now we select a mixed spectrum 

S[V(x)]={-ial(k+ia), -oo<k<oo; a,a} 
( to) 

and ask what the form of the potential Vex) is. 
To solve this inverse problem we begin from the 

Gel'fand-Levitan-Marchenko equation2 

K(x,y) + M(x,y) + LX> K(x,z)M(y,z)dz = 0, y> x, 

(11 ) 

where the kernel M(x) is defined by 

1 f"" M(x) = - expUkx)R(k)dk + p exp( - px) 
21r - "" 

= - aO( - x)exp(ax) + a exp( - ax). (12) 

Because of the existence of the O( x) function, one has to 
separate the function K(x,y) into three branches P(x,y), 
Q(x,y), and T(x,y) (see Refs. 1 and 3) as shown in Fig. 2, 

{

P(X'Y)' if x+y>O, x>O; 
K(x,y)= Q(x,y), ifx+y>O, x<O; (13) 

T(x,y), if x + y<O, x<O. 

Vex) 

==~------~----~~------~~~----x 

FIG. 1. The inverse potential for the spectrum given by Eq. (7). 
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y 

FIG. 2. The branch regions for the function K(x,y). 

The equations for these three functions are 

P(x,y) + ae-a(x+ y) + a i"" P(x,z)e-a(y+Z) dz = 0, 

Q(x,y) + aea(x+ y) + a i-x T(x,z)e-a(y+z) dz 

+ a J:x Q(x,z)e-a(Y+Z)dz = 0, 

T(x,y) - aea(x+ y) + ae-a(x+ y) (14) 

- a i-
y 

T(y,z)ea(y+Z) dz 

+ a i-x T(x,z)e-a(y+z) dz 

+ a J:x Q(x,z)e-a(y+Z) dz = o. 

The positive exponent term appearing in M(x) makes 
the problem a bit more complex. However, it is still solvable 
and the solutions are 

- ae- ay 1 
P(x,y) = , tanh(l,6) = -, 

~ cosh(ax + 1,6) 3 

Q() -ay e=[ 1 - 2e- 2aX ] 
x,y =ae , 

4ax + 2e - 2= _ !e2ax 

T() 2a
ay eax[I_2e-2ax] 

x,y = - e 
4ax + 2e - 2ax _ !e2= 

Hence 

K(x,x+O+) 

4ax + !e2aX _ 2e - 2ax + a ----"'------
4ax + 2e - 2ax _ !e2= 

= _ 2a[e- 2ax/(2 + e- 2ax ) ] {}(x) 

4ax - ~e2ax - 2e - 2ax + 4 
+a {)( -x). 

4ax + 2e - 2ax _ !e2ax 

The above equation yields the following potential: 

(15) 

(16) 

V(x) = -2Kx(x,x+0+) =2a8(x) -2a2{}(x)csch2(ax+l,6) 

_ {)( _ x) Sa2 sinh(1,6 - ax)[.ax cosh (1,6 - ax) + sinh(1,6 - ax)] . 
[ax + sinh(1,6 - ax) cosh (1,6 - ax) F 

(17) 

As seen from Eq. (17), besides the original 8 distribu­
tion, there are two more pieces added to the potential, with . 
an attractive one to the right of the 8 distribution and the 
other one to the left of the 8 distribution, which is attractive 
in the region near the origin and repulsive in the rest region. 

In conclusion, we have extended the inverse problem for 
the spectrum coming from a single 8-distribution potential 
to the case of a mixed spectrum. The factorization method 
can still be generalized to solve the problem. By comparing 
the result with that in Ref. 1, we see that the potential form 
± 2a2{}(x)csch2(ax + 1,6) is responsible for creating (with 

negative sign) or annihilating (with a positive sign) a bound 
state with p = a and the corresponding normalization factor 
p = a of the wave function. 
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A quantum WKB approximation without classical trajectories 
F. H. Molzahna) 

Department of Physics, University of California, Berkeley, California 94720 

(Received 22 March 1988; accepted for publication 15 June 1988) 

The time evolution of a coherent state is studied in the limit ~-O, for a spinless nonrelativistic 
quantum system in Euclidean space with smooth bounded time-dependent scalar interaction 
v(x,t). The lowest-order WKB approximation is derived rigorously, complete with an explicit 
bound on its L 2-norm error over a specified finite time interval. The method is based on a 
constructive series representation of the classical action, thereby avoiding the need to analyze 
the behavior of classical trajectories. The amplitude of the initial states considered is neither 
assumed to be of rapid decrease, nor to depend on ~. 

I. INTRODUCTION 

In this paper, the Wentzel-Kramers-Brillouin (WKB) 
approximation of the solution to the time-dependent Schro­
dinger equation will be rigorously derived, without the use of 
classical trajectories. For initial Cauchy data which belongs 
to a large class of generalized coherent states, the leading­
order asymptotics as ~ - 0 will be obtained by employing a 
constructive series representation of the relevant classical 
action. This rather direct approach to the problem allows 
one to obtain a simple bound on the error in the WKB ap­
proximation (in the sense of the Hilbert space norm), com­
plete with explicit formulas for the constant coefficient ap­
pearing in the error estimate, as well as for the size of the time 
interval on which this approximation is valid. This interval is 
short enough to prevent the occurrence of caustics. 

Consider a nonrelativistic quantum system of spinless 
particles having mass m, moving in Euclidean space, and 
interacting via smooth bounded time-dependent scalar po­
tentials. The state space of such a system is the Hilbert space 
:Jr=.L 2(Rd;C), and the Hamiltonian is (for each time tER) 

a self-adjoint operator H (t): '1JH (t) c :Jr -:Jr, induced by 
the differential expression 

H(X, ~Vx,t)= 2~ (~ VxY +v(x,l). (1.1) 

Here xERd is the variable of the system configuration space; 
if there are N particles moving in three dimensions, d = 3N. 
The function v: Rd X R - R describes the total potential en­
ergy of configuration x at time t, and h = 21Tfz is Planck's 
constant. The assumption of a common mass m for all parti­
cles is not restrictive because a change of particle coordinates 
can always cast a Hamiltonian with distinct particle masses 
into the form (1.1). 

Time evolution of the quantum system is described by 
Schrodinger's equation 

i~~'V,=H(t)'V, (tER) , (1.2) 
dt 

whered /dt denotesthestrongderivativein:Jr,and 'V,EJJris 
the state of the system at time t. In this work, I will consider 
the Cauchy problem for (1.2) obtained by specifying, at 
some fixed initial time sER, initial data of the form 

'Vs(X) =tp(x)exp[(i/~)k· (x-y)]. (1.3 ) 

a) Present address: Department of Applied Mathematics, University of 
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada. 

Here k,yERd are parameters of the initial data, and tp is an~­
independent function chosen from a suitable dense linear 
subset of :Jr. It will not be assumed that tp has compact 
support. 

The WKB method has as its goal the determination of 
an approximate wave function, '"(X,t) , which is asymptotic 
to 'V, (x) in thelimit~-O+. To say the least, this method has 
been widely studied. I

-
16 Let us briefly recall the standard 

WKB approach to the above Cauchy problem, in order to 
facilitate a comparison with the present approach. To avoid 
unnecessary technicalities, assume temporarily that the po­
tential v(x) is static, and choose S = O. 

It is shown in Ref. 1 that during a sufficiently small time 
interval, say I t I < T, the lowest-order WKB approximation 
has the form 

(1.4) 

where 
'"(x,1) =J(t, y(t,x»)-1/2tp(y(t,x»)exp[(i/~)S(t,x)] , 

( 1.5) 

and the error term R 1 has the L 2 -norm bound 

sup IIR I (t, ) II < C~ . 
I'I<T 

( 1.6) 

The functions J, y, and S appearing in (1.5) are determined 
by solving a two-time boundary value problem for the 
trajectories of the classical-mechanical system associated 
with (1.1). 

Let q=q( . ;qo,k): ( - T,n _Rd be the unique classi­
cal path satisfying Newton's equation 

d 2 

dilq(T) = -m-1Vv(q(T»), (1.7a) 

subject to the initial conditions 

aq k 
q(O) =qo' -(0) =-. aT m 

( 1.7b) 

Then for ITI < T, one must show that the map q( 1"; • ,k) is a 
diffeomorphism of an open set containing supp tp, onto an­
other open set in R~. Next, J is defined as the Jacobian 
determinant of this map 

J(t,qo) =det ~ U;qo,k) , (1.8) 
aqo 

while y is the inverse map 

y(t,x) =.q(t; . ,k)-I(X) . ( 1.9) 
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From these quantities one may obtain a classical path 

n-+q*(T)=q(Tiy(t,x),k) (1.10) 

which satisfies the boundary conditions 

aq* k 
q*(t) =X, -(0) =-, (1.11) 

aT m 

imposedatthetimesOandtE( - T,n. Finally, the so-called 
action 8 is defined for this problem by 

8(t,x) =k· (y(t,x) - y) 

+ fdT[;(~; (T)Y -V(q*(T»]. (1.12) 

Clearly, the process of making the standard constructions 
just outlined mathematically rigorous involves an elaborate 
analysis of the difficult two-time boundary value problem 
for the classical trajectories. This problem is further compli­
cated when it is not assumed (unlike Ref. 1) that supp tp be 
compact. Essentially this is because the constructions lead­
ing to formula (1.12) for 8 arise from using the method of 
characteristics-generally a local method-to solve the clas­
sical time-dependent Hamilton-Jacobi equation 

a8 1 8 2 0 -+- (V", ) + vex) = , 
at 2m 

(1.13) 

subject to the initial Cauchy data 8(0,x) = k· (x - y). 
This brings us to the central idea of this paper: it is possi­

ble to entirely circumvent the introduction and analysis of 
classical trajectories in deriving the Ii - 0 WKB asymptotics. 
This is based on the observation that one really only requires 
a complete integral 8 of the Hamilton-Jacobi equation, hav­
ing the correct initial condition. The functions y (t,x) and 1/ 
J(t,y(t,x») may then be constructed from 8 by straightfor­
ward differentiation. 

Of course, the Hamilton-Jacobi equation (1.13) is a 
nonlinear first-order partial differential equation in d + 1 
variables, and so finding explicit solutions is a nontrivial 
task. Nevertheless, it will be shown that the complete inte­
gral 8(x,tik,S), appropriate for defining Y(x,t), may be ob­
tained constructively as a convergent infinite series. The 
terms in this series involve parametric integrals of the deriva­
tives of potential v over linear paths, the derivative structures 
being determined by tree graphs. 

One advantage of using the constructive series solution 
8 is that it eliminates the need to use a local method to solve 
(1.13); specifically, it avoids the implicit function theorem 
used to obtain the map y in (1.9). Moreover, all the proper­
ties and estimates of 8 and its derivatives required to prove 
the desired Ii-O asymptotics of'll t may be obtained using 
elementary analytical methods. For example, an (x,k)-uni­
form time interval on which Y(x,t) exists will be found, and 
an explicit formula for the coefficient C appearing in the 
error bound (1.6) will be computed. With C known, the 
statement "Ii is small" may be interpreted more precisely. 

The plan ofthe paper is as follows. ln Sec. II the action 
8(x,tik,S) will be constructed and shown to satisfy the Ham­
ilton-Jacobi equation. The properties of its derivatives re­
quired in the WKB analysis will be derived. Section III gives 
a brief summary of those aspects of the exact quantum-me­
chanical system that are of interest. In Sec. IV the WKB 
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wave function Y is defined and studied, and its asymptoticity 
to the exact evolution is proved in Theorem 2 (the main 
result of the paper). The proof employs the elegant method 
of Maslov and Fedoriuk l for bounding the total error. In 
Sec. V this result is compared with related ones in the litera­
ture, and some concluding remarks are made. The Appendix 
contains a proof of the form taken by the terms in the series 
defining 8. 

It is worth remarking on the motivation for the form of 
this series, which is closely related to the representation of 
Hamilton's principal function obtained in Ref. 17. Its formal 
origin derives from comparing the WKB approximation and 
the connected graph representation l8 of the mixed coordi­
nate-momentum representation propagator (xl U(t,s) Ik), 
where U(t,s) is the quantum time evolution operator. The 
details of such a comparison are given in Sec. 4.1 of Ref. 18. 
In terms of the function 8 * discussed there, one has 
8=8* -k· y. 

II. CONSTRUCTION AND ANALYSIS OF CLASSICAL 
ACTION 

The action 8(X,tik,S), which is the essential ingredient 
of the WKB approximation for (1.1) - ( 1.3 ), is studied in 
this section. Here 8 is shown to be a solution of the classical 
Hamilton-Jacobi equation, and its associated Jacobian de­
terminant D is shown to be positive on a sufficiently small 
time interval. The estimates of derivatives of 8 and D re­
quired for the WKB error estimate are also made. 

I begin by defining the class of potentials v that will be 
employed throughout the remainder of the paper. Here N 
denotes the positive and W the non-negative integers. The 
gradient of a function with respect to a vector argument is 
denoted by V, while a denotes the derivative with respect to a 
scalar argument. Thus if aEWd is a multi-index, and lEW, 
then 

(Vaalv)(x,t) = V~(:JIV(X,t) . 

Definition 1: A potential energy function v is said to be in 
the class 91 if 

(i) VEC 00 (Rd X R;R}i 

( ii) v is bounded, 

IIvll oo = sup{lv(x,t) II (x,t)ERd XR} < 00 ; 

and (iii) there exist U,B,KE(O,oo) such that if aEWd, lEW, 
and lal + 1>0, then 

II va a Ivll 00 <. UB I(K IP) lal . 

It is simple to show that 91 is a real vector space, and 
that if VE 91 , then v ( . ,t) is a real-analytic function for each 
fixed t. 

As was mentioned in the Introduction, the terms of the 
series used to define 8 will be specified with the aid of certain 
gradient structures associated with tree graphs. It is useful to 
review the notation used to describe these objects. 

A (labeled) tree graph 19 Ton nEN vertices is an ordered 
pair T = ( VT,En. The vertex set VT of Tconsists of n natu­
ral numbers-the "vertex labels." The edge set ET of T con­
sists of n - 1 unordered pairs of distinct elements of VT; 
thus ifPEETis an "edge," we may write P = {ip,jp} C VT, 
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ip < jp. Of course if there is only one vertex, ET is empty. 
The tree Tis a connected graph: T cannot be expressed as the 
union of two graphs on disjoint vertex sets. Hence each ver­
tex label iE VTmust appear in at least one edge /3EET. Vertex 
sets consisting of the first n natural numbers are usually en­
countered, so the following abbreviation20 will be used: 

ii = {1,2, ... ,n} (nEN). 

The symbolYV denotes the set of all trees having vertex set 
V. According to Cayley's theorem,19 if the cardinality 
WI = n, then IYVI = nn-2. 

In order to explain the gradient structures to be associat­
ed with a given tree, some preliminary definitions are need­
ed. Denote the unit interval by 1= [0,1], and let g: I Xl .-R 
be the unit interval Green's function 

g(s,s ') = max{s,s'} - I , (2.1) 

which is clearly a continuous symmetric function of its two 
arguments. 

Next, if X,kERd
, t,SER, and m > 0, define a space-time 

linear path w: I.- Rd X R, 

w(s) =(x + (5 - l)(t - s)klm, s + s(t - s»). (2.2) 

Now we introduce a product of n potentials VE~ evaluated 
at different arguments. Specifically, Vn: (Rd XR)n.-R, 

Vn(X',T' ), ... ,(xn,~») 

= Vn( ~ (x P,T P»)= II vex P,T P) , 
P=' pen 

(2.3 ) 

so that Vn is C "", and a symmetric function of its 
n (Rd X R) -valued arguments. Let Vi (iEii) denote the gra­
dient with respect to the ith vector argument; in particular, 

ViVn ( ~ (XP,T P») = V(X',T') '" VV(Xi,~) ... v(xn,~). 
P=' 

Finally consider a given tree TEYii. With each edge 
/3 = {ip,j,J in ET, we associate a differential operator bp, 
which acts on potential products Vn of the form (2.3). This 
bp is a function of an n-tuple 5 = (S,,. .. ,Sn )EP and is de­
fined by 

(2.4) 

Notice, since g is symmetric and the gradients commute, 
that bp is indeed a well-defined function of the unordered 
pair /3. With these notations in place, the coefficient func­
tions that play the key role in the series expansion of S can be 
defined. 

Definition 2: For nEN define the "tree sums" 
an: (Rd XR)2_R by 

an (x,t;k,s) =1 d ns ~[II bp (5)] 
I" TE.7 n fJeET 

X VnC~1 W(sp») , (2.5) 

where if n = 1 the empty product is taken as unity. 
Lemma 1: For all n, anEC "", and for n;;;.2, 

lanl<nn- 2U nK 2(n-') . (2.6) 

Further, if nEN, a,/3EWd
, lEW, then for la + PI> 0, 
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X lat ImIIP1(K 1ft/)la+ P1 , (2.7) 

while for lal + 1>0, 
IVfa ~ an l<nn-2unK2(n-l)nlal + 1 

X(B+ (Klkl,/ft/m»)I(KIft/)lal. (2.8) 

In these equations Ik II = ~1= Ilkil, the time displace­
ment is denoted by at= t - s, and Vi (resp. ai ) denotes the 
derivative with respect to the ith vector (resp. scalar) argu­
ment. 

Proof: These results are straightforward consequences 
of Definition I, and the fact VE~. For example, (2.6) results 
from Cayley's theorem and the fact that 2(n - 1) gradients 
occur in nfJeETbp if TeYii. In (2.7) and (2.8) the inter­
change of differentiation and 5 integration f I" d ns is justi­
fied by Theorem B3 of Ref. 21. • 

The constructive series representation of action Scan 
now be defined using the tree sums an' It is convenient at this 
point to fix an initial time sER, a yeRd, and a mass m for the 
remainder of the discussion. 

Definition 3: In terms of TH = (11K) (mleU) '/2, let Os 
be the time segment (s - TH , S + TH ), and define a function 
<1>=<1>(.,';' ,s):RdxOsXRd.-Rbytheseries 

"" (_) n - I at 2n - I 
<I> (x,t;k,s) = L an (x,t;k,s) . (2.9) 

n= I n!mn- I 

AlsodefineS=S(',';' ,s): RdXOsXRd .... Rby 

S(x,t;k,s) =k· (x - y) - at(k 212m) - <I>(x,t;k,s) . 

(2.10) 

Notice that the first two terms on the right-hand side of 
(2.10) are a solution of the free Hamilton-Jacobi equation 
[( 1.13) with v = 0] with initial value k· (x - y). Since 
<I> = ° if at = 0, or if v = 0, then clearly <I> should determine 
the modification to this solution produced when v is present. 
The following lemma studies the convergence properties of 
the series <1>, thereby showing S is well defined. 

Lemma 2: (a) For each fixed tEOs, series (2.9) con­
verges absolutely, and uniformly for X,kERd. The conver­
gence is also uniform for t in compact subsets of Os. 

(b) Function <l>EC"". For all a,{3EWd
, lEW, and 

(X,t,k)E~<I> (the domain of<l», 

a PI"" (-) n - I (d)1 
VI V2 a I <I>(x,t;k,s) = L -

n= I n!mn- I dt 

X [at2n-IVfV~an(x,t;k,s>]. 

(2.11 ) 

This series converges absolutely, and uniformly for xERd and 
(t,k) in compact subsets of O. X Rd. If 1=0, the conver­
gence is uniform for kERd. 

Proof: Both (a) and (b) are straightforward conse­
quences of Lemma 1, standard tests for series convergence, 
and Theorem B3 of Ref. 21. Since the results of (b) are espe­
cially important in the remaining analysis, its proof will be 
sketched in the most tedious case where 1/31,1> 0. 

Write z = (X,t,k)E~<I> and let 
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In(z) = [( - )n-l/nlmn-I]At2n-lon(z,s) 

be the summand in (2.9). According to Theorem B3 men­
tioned above, the following three conditions must be verified 
to prove (2.11 ): (i) for every n, In eC 00; (ii) VYf" (z) is abso­
lutely summable over neN, for all yeW2d + I, ZE~4>; and (iii) 
for every compact Z C ~4> and yeW2d + 1 there is a summa­
ble sequence {b n = bn (Z,r)} such that 

IVY/n(z)l<bn (zeZ, all n). 

In view of Lemma 1, condition (i) holds, and it suffices 
to verify the summability in (ii) and (iii) for n>N, where 
NeN will be conveniently chosen. Turning to (ii), let 
r = (a,I,{3); since IneC 00 we may differentiate in the fol­
lowing order 

VY/n (z) = (:JVfV~ In (x,t,k) . 

As in the proof of Lemma 1, we have 

VfV~an = ( dns I [IT bp ] VfV~Vn( ~ W(Sp»). 
)1· 1E.7ii {JeET p= 1 

From (2.2) and (2.3) one sees that each alaxj in V~ be­

comes 1:;= 1 V~, while each a lakj in Vf becomes 
1:; = 1 (At 1m Hsp - 1) V~. Here 8 is the Kronecker delta, so 
8j eWd has value 1 at j, and 0 elsewhere. 

Choose N large enough so that 2N - 1 + 1.8 I > I. Then 

= I (nlmn-I+IPI)-I!(!!.-)'At2n-I+IPI (. dns 
n>N dt )1 

X T&-n LllT bp L~X [Ctl (Sp - 1)V~t 
xCtl v~rj] VnC~1 W(Sp»)1 

(which is obviously convergent if At = 0). Apply Leibnitz' 
rule to the action of (d I dt) I; those powers of d I dt acting on 
V fV~an may be taken inside the sintegral (by a proof simi­
lar to that of Lemma 1), and then replaced by 

ptl Ltl (sp -1) ~ V!"+sp ap}. 
Upon applying the bounds in Lemma 1 to the resulting 

derivatives of v, and using Isp - 11 < 1, one finds after some 
rearrangement the majorizing series 

(
K2At 2u)n nn m l

-
1P1 (nK)la+PI <I - - IAtI IP1 -

1 

n>N m n! K2 $ 

X ± (1\ (2n -1 + 1.81)! IAt I-r 
r=O r} (2n - 1 + 1,81 - r)! 

X{B+ Klkll}/-rnl_r_2. 

$m 

On the right-hand side here, employ the following bounds 
(for O<r<l, At #0): 
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(J</!, IAt 1- r<max{I,IAt I-'}, 

(B+Klk 1/($m»)/-r«1 +B+Klk 11/($m»)'. 

Also note that 
I 

I n' - r-2(2n + 1,81- 1)(2n + 1.8 1 - 2) 
,=0 

X ... (2n + 1.8 I - r) = n - 2j>, (n) , 

where P, (n) is a polynomial in n, of degree I, and is positive 
for n>N. These facts lead to the final estimate 

I IV1fn(z)l< I ;. !!.- K- 2 00 (K2At2u)n n ( K)la+PI 

n>N n=N m n. $ 

(
I At I) 113 1 - 1- 1_ 2 

X -- Cn, 
m 

(2.12 ) 

where C = C( IAt 1,lk 11,1,{3,K,B,d) is independent ofn. Em­

ploying the bound nnln!<enl{iii, and the fact IAt 1< TH , 

then (2.12) is seen to be convergent by the ratio test, verify­
ing (ii). 

Finally (iii) follows from (2.12) noting that the sum­
mand is monotonically increasing in I At I, behaving near 
At = 0 like 1 At 12n + 113 1 - 1 - I, which is nonsingular since 
n>£ • 

The next goal is to establish that S is indeed a solution of 
the Hamilton-Jacobi equation. This is the content of the 
following proposition and theorem. 

Proposition 1: The family of functions {an} n> 1 of Defini­
tion 2 satisfies the following integral identities for all 
(x,t,k)eR2d+ I: 

a l (x,t;k,s) = i ds v(w(s») , (2.13a) 

1 n-I (n) i an (x,t;k,s) = -- I 1 dSS 2n - 2 
2 1= 1 I 

x(V1a,·V1an_/)(w(s);k,s) (n;>2). 

(2.13b) 

Proof: See the Appendix. • 
Let He: R2d + 1 ___ R be the classical Hamiltonian asso-

ciated with (1.1), viz., 

He (x,p,t) = (l/2m) p2 + V(X,t) . (2.14) 

Theorem 1: Let VE~. For each (k,s)eRd X R, the func­
tion S( . , . ;k,s): Rd Xfls ---R is a solution of the Hamil­
ton-Jacobi equation 

aIS(x,t;k,s) + HAx,V1S(x,t;k,s),t) = O. (HJ) 

Proof: From (2.10) and Lemma 2 it is clear S( . , . ;k,s) 
is C j so it must be shown that (HJ) holds identically for 
(x,t)eRd X fl s . A direct computation of the left-hand side of 
(HJ) using (2.10) results in 

ajs + He (x,V1S,t) = - a l 4>(x,t;k,s) - m-1k· V I 4> 

+ (l/2m)(V I4»2 + v(x,1) , 

(2.15 ) 

where omitted function arguments are the same as their last 
appearance. Appealing to Lemma 2, substitute series (2.9) 
for 4>, differentiate term-by-term, and evaluate (VI4»2 by 
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the Cauchy product; the right-hand side of (2.15) becomes 

<Xl (_ )n(l:..t2)n-1 L--
n=1 n! m 

X {[ (2n - 1) + I:..t :t + ~ k 0 V x] an (x,t;k,s) 

1 n-I(n) } -l5n•1 v(x,t) + - L I (V ta /oV Ian _ I ) (x,t;k,s) . 
2,=1 

(2.16) 

The I.7::/ is absent if n = 1. It will now be shown that the 
{ .,. } in (2.16) vanishes for all nEN. Consider the n = 1 
case (similar arguments apply if n>2). Replace (x,t) with 
w(A) in (2.l3a), whereAEl. In doing this the following com­
position law is used: 

w(s) I (x.1) = w(A) = ([x + (A - l)l:..tk 1m] 

+ (s-I)[A(t-s)]klm, 

s + s [A(t-s»)) = w(sA). 

Therefore (2.13a) has become 

al(w(A);k,s) = i ds v(w(sA»). 

Now multiply this by A, change the integration variable to 
r = sA, differentiate with respect to A, and set A = 1 to find 

[ 1 + I:..ti. + E... k 0 vx]al(X,t;k,S) = v(x,t) . 
at m 

Hence the n = 1 term in (2.16) is zero. • 
At this point, it is worth noticing two useful conse­

quences of the Hamilton-Jacobi equation and the smooth­
ness of S. First, if (HJ) is differentiated with respect to the 
parameter k, one obtains 

aIV2S(x,t;k,s) + (llm)V2VtSVIS = 0; (2.17) 

in the second term the d X d matrix V 2 V IS [with elements 
(V 2 V IS) i.j == V~ V ~ S] multiplies the vector V IS. The sec­
ond consequence concerns the determinant D 
==D( . , . ; . ,s): Rd XU s XRd ..... R defined by 

D(x,t;k,s) ==det V IV2S(x,t;k,s) 

(2.18 ) 

where 15 is the unit matrix (i.e., Kronecker delta). 
Lemma 3: For all (X,t,k)E'IJD, the following continuity 

equation is obeyed: 

aID(x,t;k,s) 

+ V.., 0 {D(x,t;k,s)V2H c (x,V IS(x,t;k,s),t)} = O. 
(2.19) 

Proof: This follows from differentiating (HI) with re­
spect to Xi and kj' and performing a number of algebraic 
manipulations. • 

I now introduce a slightly smaller time domain than Us, 
on which the remaining analysis will be done. The reason for 
this is that on this smaller domain the useful quantities de­
rived from S are particularly neatly characterized. 

Definition 4: Given 0E(0,l), define t(CT) 

== [1 + 1!CT~] -t/2TH , and introduce the time segment 

Us(CT) = (S-t(CT),S+t(CT»). (2.20) 
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Note that t(CT) ..... O as CT ..... O; it will always be assumed that 
OE (0,1). The family of convergent series r: [0,1) X Z ..... R 
(where Z denotes the integers), 

r(A",!) == f A" n n/ , (2.21) 
n=1 

(2.22) 

will occur frequently in subsequent estimates. 
Lemma 4: For X,kERd, tEUs(CT) and a,f3EWd, 

la + fJ I > 0 one has the estimate 

IVfV ~4>(x,t;k,s) I 
Kla+ PI-2 (t(CT»)IPI-I 

< - r(A",la+fJl-2). 
{iii ,Jdla+PI m 

In particular if a = 150 fJ = I5j (i,jEd), 

IV; V ~ 4> (x,t;k,s) 1< CTld , 

(2.23 ) 

(2.24) 

where V; == V~i is the ith component of the gradient on the I th 
vector argument. 

Prool: Estimate (2.23) follows at once from (2.11) 
and (2.7). • 

Based on these explicit estimates, many of the critical 
properties of the relevant quantities derived from S will now 
be obtained. 

Proposition 2: For any tEUs (CT), kERd thefollowing map 
is a C <Xl diffeomorphism: 

I==V2S( . ,t;k,s): Rd ..... Rd
• 

Remark: For comparative purposes, I point out that if a 
study of the classical trajectories were to be made, then this 
diffeomorphism would turn out to be the map x ~ y (t,x) in 
(1.9). However, no use will be made of this fact. 

Proof: Lemma 2 implies I is C <Xl. Let uERd be arbitrary 
and consider the map F: Rd ..... Rd defined by 

F(x) == (I:..t Im)k + U + V24>(x,t;k,s) . (2.25) 

If X,X' ERd
, applying Taylor's formula and Schwarz' inequal­

ity to the jth component of F shows 

11') (x) -1') (x') I.;;; Ix - x'IIV1')(x' + A(x - x'))1 , 

for some AE(O,l). But (2.25) implies that for any zERd
, 

IV1')(z)I = IVIV~4>(z,t;k,s)1 <ctt (~)J/2 = ;, 

where (2.24) was used. Hence 

IF(x) -F(x')1 = (tl (rj(x) _1')(X'»)2)1I2 <CTlx-x'l· 

Since CT < 1, F is a contraction mapping and therefore 
possesses a unique fixed point, say x. = F(x. ). From the 
definitions of I and F, this is equivalent to the statement 
I(x. ) = u. This shows I is surjective, while the uniqueness 
of x. implies that I is injective. Finally, I-IECoo by the 
inverse function theorem. • 

The WKB error estimate to be found in Sec. IV requires 
some bounds on the determinant D, and its derivatives. This 
section concludes with a study of these. It is useful to begin 
by establishing some notation for matrix norms, and recall­
ing a few basic facts from matrix analysis. 
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Let A,BECd xd be d Xd complex-valued matrices. The 
operator norm of the linear transformation associated with 
A is 

IIA lI=sup{IAulluECd, lui = 1}, 

where luI 2=l:1=llu i I2. This norm has two well-known 
properties of interest. The first is that 

IdetA I<IIA lid, (2.26) 

while the second22 (Neumann series) shows that if liB II < 1, 
then fj + B is invertible and 

(2.27) 

Another useful matrix norm is the Hilbert-Schmidt norm 

IIA 112=C.~ 1 IAi. j I
2
)1I2 . 

It may be used to estimate a trace via 

ITr(AB)I<IIA 11211B 112' (2.28) 

which is seen by regarding Tr(AB) as a Hermitian inner 
product of two vectors A t,B on the index set d X d, and 
applying Schwarz' inequality. The matrix norms II . II and 
II . 112 are both algebra norms, viz., 

IIAB II < IIA II liB II, IIAB 112<IIA 11211B 112' (2.29) 

and are numerically related by 

IIA II<IIA Ib<PIIA II· (2.30) 

The derivative of a determinant will be treated as follows. If 
A: (a,b) C R -+ Cd x d is eland everywhere invertible, then 
one has the well-known result 

~detA(A) = (detA(A»)Tr[A(A)-I~A(A)]' 
dA dA 

(2.31) 

which follows from differentiating the permutation expan­
sion of the determinant and manipulating the resulting co­
factors. The inverse matrix appearing in (2.31) may be esti­
mated by23 

(2.32) 

Lemma 5: Let X,kERd, tEOs (u), and i,jEd. Then 

(1 - U)d < D(x,t;k,s) < (I + U)d , (2.33) 

IV~D(x,t;k,s) I «K IJ2:jT)Y(A,,,l) (1 + U)d- I, (2.34) 

IV~ V ~ D(x,t;k,s) I 

< [(K IJ2:jT)Y(A", 1 )( 1 + U)d-I P 
X (1 - u) -d(1 + d -1/2) 

+ (K 2/J2:jT)Y(A",2)(1 +U)d- 1d- I/2 . (2.35 ) 

Remarks: (a) Bounds for IV ID I (and the Laplacian 
laiD I) are obtained by multiplying the constants on the 

right-hand side of (2.34) [and (2.35)] by P (and d). 
(b) Result (2.33) together with Theorem 1 implies that 

S is a complete integral (in the sense of Jacobi's theorem24 ) 
of the Hamilton-Jacobi equation, on the domain 
Rd XOs(u) X Rd. 

Proof Begin with (2.33). Let A = fj - VIV2<l> be the 
matrix whose determinant isD. Using (2.24) and (2.30) we 
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have II - V I V 2<1>11 < u < 1. It follows that 

ID I<IIA Il d< (1 + U)d, 

which proves the right inequality in (2.33). Applying the 
Neumann series result to A gives 

IIA -111< (1 -IIV IV2<l>1I) -I < (1 - u) -I. 

Consequently (2.26) implies 

ID 1= IdetA -II-I;;.IIA -III- d> (1- U)d. 

This proves (2.33) once it is seen that D> O. But this is true 
because fj - $V 1 V 2<1> is invertible for 5E [0,1], and 
[0,1] 35 t-+ det(fj - $V 1 V 2<1»ER is continuous, with value 
1 at 5 = O. 

Turning to (2.34), we employ (2.31) with A = Xi and 
find 

IV~D 1= D ITr(A -IV~A) I<D IIA -llbIlV~A 112' (2.36) 

ButDllA -11I2<DPIiA -III<PIIA II d-I<P(1 +U)d-I, 
and from (2.23) one easily gets 

IIV~A 112 = IIV~ V1V2<l>lb«K IJ2:jT)Y(A",1)d -1/2. 

Inserting these results into (2.36) establishes (2.34). A simi­
lar pattern of estimates applied to the identity 

V~ V{D = V{D Tr(A -IV~A) 

+DTr(A -I[V~V~A - V~AA -IV~A]> 

leads to (2.35). • 

III. THE QUANTUM SYSTEM 

In this brief section, the quantum system associated 
with the wave-mechanical Hamiltonian (1.1) is defined. 
The relevant properties of the time evolution governed by 
Schrodinger's equation are also recalled. Finally, the initial 
value problem, whose WKB approximation is sought, will 
be formulated. 

Definition 5: Let Ko: Do-+Yr = L 2(Rd) denote the 
self-adjoint extension of the Laplacian on Rd; specifically 

Do={~la2Yt/J(a)EL 2(R~)}, (3.1a) 

YKot/J(a)=a2Yt/J(a) , (3.1b) 

where.7 Eg) (Yr) (the bounded operators on Yr -+Yr) de­
notes the unitary Fourier transform, 

.7 t/J(a) = (21T) - dl2 f dx e - ia' "'t/J(x) (t/JEL I nL 2) . 

For lI,m > 0 the free Hamiltonian is defined by Ho = - (1121 
2m)Ko: Do-+Yr. For VE~ and tER, one has the potential 
energy operator V(t)Eg) (Yr), V(t)t/J(x) =v(x,t)t/J(x). 
Finally, the total Hamiltonian is defined as the self-adjoint 
operator 

H(t) = Ho + Vet): Do-+Yr· (3.2) 

Proposition 3: There exists a two-parameter family of 
"Schrodinger evolution" operators {U(t,S)Eg) (Yr) It,sER} 
with the properties (for all t,s): 

(a) U(t,s)(Do) C Do; 

(b) II U(t,s) II = 1 ; 

(c) U(t, . ) is strongly continuous; 

(d) U(s,s) = I (the identity on Yr); 
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and 

(e) on the domain Do, U(t,s) is strongly differentiable 
with respect to t and s (separately), and satisfies 

ifz!!.. U(t,s)r/J = H(t) U(t,s)r/J , (3.3a) 
dt 

- ifz!!.. U(t,s)r/J = U(t,s)H(s)r/J, 
ds 

(3.3b) 

for all r/JEDo. 
Remark: Of course the operators U(t,s) have a number 

of additional properties, such as unitarity. Those listed 
above are sufficient for the subsequent development. 

Proof" The results follow readily from the general theo­
ry25 of linear evolution equations in Banach space, with 
time-dependent unbounded operator coefficients, together 
with the facts that H(t) is self-adjoint with t-invariant do­
main Do, and t ~ V( t) is strongly continuously differentia­
ble. II 

The next result is required in order to compute the ac­
tion of H(t) on a smooth WKB wave function. 

Lemma 6: Let DI ={¢'EC 2nL 2(Rd) la¢'EL 2}, where 
ar/J denotes the ordinary Laplacian of the C 2 function r/J: 
Rd ..... C. Then DI C Do and Kor/J = ar/J for r/JEDI' 

Proof" This follows from a standard functional-analytic 
argument proving that DI is a core for Ko. (See Ref. 22, pp. 
298 and 299.) II 

The preceding results in this section, even though well 
known, would require a considerable amount of work to 
prove from first principles. However, since such results are 
ultimately an essential part of any serious discussion of 
quantum evolution (and its approximation), the work re­
quired to prove them should not be regarded as contributing 
to the level of difficulty of the WKB method being presented 
here. 

Let us now consider the Cauchy initial value problem 
(IVP) for Schrooinger's equation. Suppose r/JEDo is given. 
Then Proposition 3 implies that 

R 3 t~'IIt=U(t,s)r/JEK (3.4) 

is a strict solution ofSchrodinger's equation with initial val­
ue r/J. That is, 'IIteSDH(t) for all t, (1.2) holds, and'll, = r/J. 
More generally, if t/JeK\Do, then (3.4) defines a general­
ized solution of the IVP. 

In the next section, initial data r/J of the form (1.3) will 
be considered. Specifically, I will assume that 

r/J(x) = lP(x)exp[ (iffz)k· (x - y)] , (3.5) 

where(j1EC 3 (Rd;C) and Vaq?EKfor all aeWdwith lal<3. A 
simple calculation then shows r/JEDI C Do, so the resultant 
exact solution (3.4) of the Schrodinger IVP (1.2) and (1.3) 
is in fact a strict solution. Moreover, the initial states of the 
form (3.5) form a dense linear manifold in K. 

IV. THE WKB WAVE FUNCTION AND ERROR ESTIMATE 

This section contains the analysis of the lowest order 
fz ..... 0 asymptotics of the SchrOdinger IVP (1.2) and (1.3), 
for times in 0, (u). The constructive series solution S of the 
Hamilton-Jacobi equation is used to define the WKB-ap­
proximation wave function Y. A few simple properties ofY 
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are derived, and used to show that Y is asymptotic, as fz ..... O, 
to the exact solution ofthe IVP, with respect to the norm of 
K. 

Definition 6: Denote by f Rd X 0, (u) X Rd ..... Rd the 
map 

l(x)=/(x;t,k,s) = V2S(x,t;k,s) . (4.1 ) 

In terms of J, S, and D define the "lowest order WKB wave 
function" Y: Rd X 0, (u) ..... C by 

Y(x,t) =~D(x,t;k,s)lP (f(x) )exp[ (iffz)S(x,t;k,s)] , (4.2) 

where k,yeRd are the parameters appearing in the initial data 
( 1.3), and q?EK has the properties assumed at the end of 
Sec. III. 

As indicated in (4.1), the arguments t,k,s of I will be 
notationally suppressed, the reason being that it is useful to 
regard x ~ I(x) as a diffeomorphism of Rd, according to 
Proposition 2. Regarding (4.2) recall that D> 0 [Eq. 
(2.33)]. From the initial t = s values S = k· (x - y), 
I = x, D = 1, it is seen that Y satisfies the initial condition 
(1.3) exactly, 

Y(x,s) = lP(x)exp[ (iffz)k· (x - y)] . (4.3) 

Two technical properties ofY which allow the Hilbert space 
operations Ho and d f dt to be applied to Y via partial differ­
entiation are obtained next. 

Lemma 7: (a) For each teO,(u), 

Y( . ,t)eDl = {¢'EC 2 nL 21a¢'EL 2} . 

(b) The map O,(u) 3 t~Y( . ,t)eL 2 is strongly 
continuously differentiable, with 

[:t Y( . ,t) ] (x) = Of(x,t) [teO, (u), a.a. xl . 

Proof" (a) From Lemma 2 and the hypothesis on lP, it is 
clearY( . ,t)eC 2. Also, upon noting that Disjustthe Jacobi­
an determinant of J, one employs the change of integration 
variables x' = I(x) to show YeL 2, 

J dxIY(x,t) 12 = J dx D(x,t;k,s)llP(f(x)W 

= J dx'llP(x') 12 = IIlP 112 < 00 • 

It remains to show a Y ( . ,t) eL 2. A straightforward differ­
entiation of ( 4.2) with respect to x yields the estimate 

laY(x,t)I 

<D 1/2{[ (~:r + (! VIS r 
+ lalDI +~lalsl]llP(f(X»)1 

2D fz 

+ [Ia/(x) I +(~IVIDI + ~IVISI)IIV/(x)llz] 

xIVlP(f(x»)1 + IIV/(X)II/IIVVlP(f(x))IIz}. (4.4) 

The next step is to observe that each (j1-independent factor in 
the { ... } of (4.4) has a finite x-independent bound. For 
example, in Lemma 5 it was shown that D -I < (1 - u) - d 

and I V ID I, I a ID I < const. In a similar fashion it is possible to 
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derive x-independent bounds for the other quantities I V IS I, 
IdlS I, IIVf(x)lb, Idfl appearing in (4.4). These bounds will 
not be exhibited here because their precise form is not re­
quired in the remaining analysis; it is only their existence at 
this stage which is of importance. 

The result of these observations is that 

f dxldY(x,t) Iz..;J dx D(x,t;k,s)(Colcp (f(x»)! 

+ CIIVcp(f(x»)! + Cz II VVcp (f(x»)lb)2 , 

where C j depend on k and u but not on x. After changing the 
variable of integration again, and noting that Icp 1,IVcp I, 
IIVVcp IbeL 2 by hypothesis, we see dY( . ,t)eL 2. 

(b) Here the proof relies on a bound study of the first 
and second partials, a Y and a 2y, of Y with respect to the 
time argument. Consider the more difficult case of a 2y. 
After differentiating (4.2) twice with respect to t, one ob­
tains an estimate quite analogous to (4.4) except that the 
derivatives ofY, D, S, and f with respect to x are now with 
respect to t. Again, it is sought to bound the cp-independent 
coefficient functions by x-independent constants. This can 
be accomplished by first eliminating the occurrence of any t 
derivatives of S or D through repeated use of the Hamilton­
Jacobi (HJ) and continuity (2.19) equations. Once this is 
done, the resulting coefficient functions only contain deriva­
tives of S or D, with respect to x and k, and they may be 
estimated analogously to (a) above. These steps result in 

la 2Y(x,t) I <D(x,t;k,s) 1/2{Colcp (f(x»)1 

+ C\IVcp(f(x»)1 + C21IVVcp(f(x»)lb}, 

(4.5) 

""-
with Cj independent of x. This implies a 2y( . ,t)eL 2, and a 
similar (but simpler) calculation shows a Y( . ,t)eL 2 as 
well. 

With these results, the strong derivative (d I dt) Y ( . ,t), 
tens (u), can be shown to exist and equal a Y( . ,t)o In fact, 
by employing Taylor's formula, one has 

(4.6) 

A 

where 11" - t I < It' - t I. Since the constants Cj in (4.5) are 
independent of tens (u), it is seen that the right-hand side of 
(4.6) tends to zero as t ' ..... t. A similar argument shows that 
t ~ a Y( . ,t) is strongly continuous. • 

Another ingredient of the error analysis is the "approxi­
mate Schrodinger equation" satisfied by Y; it will be studied 
next. 

Lemma 8: For tens (u) the following identity holds: 

d ~2 m - Y( . ,t) = H(t)Y( . ,t) + - gt , (4.7) 
dt 2m 

where gte£' has the explicit form 
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g, (x) = D(x,t;k,s) 1/2 exp [ ~ S(x,t;k,s) ] 

xU ~: -(~r]cp(f(X») 

+ ! VID 0 V(cp 0 f)(x) + d(cp 0 f)(X)} . 

(4.8) 

Furthermore the map t ~ g, is strongly continuous. 
Proof" Thanks to Lemmas 7 and 6 we may compute as 

follows: 

[(i~ :t - H(t) )Y( . ,t) ] (x) 

= i~ aY(x,t) + !!...-dY(X,t) - v(x,t)Y(x,t) 
2m 

= D 1/2 exp [ ~ S ] { - cp (f(X»)[ als + 2~ (VIS)2 + v] 

+ mcp(f(x»)(2D)-1 

x[aID+ ! (VIDoVIS+DdIS)] 

+ imcp(f(x») 0 [Z(X) + ! VftX)VIS]} 

+ (~/2m) gt(x) , (4.9) 

where af lat=.al V2S andg, (x) is given by (4.8). Now the 
entire { ... } in (4.9) vanishes due to (HJ), (2.19), and 
(2.17). This implies g t e£' and that (4.7) holds. 

In order to prove the strong continuity of t ~ g" one 
cannot rely on Lemma 7 because Ho is an unbounded opera­
tor. Instead one relies on the by now familiar type of argu­
ment used in the proof of Lemma 7. Such an analysis leads to 
the bound 

\a
a gt(x) \ <D(x,t;k,s) 1/2 L C~(u)lvacp(f(x»)1 
t aeWd 

lal<3 

[tens(u» , 

with C ~ (u) independent ofx. With this estimategt is easily 
shown to be strongly continuous in t. It is this part of the 
analysis that requires the hypothesis that the third partials of 
cp remain in L 2. • 

So far, Eq. (4.7) only says that Y satisfies SchrOdinger's 
equation approximately-to within a term (~2/2m)g, 
which tends (in L 2 norm, and in modulus) to zero as ~ ..... O. 
But in quantum mechanics, Schrodinger's equation is an 
evolution equation in Hilbert space, and so one really wants 
to show that Y ( . ,t) is close to the exact solution 'l't in the 
sense of the norm of K. This brings us to the principal result 
of the WKB analysis. 

Theorem 2: Let VE~, ~,m>O, seR, and oe(O,I). Let 
H(t) be as in Definition 5, and '1'.: R-Kbe the solution of 
the Schrodinger initial value problem, 

i~,!{'I',=H(t)'I', (tER) , (1.2) 
dt 

'l's(x) =cp(x)exp[(i/~)ko (x-y)] (xeRd), (1.3) 

where cpeC 3 (Rd;C) and vacpeK for all aeWd with lal <3. 
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Let Y be constructed via Definition 6. Then for all tEO. (0'), 

11'11, - Y( . ,1) II <C<p (0') It - sl~m , (4.10) 

where the finite constant is 

C<p (0') =!IICo(O') 1971 + CI (0') IV971 + C2(O') II VV97 11211 , 

(4.11 ) 

and C j (0') are given in (4.16) below. 
Proof The first stage of the proof is to obtain the follow­

ing integrated form of ( 4. 7): 

Y( . ,1) = U(t,s)Y( . ,s) - -'- dT U(t,T) gr . (4.12) 'Ii i' 
2m • 

Here the strong Riemann integral26 of a continuous function 
of T is used. Equation (4.12) is trivial if t = s, and more 
generally follows by integrating the identity 

d iii 
- [U(t,T)Y( . ,T)] = - - U(t,T)gr . 
dT 2m 

(4.13) 

This identity (which is simple to obtain formally) is a conse­
quence of (4.7), the strong differentiability of U(t, . ) on 
Do 3 Y( . ,T), the backward equation of motion (3.3b), 
and the strong continuity of U(t, . ). Since also T 1--+ gr is 
strongly continuous, (4.13) may be integrated to yield 
(4.12). 

The exact solution (3.4) obeys a similar equation, 

'11, = U(t,s)'I1. = U(t,s)Y( . ,s) , (4.14 ) 

by (1.3) and (4.3). Upon subtracting (4.12) from (4.14), 
taking the L 2 norm of the result, and employing the unit 
norm of U(t,s) , one has 

11'11, -y(. ,t)II«~2m)lt-sl sup IIgrll· 
TEO,(U) 

This is essentially (4.10). Using the formula (4.8) for g, (x) 

yields the estimate 

IIg,11
2
<f dXD(x,t;k,S)[{ I~~ I + I :~ nl97 (/(X»)1 

+ {IIV/(x) liD -liVID 1+ la/(x) 1}IV97 (/(x»)1 

+ {IIV/(x) 1I/}UVV97 (/(x»lb r (4.15) 

The quantities in the three { ... } in (4.15) all have x-inde­
pendent bounds. The bounds on D and its derivatives, and 
the result IIVf(x) II = 118 - VIV2<1>11<1 + 0', were obtained 

in proving Lemma 5. Similarly, IIV/(x) Ib<fcl + O'. Using 
the results of Lemma 2 it is easy to show 

la/(x) 1< (K !v'21T)r(Au ,l) . 

Upon using these bounds, and changing integration vari­
ables in (4.15), one arrives at (4.11) with the constants 

Co(O') = (1 - 0') - 2d [ (K !v'21T)r(Au ' 1 )( 1 + O')d- I P 
X (a d + !fcl) + ~(1 - 0') - d(K 2!v'21T) 

Xr(Au ,2)(1+O')d- l fcl, (4.16a) 

CI(O') = (K!v'21T)r(A u ' 1) [((1 +O')!(1-O'»dfcl + 1], 
(4.16b) 

(4.16c) 
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The r(Au,/) were defined in (2.21) and (2.22). • 
According to (4.10), the error in the WKB state 

Y( . ,t) is also small if the time displacement is small, or if 
the mass is large. In the case of small lat I, one can choose 0' 
to be close to O. Since limu _ o C) ( 0') ex: 8),2' one sees that the 
error for short times is deierinined by the second partial de­
rivatives of the amplitUde 97. In the case of large mass, it 
seems reasonable to expect that an m --- 00 asymptotic ap­
proximation, simpler than (4.2), could be obtained by trun­
cating the series expansion (2.9) for S at an appropriate or­
der of m - I. A similar large mass asymptotic expansion for 
the propagator [the integral kernel of U(t,s)] has recently 
been derived in Ref. 27. 

The result of Theorem 2 may be trivially extended to 
estimating the error in the expectation value of any bounded 
observable AEfJ} (JiY), in the state Y. A simple calculation 
[assuming 11'11.11 = 1, and using the unitarity of U(t,s)] re­
sults in 

I 
('11 ,A'I1 ) _ (Y( . ,t),AY( . ,t» I 

" IIY( . ,1)11 2 

<IIA II . 11'11, - Y( . ,1)11 . const, 

for small enough It - slli!m, and with the constant of 
order 10. 

V. CONCLUDING REMARKS 

In order to evaluate the merits of the above result, it is 
useful to compare it with other available results in the litera­
ture, for similar problems. 

( 1) Maslov and Fedoriuk I have developed a very gen­
eral rigorous theory of the WKB approximation applicable 
to a broad class of wave equations. The equations they con­
sider are in general defined in terms of pseudodifferential 
operators, and might well be said to include the majority of 
cases arising in physics. In its most general form, of course, 
their theory is technically rather difficult. 

It is of interest to compare with the results of their theo­
ry when it is specialized to the case of quantum time evolu­
tion. Such a result is provided by Theorem 12.3 of Ref. 1. The 
problem considered there is in one way more general in that 
the phase function k· (x - y) in the initial data (1.3) is 
replaced by a more general function SoEC 00 (R~ ). Their 
Theorem 12.3 also obtains the higher-order asymptotics in 
powers of Ii. 

On the other hand, this is compensated by several rather 
restrictive assumptions. First of all, the potential is assumed 
to be time independent (this is not a limitation in their meth­
od), and a function of rapid decrease, VEY" (Rd;R) (the 
Schwartz space). The consequent decay of v(x) as Ixl--- 00 

excludes the use of their result for many-body problems, 
where typically the total potential v will not decay for large 

I xl-
Second, Maslov and Fedoriuk assume the initial ampli-

tude function 97(x) in (1.3) has compact support. This as­
sumption, ubiquitous in their general theory, is needed be­
cause of the reliance of their method on an analysis of 
classical trajectories. It allows them to establish the exis­
tence ofa local diffeomorphism y(t,x) , Eq. (1.9). Finally, it 
is worth mentioning that Theorem 12.3 requires Ii and 
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It - sl to be "sufficiently small," with no estimate given on 
the size of the allowed regions of these parameters. (In a 
pioneering paper, Maslov2 gives an estimate for the allowed 
time region, which is dimensionally incorrect, even after the 
mass is restored from the value m = 1 he used.) 

In contrast to these assumptions, note that for the pres­
ent results, it was neither assumed that v decay [for example, 
class au contains potentials of the form sin (a 0 x) ], nor that 
qJEC ';' , nor that Ii be "small enough." Furthermore the size 
of the allowed time region is known, as is the constant C", in 
the error estimate (4.10). 

(2) In a series of interesting papers,28-30 Hagedorn has 
rigorously studied the semiclassical limits Ii - 0, and m - 00 , 

of quantum evolution, using a particular kind of coherent 
states. The quantum system he considered is similar to the 
one here, except that v(x) was assumed time independent, 
only to be C 2, and was allowed to have a quadratic growth in 
x. (Of course from a physical standpoint such behavior for 
large Ix I is rather artificial. ) The class of initial states \lis that 
he employed were roughly of the form (1.3), but with tp(x) 
taken to be an Ii-dependent Gaussian. Notably, this Gaus­
sian amplitude becomes very sharply peaked as Ii-O. 

The method used by Hagedorn to obtain an approxi­
mate wave function at time t is not the WKB method, but 
might better be described as a "wave packet method." 31 In 
this method the parameters appearing in the Gaussian wave 
packet are evolved via a set of ordinary differential equa­
tions. This has the undesirable effect of forcing the wave 
packet to keep the same "shape" as it evolves, i.e., it main­
tains the same form as a function of x-in this instance a 
Gaussian form. On the other hand, from a practical stand­
point the wave packet approach is easier to implement, be­
cause it only involves integrating a system of ordinary differ­
ential equations, rather than computing a classical action 
S(x,t;k,s) by some means. 

Let us briefly consider the theoretical implications now. 
With his approach, Hagedorn28 obtained a lowest-order er­
ror that only scales like ,,1/2, in contrast to ,,1 in (4.10). 
Apparently this is because the shape of the approximate 
wave function was rather constrained, since in a later pa­
per,30 more general approximate wave functions were shown 
to exist that would yield errors of order ,,112, for a fixed 
choice of lEN. It was also shown that for more general ,,­
dependent initial amplitudes qJEY, an approximate wave 
function with error tJ (,,1/2) existed. It is important to note 
that these initial amplitudes also become highly localized as 

"-0. 
In these results there is again no explicit estimate given 

of the constant C in the error estimate, nor for the allowed 
time region of validity. Theorem 1.1 of Ref. 28 appears at 
first sight to be valid for arbitrarily large times. However, 
this can only be the case if Ii is assumed so small that the 
initial state becomes so peaked that it will not spread signifi­
cantly (relative to distances over which the potential oscil­
lates) during the chosen long time interval. (Theorem 1.1 in 
Ref. 30 is formulated in a way which avoids giving this 
impression. ) 

A recent extension of Hagedorn's methods by Robin­
son32 has resulted in an tJ (,,112 - E), E> 0, WKB approxima-
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tion valid for longer times (away from caustics). In this re­
sult, C is not known in detail, and it is required that " be 
"small enough" and that the initial amplitude have compact 
support. 

( 3 ) Recently, Klauder has been promoting33 a so-called 
"global, uniform, semiclassical" approximation to wave­
equation solutions. In the case of quantum mechanics, this 
approach basically reduces to a study of the evolutuion of 
Gaussian coherent states having the initial form 

I/!s(x) = (Ohrli)dI4 exp [ - (0/2")(x-y)2] 

xexp[(il")k o (x-y)], (5.1) 

where 0> 0 is a parameter, in addition to k,yERd
• These 

states, like Hagedorn's, are strongly peaked about x = y for 
small fl. Klauder's approach is to apply a standard WKB 
approximation to describe the evolution of (5.1). However, 
because of the "-dependent amplitude in (5.1), the initial 
condition for the relevant action in this approximation is 
seen to be complex: k 0 (x - y) + ;(0/2) (x - y)2. The 
method of characteristics then implies a need for complex­
valued trajectories. 

Unfortunately, this leads to problems with this ap­
proach. One problem stems from the fact that for a general 
real-analytic Hamiltonian He: C2d X R - C, the trajectories 
may fail to be defined for all tER. This can occur even when 
the real-valued trajectories exist for all t. Hence with appro­
priate initial conditions a trajectory may "reach infinity" in 
an arbitrarily short time. As a result, it may not be possible to 
define the required action function for all the values of x,k,y 
that are necessary, for any fixed t,s. It is not appropriate to 
delve further into these matters here, except to remark that it 
seems many of the suggestive claims important to Klauder's 
theory have not been proved. 

For the reasons discussed in (2) and (3), it was decided 
to use an initial amplitUde function tp in (1.3) that (as in 
Maslov's study) is" independent, and is further as general as 
possible. It is hoped that the WKB derivation presented here 
for this system is found to be relatively simple, self-con­
tained, and detailed in its result. 

A few closing remarks about possible extensions of the 
present work may be of interest. First of all, there is some 
truth in the statement that the use of the constructive series 
solution for S, with coefficient functions determined by a 
sum over tree graphs, is a kind of "trick" valid only for Ham­
iltonians similar to (2.14). However, the following observa­
tion indicates a possible means for generalization. Series 
(2.9) can be viewed as a perturbative series, in "powers" of 
the potential v, about the action associated with the free 
Hamiltonian p212m. This suggests the modifications neces­
sary for a more general Hamiltonian, decomposable into a 
solvable part plus a perturbation. The vector component of 
linear path w(t) should be replaced by an unperturbed tra­
jectory, and the resulting analog of (2.13) should become a 
recursive definition of the action's expansion coefficients. 
Their analytical properties must then be obtained by induc­
tion from these recurrence relations. In general, a closed 
form expression like (2.5) will not be available. 

The result of Theorem 2 just gives the lowest-order" - 0 
asymptotics. It is evident, however, that in obtaining this 
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result, all the ingredients necessary for constructing higher­
order corrections, by methods similar to those presented in 
Ref. 1, have been constructed. The key item in these higher 
corrections is the diffeomorphism f of ( 4.1 ). Only the low­
est-order asymptotics were derived here because this is by far 
the most interesting result, and it avoids unnecessary com­
plications in the presentation. 

Finally, let us notice where the classical trajectories are 
lurking. As was mentioned in a remark following Lemma 5, 
function S(x,t;k,s) is a complete integral of the Hamilton­
Jacobi equation, with independent parameters kElRd. Thus S 
induces classical trajectories via Jacobi's theorem. They may 
be shown to have initial momentump(s) = k, and final con­
figuration q(t) = x [cf. (1.11)]. Such an analysis is similar 
to the one found in Sec. IV of Ref. 17 for trajectories having 
two fixed end points. 
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APPENDIX: ARBOREAL COMBINATORICS 

In this Appendix, Eqs. (2.13) will be proved. This proof 
is in many respects similar to the corresponding proof that 
arises in the study of Hamilton's principal function. '7 How­
ever, in the present proof there are several computational 
differences, and a significant simplification, relative to the 
analogous proof presented in Ref. 17. Moreover, (2.13) is of 
fundamental importance in the construction of the solution 
S to (HJ), so its derivation will be presented with an empha­
sis on the new features. 

Let us begin with a few additional notations for trees and 
their combinatorics. If nEN and lEn, let J, be any of the 
(n t ') distinct I-element subsets of n + I, and denote its 

complement by Jr = n + I '\J,. The sum over all such 
J, C n + I for a given I is denoted };J,. 

Suppose TEYVand(3EET. If(3is deleted from ET, then 
T is broken up into two disjoint subtrees T f, T ~ satisfying 

V= VTfuVT~, ET=ETfuET~U{(3}, 

ipEVTf, jpEVT~. 

Finally, let F denote the set of all tree graphs whose vertex 
sets are finite subsets ofN. The following combinatoric iden­
tity is the key to proving (2.13). 

Lemma 9 (tree grafting): Let nEN and suppose f: 
F2 X N2 

--+ lR is a function of an unordered pair of trees and an 
unordered pair of vertex labels, i.e., 

f(T,T';r,q) =f(T',T;r,q) =f(T,T';q,r) . 

Then 

2266 J. Math. Phys., Vol. 29, No.1 0, October 1988 

I n 

- L L ~ L L L f(T,T';r,q) 
2 ,=, J, TEY J, T'E.'7 Jf reJ, qEJf 

I I f(Tf,T~;ip,jp) . (AI) 
TE.'T n + , /3EET 

Proof" See Lemma 10 of Ref. 17. • 
Turning now to the proof of (2.13 ), one sees (2.13a) is 

just the definition of a,. Next, replace n by n + I throughout 
(2.13b), where now nEN. Let Wn be the resulting integral on 
the right-hand side, 

Wn =.=: _.l ± (n + I) ( dA A 2n 
2,=, I JI 

X (V,a, • V,a n + I_I )(w(A);k,s). (A2) 

Taking a" an +, _, to be defined by the tree sums (2.5), it 
must then be shown that Wn is the tree sum an + ,. Using 
(2.5), the gradients in (A2) may be computed as follows: 

V,a,(x,t;k,s) = (,d's k-[ II bp ] J I TEo"" /3EET 

X ,t, v,v{~, W(Sp»). 

A similar expression can be written for V,an + ,_,(x,t;k,s), 
but using integration variables S, + ""',Sn + ,. When these 
expressions are substituted in (A2) they must be evaluated 
at (x,t) = w(A). By use of the composition law 
w(Sp) I (x,1) = w(A) = W(SpA) [see the equation after (2.16)], 
this results in 

(A3) 

The factor (n t ') may be replaced by a sum over all I-ele­
ment vertex sets J, C n + I, which play the role of 7 in 
(A3 ). Following this by a change of integration variables 
SP --+ spl A yields 

Wn = - ( d n + 'S (' dA A n - , 

)I n + 1 JM 

X - ILL L II ..L - I V .• V· {
In [(s»] 
2 ,=, J, TE.'7J, T'E.'TJf /3EET A 1{J lp 

[ (S;) ] - -I V· ·V· X II, 1f3' lp' 
fJ'EET' /L 

In (A4), I use the notation M=.=:max{S",,,,Sn+'}' and 
S; =.=:max{tp'Sj) arises from the Green's function g, in bp . 

The { ... }in (A4) may now be simplified by use of the tree 
grafting identity (A 1), which after a few manipulations re­
sults in 
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x Vn+IC;: W(Sp») 

x [( - Y L il 

dA II (A - S: >] . (AS> 
{JeET M yeET" { IJ} 

It remains to show that the [ ... ] in (A5) equals 
"yeET(S: - 1), since this is the product ofg(siy,Sjy) over 
the edge set ET. Evaluating the A integral one finds 

[ .,. ] = "i I ( _ )11 +It 1 - M n -I' 

1'=0 n-fJ. 

( 

(1') ) 
X L L S ~(I) ••• S ~(I') •• 

{JeET A C ET" { IJ} 

(A6) 

The sum ~~.r> requires explanation. First of all, when fJ. = 0, 
~(O) = 1. Otherwise A == {A (1 ) , ... ,A (fJ.)} C ET"\ {/3} de­
notes a set of fJ. distinct edges in ET"\ { /3}, and ~ (1') specifies 
a sum over all possible distinct sets A of this type. Performing 
the summation in (A6) yields 

"-I 
[ .. , ] = L (- )p+"(1-Mn-l') 

1'=0 

(1') 

X ~ f;-> ••• f;-> .t.. ~ A(I) ~ A(I') • 
A C ET 

The upper limit of the fJ. summation may now be replaced by 
n, because the summand vanishes for fJ. = n. Doing this and 

recalling that lET I = n for TEY n + 1 gives 

[ ... ] = II (s; - 1) - II (s; - M) . (A7) 
yeET yeET 

The second product in (A7) vanishes: for suppose M = SI' 

IE n + I; since T is connected, lEY for some yeET, and 
SI = S; because SI = M>Si for all i. This proves the result 
desired in (A5), which then becomes Wn = an + I as was to 
be shown. • 
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This paper is an extension, within the framework of general relativity, of the relativistic 
brachistochrone discussed recently by Goldstein and Bender [J. Math. Phys. 27, 507 (1986)]. 
Assuming that the gravitational field due to a spherically symmetric source with mass Mat 
equilibrium is weak, it is found that the brachistochrone, for a falling particle of mass m, 
described by e (r), with e an angle and r a distance measured from the center of symmetry, is 
in general a hyperelliptic integral. The latter integral can in one case be calculated exactly in 
terms of the normal elliptic integrals of the first and third kinds and the elementary 
transcendental functions. It is shown via a numerical computation using the sun's gravitational 

field as a reference that one can recast this exact version into a simple form, viz., Ji-e = a, 
where a is a constant. 

I. INTRODUCTION 

In a recent paper Goldstein and Bender l have presented 
a relativistic generalization of the classic brachistochrone 
problem for a particle faIling from rest in a uniform gravita­
tional field. As is well known, the brachistochrone is the 
trajectory joining an initial position A to a final position B 
along which the time of transit of the falling particle is a 
minimum. While the classical nonrelativistic trajectory is 
known (withA as the origin of the coordinate system) to be a 
cycloid ofthe form x = b(1 - cos f), y = b(t - sin f), with 
the parameter b determined by the end point B, Goldstein 
and Bender (GB) show that in the relativistic case, this is 
just one ofthree possible curves. In particular, the two new 
solutions are very different from the nonrelativistic case in 
that, for both of them, y(x) increases without bound as x 
increases. It should be noted here that the motion of the 
particle of rest mass m in Ref. 1 is still assumed to take place 
in a uniform gravitational field with the force law F = mg, g 
being a constant, and m (1 - v21c2

) 1/2 = m. 
In this paper we have relaxed the above-mentioned re­

striction to a uniform gravitational field. Specifically, we 
consider the motion of the particle in a weak gravitational 
field in the sense of general relativity. As is well known in the 
literature2

•
3 such a weak field will be represented by a metric 

gaP that differs very little from the Minkowski metric 1Ja{J. 
Thus with 1Jap = 1Jap = diag(1, - 1, - 1, - 1), the gravi­
tational field is said to be weak when IgaP -1JaP I < 1. More 
precisely, with the assumption that ga{J can be expanded as 
an infinite series 

gall = 1Jap + g~ + g~7i + ... , (1) 

we limit ourselves in the first (linear) approximation, writ­
ing ga{J = 1Ja{J + g~ instead of Eq. (1). As described in 
detail in Refs. 2 and 3, the linearized Einstein field equations 
can then be solved for ga{J once the source of the gravitation­
al field, viz., the energy momentum tensor Tap, is given. 

In this paper, we consider a distribution of matter at 
equilibrium described by Too = pc, T a{J = 0 for a{J #00, 
with the density p being time independent and spherically 
symmetric, so that p = p(r), r being the distance from the 

center of symmetry. The resulting gall is then represented2
•
3 

in the interval 

d~ = (1- 2ct>le2)e2 df2 

- (1 + 2ct>lc) (dx2 + dy2 + dr-) . (2) 

Here ct> = GM Ir, outside the material distribution, with 
M = Sp(r)d 3x and G the familiar gravitational constant. 

Since the problem is now posed within the framework of 
general relativity, there will be two important qualitative 
differences from the work of Ref. 1 which we shall merely 
mention below, relegating the details to subsequent sections 
in the paper. 

First, the motion of a material particle of rest mass m in 
the gravitational field whose metric is represented in Eq. (2) 
will now be governed via Hamilton's principle by the La­
grangian L = - me dsl df. This will replace the flat-space 
Lagrangian discussed in GB and given there by L 
= - me2y-1 + 1&', with y-2 = 1 - v2/c, I&' = me2 

X (exp(gxIc2
) - 1), and v2 = (drldt)2. Second, since we 

are interested in the path of minimum time rather than the 
geodesic (which is the path of extremal action), there will be 
one more point of departure from Ref. 1; namely, the ele­
ment of spatial distance will now be given, following Eq. (2), 
by 

dl = ( 1 + 2ct>1c2) (dx2 + dy2 + dr-) )1/2, 

instead of the familiar dl = (dx2 + dy2 + dr-) 1/2 as in Ref. 
1. Thus the line integral representation for the time of fall 
will be given by 

T= jB dl , (3) 
L v 

with dl as given above, v being the particle velocity. In Eq. 
(3), we shall regard A as lying outside the range of the weak 
gravitational field, namely, at infinity, so that Eq. (3) can be 
rewritten 

T= jB dl, 
100 v 

(3') 

with the form of v being obtained from the principle of con­
servation of energy. Because of the assumption of spherical 
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symmetry, so that <I> = <I>(r) only in (2), the Lagrangian L 
when written out in spherical polar coordinates should be 
cyclic in one of the angles, so that the motion of the particle 
can be taken, as in case of central force motion, to lie in a 
plane with its location specified by the coordinates (r,e), r 
being measured as mentioned earlier, from the center of the 
material distribution whose gravitational field is described 
by the metric gaP represented in Eq. (2). The brachisto­
chrone will then be obtained by solving the Euler equation 
associated with Eq. (3') with the initial conditions e = 0, 
u( = 1/r) = O. This program is carried through in the sec­
tions detailed below. 

The plan of this paper is as follows. In Sec. II we obtain 
the expression for the velocity v appearing in (3'). Then by 
using this expression, we recover via the Euler equation in 
Sec. III the equation of the brachistochrone in the form usual 
to central force motion, viz., e = e(u). This relation can­
not in general be written out in a closed form. More precise­
ly, it turns out, as we shall see in Sec. III, that one has to 
evaluate a hyperelliptic integral of the form 

e u _ (U R(t)dt 
( ) - Jo (P(t»)I/2' 

with P(t) being a fifth-degree polynomial in t. As is well 
known, for evaluating such hyperelliptic integrals4 one 
usually has to resort to direct numerical integration, or to the 
use of complicated series expansions. 

However, as we shall see in Sec. IV, it is possible to fudge 
a certain constant k (analogous to the constant k in Ref. 1) 
so as to obtain an exact dependence of e (u) on u; this is, 
unfortunately, possible only for one value of k. Still, this 
exact result given in Sec. IV is far too complicated, as it 
contains a linear combination of the normal elliptic integral 
of the first and third kinds, besides elementary functions like 
the natural logarithm whose arguments involve the Jacobian 
elliptic functions sn u, dn u. For our purposes it is useful to 
resort to an approximation whereby the complicated terms 
are rendered harmless by being extremely small, in fact, al­
most zero. The gravitational field outside the sun, which is 
regarded in the literature3 as weak, turns out to be handy in 
this connection. As discussed in Sec. V it affords a more 
accessible version ofthe brachistochrone given in Sec. IV. 

Finally, in Sec. VI we conclude with some comments on 
our results. Herein we offer, besides an exact analytic expres­
sion for the brachistochrone obtained by GB, a discussion of 
the more difficult problem, technically speaking, of the bra­
chistochrone associated with the Schwarzschild metric. We 
hope to return to the latter in a subsequent publication. 

II. ENERGY CONSIDERATIONS 

Following the discussion in Sec. I, the Lagrangian for 
the material particle of rest mass m in the gravitational field 
is given by 

L = - me - = - me2y-1 1 - - t{l , ds (2<1> )112 
dt e2 

(4) 

with t{l = r (1 + v21 e2). It is easy to obtain the Hamiltonian 
from (4). It is given by 

H = me2r(1 - (2<1>le2 )t{l)-1/2g_ , (5) 
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with g _ defined below. As H in (5) is cyclic in time t by the 
principle of conservation of energy, we must also have 

(6) 

since the particle is assumed to fall from rest. It is easy to 
obtain an expression for v from Eqs. (5) and (6) through 
simple manipulations. We obtain 

g+v2 = 2g_ <I> , (7) 

where g ± = (l ± (2/e2 )<I». With <I> = GM Ir, we see that 
g_, for example, can be written as g_ = (1- uR) with 
ru = 1 and c R = 2GM, defining the Schwarzschild radius 
R for the material distribution of mass M. Since for macro­
scopic bodies for which the gravitational field can be regard­
ed as weak (e.g., the sun) the Schwarzschild radius is very 
small compared to their actual radius, and since we are 
studying the motion of the material particle of rest mass m 
outside the material distribution causing the gravitational 
field, the case when r = R can be safely ignored in (7). 

III. THE EULER EQUATION 

In terms of the polar coordinates (r,e) the element of 
spatial distance, following (2), is given by 

dl = gI2(d~ + ~ de2) 1/2, 

so that, using (7), Eq. (3') can be rewritten 

T= J: g+(d~+~de2)1I2D-1/2 
= f:g+dr(l +~(~~ryI2D-I/2, (8) 

with D = 2g _ <1>. The time taken Tis a functional of the path 
e(r) so that Twill be minimum when the Euler equation 

!!. ( BI ) = 0 e' = de (9) 
dr Be' , dr ' 

is satisfied. Here I denotes the integrand in Eq. (8); thus one 
infers from (9) that 

aI =k 
Be' , 

(9') 

where k is a constant. Equation (9) is the analog of the Euler 
equation in GB. Substituting for I, it is easy to obtain 

~g+e'(D(l + ~e'2»)-1/2 = k. 

In terms of u, (9") can be rewritten 

g+e' = - k (D( 1 + u2e'2))1/2 , 

(9") 

with e' being the first derivative ofe with respect to u. Note 
the negative sign in (9"'). Since the particle of mass m is 
assumed to fall from rest at infinity (where u = 0) to the 
point B where u > 0, it follows that, for k > 0 (this choice can 
be made without loss of generality), the solution of (9'"), 
namely, e(u), will be a decreasing function of u. 

Equation (9"') immediately leads to the solution [with 
e(O) = 0] 

e(u) = ioU dt(g2+ _Du2k2)-1/2(Dk2)1/2, (10) 

which is the equation of the brachistochrone. Substituting 
for g ± and <I> one can rework (10) as 
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e(u) = f dt t(1 - tR)(P(t»)-1/2, (10') 

with P(t) = t( 1 - tR)( 1 + tR)2 - a 2t 3( 1 - tR») and 
a2 = k 2c2R. Note that for the integral to be real we require 
that (a) uR<1 and (b) (1 + UR)2/(1- uR)u3>a2. The 
former requirement is easily met since the particle of mass m 
as mentioned in Sec. II is moving in the gravitational field 
outside a macroscopic object whose Schwarzschild radius R 
is very small compared to its actual radius. The latter bound, 
however, is an upper limit on a 2 and hence on k 2 for fixed R. 

The integral in the above equation is a hyperelliptic inte­
gral, which is further manipulated as follows. Using a 
change of variable s = tu we obtain, with u = uR, 

e(u) = au3/2 f ds s(1 - su)(p(S»)-1/2. 

Although P(s) is a sixth-order polynomial in s, it can be 
rewritten as a fifth-order polynomial through the use of 
z = lis, so that 

e(u) = {3 1/2 I"" dz 

z-u 
x z[ (z _ u)(r(z + U)2 _ (3(z _ u»)] 1/2 ' 

(11 ) 
where (3 = a 2u3

, and we have now displayed the polynomial 
P( z) in full in (11). In the following two sections we shall 
study the dependence ofe on u. 

IV. AN EXACT RESULT 

We shall show herein that the polynomial 
P(z) = r(z + U)2 - (3(z - u) has a double root at various 
values of (3. The utility of this double root lies in that the 
hyperelliptic integral in (11) can be evaluated exactly with­
out recourse to approximation. Naturally, for general {3, Eq. 
( 11) will represent the brachistochrone associated with a 
weak gravitational field. From P(z) we obtain 

dP 
- = 4z3 + 6ur + 2zu2 - (3 . 
dz 

Let z = Zo denote the double root of P(z). Then P(zo) and 

~: Iz=~ 
should be zero. This yields 

{3 = 4~ + 6oTo + 2zou2 . (12) 

Clearly {3 is zero when Zo = 0 and Zo = - u. Ignoring these 
cases, since (3 = 0 implies k = 0, we find the remaining solu­
tions for Zo using (12) and P(zo) = O. Thus 

P(zo) = - 3z~ + 5u2~ + 2zo~=zJ>(zo) . (13) 

To obtain values of Zo other than 0 and - u, we should 
solveP(zo) = O. This can be done by standard methods.s We 
obtain with the notation c = cos 1L/3, s = sin pJ3 the follow­
ing three real roots: 

3z& I) = 2uc.j5 , 

3Z&2) = - u(c + s,fj).j5 , 

3Z&3) = - u(c - s,fj).j5 , 

with 9 tan IL = 2JIT. 

2270 J. Math. Phys., Vol. 29, No.1 0, October 1988 

(14a) 

(14b) 

(l4c) 

For each of these Zo there is a corresponding (3. How­
ever, as can be easily checked, only Z& I) leads to a positive 
value of (3, viz., 

(15) 

Z&2) and Z&3) lead to (3(2) = 0(10-6~) and (3(3) < 0, respec­
tively. We are not reproducing these tedious though 
straightforward calculations here. These latter values of Zo 
are therefore ignored, leading to a unique value for (3. Since 
the double root for the polynomial P(z) is now given by 
( 14a), the remaining roots are easily found by standard 
methods. S They are complex conjugates of each other and 
denoted by 

( 16a) 

withp = Z&I) + u. Thus 

e(u) = (31/2 r'" dz(z - u) , 
)1 z(z - zo)(z - u)(z -z+)(z - Z_»)112 

(16b) 

where we have now dropped the superscript on Z& I) and (3 (I). 

The integral in (16b) can be exactly evaluated in two steps 
with the help of Ref. 6. Thus with Q(z) denoting the polyno­
mial under the square root in (16b) we find for the integral 

II = 100 

dz(z - Zo) -1(Q(Z»-1/2 

the result 

I -liu, l-cnu d 1= g7] U 
° 1 +qcnu 

=...L[ -U1 + (l_q)-I 
7]q 

(17a) 

X(1T{t/J,q2/(q2_1),j)-qh(u l »] , (17b) 

where 

g = A -1/2, A 2 = (b l - U)2 + ai , 
2fA =A + b l - U, 2b l =z+ +z_, 

4ai = - (z+ _L)2, 7]q= (A -u+zo), (18) 

7]=A +u-zo, u l =cn-I(cost/J,j) =F(t/J,j) , 

t/J=amul=cos-1w, w(l-u+A)=I-u-A. 

In (17) it is understood that q2:;6 1, and F( t/J, j) and 
11"( t/J,q2/ (q2 - 1), j) are the normal elliptic integrals4 of the 
first and third kinds, respectively. Both are zero when t/J = O. 
The last term in (17b) is obtained from6 

if q2/(q2 - 1) <I, 
(19a) 

if q2/(q2 - 1) >f, 

(19b) 

withh 2(f+ (l-f)q2)= l_q2, ;'2= _hz. 
In (17a) and (19), cn u, sn u, and dn U are the Jacobian 

elliptic functions, with sd u = sn u/dn u. It is of course 
known that cn 0 = 1 = dn 0 and sn 0 = 0; thus the lower 
limit in (17a) is not displayed in the various terms in (17b). 
There is one more integral denoted by 12 below that we need 
in order to evaluate (16b), and it is given by 
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(20) 

Clearly 12 is just II evaluated at Zo = 0; it can be reached via 
( 17b) et seq. through appropriate replacements. Thus for 
the value of/3given by (15) we have the exact dependence of 
O(u) on u. It works out to 

O(u) = {31/2(1 - aizo)/1 + (31/2(u/zo)/2 • (21) 

V. NUMERICAL COMPUTATION 

Equation (21) is clearly far too complicated to be of 
immediate physical interest. It would be ideal if it could be 
simplified considerably by application to a physical situation 
so that the equation for the brachistochrone would be more 
accessible. Happily, the gravitational field outside the sun, 
which is generally considered3 as weak (R /r = 10-5 at the 
surface of the sun), comes in handy in this connection. It 
needs to be pointed out here that it is our unfamiliarity with 
astrophysics that prevents us from extending the consider­
ations of this section to other stellar objects whose gravita­
tional fields are also deemed to be weak. Still, we believe that 
for such stellar objects the brachistochrone should not be 
vastly different from the expression derived here. 

For the sun, the Schwarzschild radius R and the actual 
radius are about 3 km and 106 km, respectively (it is not 
necessary to use precise numbers here). Thus, as the particle 
of mass m falls from infinity in the sun's gravitational field, U 

increases from zero to about 10-6
, so that uR ~ 1 throughout 

the motion of the particle. 

We now turn to a numerical estimation of the various 
entities in Eq. ( 18). With 9 tan It = 2m we obtain 
It = 36.39 deg. Thus (15) leads to (3 = 28.042 264~; clear­
ly, as u~ 1,/3 < 1. We shall choose a positive square root of{3 
in our calculations below; clearly this corresponds to a k > O. 
Inserting the value of It into (14a) one can calculate Zo in 
units of u, and hence bl , ai' and A as defined by (18). We 
obtained A 2 = 19.116 844a2, 'l/ = 3.914 854u, and 'l/q 
= 4.829 708u. Thus q, and hence q2, is obtained; we find 

that q2/(q2 - 1) >l as q2 = 1.521 986 and f = 0.104 62. 
We therefore get the term in Eq. (21) denoted by 0 I as 

0 1 = 0.164 576[ - UI - 4.279 218(1T(~,2.915 76,0.323 45) 

- 1.233 69.t;(u l »)] , (22a) 

where .t; (u I) will be reached via (19b) since q2/ 
(q2 _ 1) > f. It works out to 

I" ( ) _ I (dn U I + c sn U I ) JI U I - C n , 
dnul-csnul 

(22b) 

with c = 0.596 429. 
The second term in (21) denoted below by O2 can also 

be written down in an analogous fashion. We find 

O2 = 0.515 278[ - Ul + 2.68614 

X(1T(~, - 0.650 249,0.323 45) - 0.627 719.t;(uI»)J , 
(23a) 

where.t;(u l ) is now given by (19a) since q2/(q2 - 1) <I. 
To reassure the reader, we find, for 12, 'l/ = (A + 1)u, 
'l/q = (A - 1)u, with A 2 quoted above and q2 = 0.394 031. 

For.t; (u I) we thus obtain 
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.t;(U I ) = 1.150971 arctan(0.868 832 sd u 1 ) • (23b) 

Equations (22) and (23) can now be examined in the light of 
our observation that u~ 1 throughout the motion of the par­
ticle. From (18) we note that, as u,A ~ 1, liJ = 1, or 
~ =cos -11, or ~ =0. Thus as U increases from zero to 10-6

, ~ 
remains almost constant at zero. 

Let us now estimate 0 I as given by (22). The value of U I 
is reached via U I = F(~,j); since ~ is nearly zero, and4 

lim[F(~,j)/sin~] = 1, 
4>-0 

we infer that U I =~. Again, as 

lim[1T(~,a2,j)/sin~] = 1 , 
4>-0 

we infer that 1T(~,q2/(q2 - 1),J1=~. The elliptic functions 
work out as 

sn U I = (1 - COS2~) 1/2 

=2(A(1-u»)1/2(1-u+A)-I=2A 1/2 

and 

dnu l = (1-fsin2~)I/2=I. 
Thus the logarithm in (22b) becomes 

1 (
l+csnUI) 22 c og = c sn U I • 
1 - c sn U 1 

We thus obtain 

0 1 = - 0.868 832~ + 0.618 136 sn U I . (24a) 

Similar remarks apply to O2 given by (23). We get, with 
b = 0.868 831, 

O2 = b~ - arctan(b sn u I ) • (24b) 

Thus, adding (24a) and (24b), we get 

0= 0.618136 sn U1 - arctan(b sn u I ) • (25) 

We note that the term proportional to ~ has now canceled 
almost exactly. Since the argument of the arctan function is 
very small, we now replace the last term by its argument and 
get 

40 = - sn U 1 = - 4. 182ul/2 . 

Equation (26) leads (with R = 3 km) to 

rl/20 = - 1.816, 

(26) 

(27) 

as the equation for the brachistochrone with reference to the 
gravitational field outside the sun. More importantly, we 
note that as U increases from zero, 0 decreases from zero and 
remains negative. This is just a reflection [as mentioned in 
connection with (9'")] of the decrease ofO(u) with u. As 
the reader will have noticed, the considerations of this sec­
tion depend on the smallness of the variable denoted by u. 
Being infinitesimally different from zero, the doubly period­
ic property of the Jacobian elliptic functions sn Ul' for exam­
ple [see Eq. (26)], has not found any place in our calcula­
tion. Indeed, with l = 0.104 62, the standard definitions5 of 
the symbols K,K' contained in the periods (4K,2iK') of 
sn(u,j) lead to K-1.612 and K' -2.578. Clearly the value 
of K is too large to be of interest as far as U I is concerned. 

It is appropriate before concluding this paper to recall 
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for the reader's benefit the equation for the brachistochrone 
obtained by GB; this will be taken up in the following sec­
tion. 

VI. SOME COMMENTS 

There are two parts to this section. First, we obtain an 
exact analytic form for the brachistochrone obtained by GB. 
This has been done in Ref. 1 for the case k 2 = 1 only; for 
k 2 < 1 and k 2 > 1 only a graphical plot of the brachistochrone 
has been given. Second, we comment (quite concisely, how­
ever) on the task of obtaining the brachistochrone for the 
full Schwarzschild metric.2,3 Naturally this means that, 
while retaining therein the assumption of spherical symme­
try, we are giving up the restriction to weak gravitational 
fields used in Secs. III-V. 

To take up the GB calculation first, we consider the 
integral [Eq. (19) in Ref. 1] 

Lx [k 2(1-exP(-2at») ]112 
y(x) = dt . 

o 1 - k 2 + k 2 exp( - 2at) 
(28) 

For k 2> 1 this can be reworked as 

y(x) = s fX dt [ exp(2at) - 1 ]112, (28') 
Jo S2 - exp(2at) 

with S2(k 2 - 1) = k 2 and c2a = g. Using the substitution 
exp at = u we obtain from (28'), with t/J = exp ax, 

ay(x) = S f'" u- I dU[ u
2 

- 1 ]112, 
JI S2 - u2 

which can now be easily evaluated in terms of elementary 
functions. We obtain 

2ay(x) = S sin-I( 1 - wi) 1/2 + sin- I [ - (1 - w~) 1/2] , 
(29) 

where (S2 - 1)w I = S2 + 1 - 2~, and (S2 - l)w2 

= S2 + 1 - 2S 2t/J-2.Notethatin (28') wemusthaveS2>~ 
for the integral to be real; in terms of k 2 this is rewritten 
k2<;,~(~ _1)-1. We recall here that Eq. (10') requires 
that k 2<;, (1 + RU)2IRc2u3 (1 - Ru) for the integral to be 
real. The counterpart of (29) when k 2 < 1 can also be ob­
tained easily. We shall merely quote the result below: 

2ay(x) = sin R(x) + sin- I [ - (1 - w~ )1/2] , (30) 

with 

(S2 + 1)R(x) 
= 2~ + S2 - 1 + 2(",4 + (S2 - 1)~ - S2)1/2, 

and 

(S2 + 1 )w3 = S2 - 1 - 2S 2",-2. 

As mentioned earlier, a graphical plot of (29) and (30) 
has been given in Ref. 1, but the numerical values given 
therein to a, defined by c2a = g, are in fact too large 
(a -1 )-perhaps so large (in fact by several orders of mag­
nitude) as to render invalid the Newtonian approximation 
for the gravitational field used in Ref. 1. It seems to us that 
had Goldstein and Bender used values of a that are consis-
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tent with the Newtonian approximation, typically a _ 10- 12 

or even less, they would then have obtained, with the range 
of values for x used in their calculation, a plot for y(x) that 
was quite insensitive to changes in x. In particular, the cy­
cloidlike (periodic) behavior of the k 2 > 1 brachistochrone 
would not have been uncovered (see Figs. 7 and 8 in GB). 
We remind the reader here that we were also faced with a 
parallel situation of not finding a suitable role for the period­
ic behavior of the Jacobian elliptic functions sn(u,j) in 
Sec. V. 

We shall now conclude this paper with a brief comment 
on the Schwarzschild brachistochrone. Our objective herein 
is merely to highlight for the reader the utility, technically 
speaking, of the weak-field approximation given by 
gaP <::::.'T]a{3 + g~~ that was used in the calculations in this 
paper. For the Schwarzschild metric,2.3 the analog of Eq. 
(2) is given by 

ds2 = gooc2 dt 2 + gij dx i dx j
, (31) 

with goo =g_,gij = - {jij - 0'(1- O')xi X j lr. 
Correspondingly, the Hamiltonian for the material par­

ticle of mass m, following Sec. II, will work out to 

H = mc2g_(g_ + gijXiXj )-1/2. 

However, because gij now has off-diagonal components, the 
counterpart of Eq. (7) for the velocity will have the form 

v2 = 2<1>g2_ (g_ + ~ 1 + u2
( ~~r) -) -I , (32) 

thus making v2 a function of the differential of 0 with respect 
to u; this feature is, however, absent in Eq. (7) and makes the 
problem more tractable there. But with v2 as given by (32), 
one finds that the counterpart of (9") is now a fifth-order 
polynomial in (dOl du) 2, thus making for a numerical, rath­
er than exact, solution for (dOldu)2. The possibility of an 
exact solution for (dOldu) using the simple quadratic in 
(9") is thus an attractive feature of the weak gravitational 
field approximation. 

ACKNOWLEDGMENTS 

I thank my colleagues S. H. Kulkarni and D. S. Subra­
manyam for several useful discussions on the mathematical 
aspects of this paper. 

'H. F. Goldstein and C. M. Bender, J. Math. Phys. 27,507 (1986): also 
referred to as GB in the text. 

2M. Carmeli, Classical Fields: General Relativity and Gauge Theory (Wiley, 
New York, 1982), pp. 205-210. 

3 A. Papapetrou, Lectures on General Relativity (Reidel, Dordrecht, 1974), 
pp. 108-114. 

'P. F. Byrd and M. D. Friedman, Handbook 0/ Elliptic Integrals/or Engi-
neers and Physicists (Springer, Berlin, 1954), pp. 252ff. 

5Handbook o/Mathematical Functions, edited by M. Abramowitz and I. A. 
Stegun (Dover, New York, 1968). 

6See Ref. 4, Eqs. 241.04 and 361.60. 

S. G. Kamath 2272 



                                                                                                                                    

Neutrino spectrum of Einstein universes 
Christian Holma) 

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30322 

(Received 17 November 1987; accepted for publication 15 June 1988) 

The study of higher-dimensional Kaluza-Klein universes constructed from the unitary groups 
UN is continued. They form Bergmann manifolds of dimension N 2 with Finslerian geometry 
induced by their hyperspin structure. In this paper Lagrangians for relativistic wave equations, 
which are generalizations of the Klein-Gordan, Dirac, and Weyl neutrino equations, are 
formulated. The wave equations are in general of differential order N. The hyperneutrino 
equation is examined in detail as the simplest example and its discrete symmetries are 
discussed. It is found that for N = 3 and N> 4 rcp and all its constituent symmetries are 
violated. The boson calculus is used to solve the linear neutrino equation exactly on UN and 
the energy spectra of the neutrino and antineutrino are presented. It is found that the density 
ratio of negative to positive energy states is unity only for N = 2, producing asymmetry for all 
higher-dimensional UN' The neutrino acquires a negligible rest mass of O( 10- 31 eV) due to 
the global curvature of our manifold. 

I. INTRODUCTION 

In an earlier paperl we provided the unitary groups 
U(N,C): = UN with a hyperspin structure, turning them 
into N 2-dimensional Bergmann manifolds BN • A BN with 
N> 2 leads to a Kaluza-Klein space with Finsler geometry 
and an underlying SLN tangent space group. The Bergmann 
manifolds are an alternative road to a Kaluza-Klein type of 
approach to unification. 

A reason for considering UN is its great symmetry, 
which makes calculations easier, and also the fact that we 
have unitary subgroups acting on the internal dimensions, 
which could account for the unitary gauge groups. We also 
found that all UN with N~2 turned out to be cosmological 
solutions to the hypergravity equations. 2 

In this paper we examine in detail the simplest general­
ized wave equation for B N' which is the linear hyperneutrino 
equation. We assume the reader to be familiar with the nota­
tion and content of Ref. 1. 

Section II introduces the generalized relativistic wave 
equations of Ref. 3 and presents the Lagrangians they can be 
derived from. We also take a look at the discrete symmetries 
r, C, P and their products for the flat space hyperneutrino 
equation and show that it has a rcp invariance only for 
N=2andN=4. 

Section III discusses the hyperneutrino equation on UN 
in detail. The solutions are irreducible representations ofU N 

that are obtained by means ofthe boson calculus. The solu­
tions lead to an energy spectrum, which has a particle-anti­
particle asymmetry for N> 2. 

Section IV concludes the work with a summary and dis­
cussion of the results. 

II. WAVE EQUATIONS IN HYPERSPIN MANIFOLDS 

A. Lagranglans 

In Ref. 3 relativistic wave equations in B N and their 
plane wave spectrum were introduced. We recapitulate the 
important points here and present in addition the Lagran-

.) Present address: Institut fUr Theoretische Physik, TU Clausthal, 0-3392 
Clausthal-Zellerfeld, West Germany. 

gians they can be derived from. Relativistic invariance 
means for the N-ary theory an invariance under SLN, which 
contains the Lorentz group as a subgroup. Except for N = 2 
SLN does not respect any quadratic form. The only invariant 
is the N-ic determinantal form gaP'" v' so that the scalar wave 
equation is of Nth differential order, although only second 
order in the external coordinates due to the determinantal 
constraint. 

The equations under consideration here are the Klein­
Gordon, the Dirac, and the Weyl neutrino equation, which 
were each generalized such that for N = 2 the original ones 
emerge. For notational convenience we will write ai~ for 
if i~ a A' where u is the Hermitian spin vector, and define the 
dual a D to the derivative operator via the metric as 

(a D)A. - g~'}Aa .- ~,}. 

We make use of a collective index notation here, where {P} 
stands for N antisymmetrized indices,uI, ... ,,uN' The number 
of primes indicate the number of omitted indices. For details 
of this notation see Ref. 1. 

The dual to a is of differential order N - 1. For what 
follows we omit the D for dual and understand it implicitly 
there whenever we write superscripts on a. We observe also 
one important property of ai~ and a ~i, the following 
lemma. 

Lemma: 

(2.1) 

Proof' Write the left-hand side out with explicit spinor 
indices: 

ai~1 a ~,i' = [(N _ I )!] -IE~I~'''·~NEi'i, ... iN 

X ai~1 ai,~, ... aiN~N' 

(I) For i' = i the assertion is obviously true. 
(2) If i' :fi, then in any nonzero term we must have 

i' = iN' for some N':f 1. Interchange l:N' with l:1' This 
gives a sign change from the E, whereas the product of the a's 
is symmetric. • 

Because we are dealing with higher derivative theories, 
we recall the relevant Euler-Lagrange equations.4 For 
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L(qJ,qJ (I),qJ (2), ••• ,qJ (N», where qJ (I) means apqJ(x"), etc., we 
obtain 

aL ~ a ~ ... (_1)Na ~=o. 
aqJ - ap aqJ (I) + (2) aqJ (2) + (N) aqJ (N) 

We have assumed here a convention that the indices in 
terms like gIl).qJpqJ). have a definite order, say J.L <..t, for ex­
ample. This ensures that no terms are counted more than 
once and we do not have to worry about extra correction 
factors. 

The essentially unique scalar wave equation ofleast dif­
ferential order has determinantal form. Equating it to a mass 
term Mgives 

N det(ail; )qJ( u) = g{p}a{p}qJ(u) = ( - iM)NqJ(U), 

(2.2) 

where qJ is a real or complex valued scalar field on the mani­
fold and the Nth power of M is necessary on dimensional 
grounds. This is the natural generalization of the Klein­
Gordon equation (N = 2). The case of M = 0 corresponds 
to the generalized d' Alembert equation. The Lagrangian 
which gives (2.2) is 

L = (i)N~(U)g{p} a{p}qJ(u) - MN~(U)qJ(u) + C.c., 
(2.3) 

where the bar stands for complex conjugation. 
The generalized Weyl neutrino obeys the linear first­

order equation 

ail:.tf'(U) =0. (2.4) 

Here t/J is an N-component spinor field depending on the 
time space variable u. The Lagrangian is 

L = i¢1' ail:. tf' + c.c. 

Equating the neutrino spinor to a multiple of a dual 
antispinor Jii and closing the system with a second equation 
for the dual equation leads to the generalized Dirac equation 

The system is chosen such that every component of the 
two spinors obeys the scalar wave equation (2.2). The proof 
is a straightforward application of (2.1). The Lagrangian is 

L = + i¢1' ail:. t/Jl:. + [iN j(iM)N - 2]J.Ll:. a l:.iJii 

- 2Mtf'J.Ll:. + C.c. 

The two equations (2.5) are of differential order 1 and 
N - 1, respectively. The system is symmetric only for 
N = 2, which leads to the familiar chiral symmetry of the 
Dirac equation, that is, that the Weyl spinors are eigenvalues 
of Ys. For N> 2 we therefore expect a parity violation. At 
first it seems that the mass term for N> 2 enters in two differ­
ent ways into the Lagrangian, which gives us the choice to 
use two different mass parameters. But this is only apparent 
due to the freedom to rescale J.L. 

The Dirac system can also be written as a system of N 
coupled first-order equations for polyspinors as well as spin­
ors. Take as an example N = 3, where the Dirac equation 
(2.5) can be written as the three equations 
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ail:. tf' = - iMJii, 
..inA a - ·JIA.A !t:- nnJ.Li = - 11".1'1' n, 

~c-nll. aAlI.rpAn = - iMtf'. 

Here rpA n has the index structure not of a vector but of a 
tensor product of a dotted spinor with an undotted cospinor. 

The minimal-coupling generalization of the wave equa­
tions to curved time space is simply done by replacing the 
ordinary derivative a by the covariant derivative D. Due to 
the noncommutativity of D the scalar wave equation is no 
longer the root of the Dirac equation. 

B. Symmetries of the neutrino equation 

We examine now the discrete symmetries: T: = time re­
versal; C: = particle-antiparticle conjugation; and P: = par­
ity of the flat space neutrino equation (2.4). Here C for the 
neutrino is defined as usual by Ct/J(x,t) = :~(x,t). We first 
look at the case N = 2. 

Taking the standard Pauli matrices oil = (cfl,d), 

i = 1,2,3 and cfl = - 1 as basis for the spin vector and mak­
ing the usual operator associations E = i at = i ao and 
Pi = - i a;o we obtain 

id'il:. a p tf' = (icfl il:. ao + id il:. a i ) tf' 
= (1E + d'Pi)t/J = O. (2.6) 

The above equation is invariant under the discrete sym­
metries T and PC, but not under P and C alone. To examine 
Tin detail take Tt/J(t,x) = UT~( - f,X), where UT is a uni­
tary operator. The time reversed and complex conjugated 
equation (2.6) appears now as 

(1E - Qi'Pi )~( - f,X) = O. 

Multiplying this equation on the left by U T and requir­
ing that UT~ satisfies (2.6) gives the condition that 
UTQiUT = - d (UT: = U-IT)' This is achieved by 
UT = 02, because it anticommutes with the real a l and efl, 
and 02 = - iT. By similar kinds of calculations one can also 
show that PC, and therefore PCT, is conserved. 

The existence of the operator U T is ensured by the fact 
that there is only one inequivalent two-dimensional repre­
sentation of d SU2, which implies that the respresentation 
!R(u) is equivalent to the complex conjugate representation 
9t(u). 

For N> 2 this is no longer true because SUN has two 
inequivalent N-dimensional representations, and !R (u) can­
not be transformed into 9t(u) by an inner automorphism.s 

Therefore an operator U T with the desired properties does 
not exist. The same arguments hold for PC, where we define 
the parity operator P as Pt/J(xe,xi,t): = t/J( - x',xi,t). The x' 
are the three spatial external coordinates and Xi stands for 
the extra internal dimensions. This definition of P is justified 
because the xi are regarded as internal degrees of freedom 
and are therefore left invariant. 

With this most natural definition of P even PCT is vio-
lated. This can be seen as follows. 

Under (): = PCT of (2.4) we get 

( - cfl ao - if a. + d a i )t/J( - f, - x',xi ) = O. 

To have invariance under () we need 
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(JaD(J -I = aD, 

(J0"(J -I = 0", 

(Jd(J -I = - d. 

For fiat space 0" and d form a basis for d SUN' so that (J 

is an involutive automorphism of d SUN with three fixed 
points given by 0". A theorem in Ref. 6 states that (J is an 
inner automorphism if and only if the rank of d SUN is equal 
to the rank of the set of fixed points. This is the case for 
N = 4, which is the only other case besides N = 2 where the 
PeT theorem holds. The emergence ofSU4 as a special case 
is peculiar because of the homomorphism of SU4 onto 
SO(6), so that PCTis only conserved in those cases where 
we have the group isomorphisms SU2 = Spin (3 ) and SU4 

= Spin ( 6), and therefore a direct relation to the orthogonal 
groups. This, of course, may be purely accidental. 

The violation of PeT fits well into the scheme of second 
quantization of the hyperspin theory. Due to the SUN sym­
metry, one would quantize all hyperspinor components with 
Fermi statistics so that N = 3, for example, describes a Fer­
mi spin-! field and a Fermi spin-O field. We therefore have a 
forced breakdown of the spin -statistics connection for N> 2. 

We note that the statement of the usual PCT theorem is 
still valid. A symmetry in accordance with the PeT theorem 
can be generated if one defines a p·",(Xe,xl,t): 

= "'( - x e
, - xl,t). Obviously P·CTremains a good sym­

metry of (2.4) for all N. We argue that P is a more physical 
symmetry than p., because the parity transformation should 
not affect the inner gauge degrees of freedom. 

In all our discussions about the discrete symmetries we 
stress that we still work in first quantization and that we only 
consider inner automorphisms of the underlying algebra. 
The adherence to inner automorphisms is due to the fact that 
we copy simply the usual treatment of the Weyl neutrino 
equation. 

One should note that there exists involutive outer auto­
morphisms which conserve PCT for all N and relate m (u) 
and m (u) for N> 2. An outer automorphism is defined as an 
automorphism which is not an inner one. It consists of a 
rotation of the weight diagram which is not an element of the 
Weyl group. The significance of these outer automorphisms 
for the discussion of time space symmetries of the neutrino 
equation is not clear, because the neutrino appears in only 
one helicity state, so there is no room for a natural outer 
automorphism as is in the Dirac equation (2.5), where one 
can interchange the .,f- and p~ fields. But even this is only 
possible for N = 2, because only there does a quadratic 
spinor metric exist that is induced by the Levi-Civita E 

spinor. 

III. THE NEUTRINO EQUATION ON UN 

We first formulate the neutrino equation with a right 
invariant spin map. This switch from using the left invariant 
spin map of Ref. 1 to using a right invariant u in the present 
work is done merely for convenience, because the resulting 
equation has a nicer form. The physics is of course unaffect­
ed. We recall from Ref. 1 that the right invariant spin vector 
u and the spin connection r are given by 
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and 

rO'OrA ~~. = k{8~ouo·~. - (lIN)8~~.uo·o}, 

where k= -~ for the torsion-free case. The eAoO'(u) 
are a Hermitian basis for the Lie algebra of UN at 
u [ = :d UN (u) ] , and Pi~ is the nondegenerate group met­
ric on UN' By minimal coupling of (2.6) to the curvature of 
UN we obtain 

~i~DA.,f- = 0 => u~·o· ao'~.,f- = m.,f-', (3.1) 

where we defined m: = - keN - liN) and 
a~~.: = alau~·~. 

Every element UEU N can be written as exp( - ;( tIN»)s, 
where SESUN. We therefore have that 

t = iln(det u) 

and 
at = ( - ;IN)u:au ' 

Here the colon stands for product and trace. The operator 
u·au decomposes into its traceia" ands·a., which isa trace­
less operator. In this way we separate the spatial derivatives 
from the time derivative. The neutrino equation now looks 
like a Schr&linger equation: 

i at'" = m'" - s·as .",. 

This equation has the obvious solution e - Iml",( 0), 
where ",(0) is a spatially constant spinor, or viewed in mo­
mentum space, a neutrino at rest. The neutrino has a rest 
mass given by m due to the compactness of the space, which 
admits standing waves. The only relevant length scale for 
UN is the present radius p of the universe, which we take to 
be of the order 1028 cm. We get that m is of 
O(p-I)::::: 10-31 eV, which is negligible. 

To solve this equation in general, we analytically contin­
ue the equation to GLN and let ZEGLN (compare Ref. 1). 
What actually has to be solved is the eigenvalue spectrum of 
the operator SD: = z·az , which is the Dirac operator in the 
theory . We write this as 

(3.2) 

Because of the aforementioned decomposition in time 
and space derivatives, a time phase factor e - Iwl of '" will 
change A. to A. + w. By choosing e - I(m - All as the phase fac­
tor for the solutions of (3.2), we obtain solutions which will 
satisfy (3.1). 

Next we examine the invarlance properties of the neu­
trino equation. We can act on z by left or right multiplication 
with GEGLN and require form invariance of the equation. 
Under left multiplication z and az transform contragradient­
lyas 

and 

z'=G'z 

az =az·(j· 

The neutrino equation changes into 

SD·(j'",'(G·z) = m1/l(G·z). 

Using infinitesimals G::::: 1 + g we obtain to first order 

""(z + g'z) = ",(z) + g·"'(z). 
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A Taylor expansion of 1/1' gives to first order the change 
of 1/1 as 

01/1 = (g - Tr(z·az 'g»)'1/I. 

Becausegis an element of d GLN, a basis for gisgiven by 
the matrix units E/B = OAI0l'B' We use now the notation 
that small Latin letters run from I, ... ,n = N 2 and capital Lat­
in letters go from I, ... N. Inserting this in the above equation 
leads to the following N infinitesimal generators: 

...1' A 10A 101' J' S 10A 
g;:=5 I B=U I U B-Z sa IU B' (3.3) 

As is easily checked, they obey the commutation rela­
tions for d GLN. 

Next we consider the invariance under right mUltiplica­
tion by G. 

The Dirac operator ~ was already constructed to be 
right invariant, therefore, not surprisingly, we find that 
1/I'(z') = 1/I(z), which by similar calculations leads to the 
generators g'; of the right invariance group: 

g';: =g'I'/B = - (~I al's)oAB. (3.4) 

These N generators form also a GLN Lie algebra, and 
moreover, g and g' commute. The number of diagonal opera­
tors that simultaneously commute with the spin Hamilto­
nian is therefore at least 2N - 1, the minus one stemming 
from the fact that 

L gl'l = 1 + L gl'l' 
I"=I I"=I 

For N = 2 the constants of the motion are the energy, 
the total angular momentum (including spin), and the "lin­
ear" momentum. The last has the form of an angular mo­
mentum, because the space part ofU2 is SJ. 

For the representations ofU N we follow the approach of 
Bargmann and Schwinger in Ref. 7. By considering homoge­
neous polynomials in N 2 = n complex variables and using 
boson creation and annihilation operator methods, we will 
find the irreducible representations (irreps) of UN' This 
method is called the boson calculus in the literature8 and is 
based on the Jordan map.9 The following notation is mainly 
due to Bargmann.7 

Consider lYn, the space of entire analytic functionsj(z), 
where z = ;lJ, I, J = 1, ... ,N. Here z can be thought of as a 
point in en . lY n is made into a Hilbert space by defining the 
following scalar product: 

(tlf') = jl(z)f' (z)dJLn (z), 

where 
n 

dJLn (z) = rr- n exp( - z:z) IT dXk dYk 
k=1 

(;lJ = xlJ + iylJ = :Xk + iYk)' 

With this definition of a Hilbert space z and az are ad­
joint operators on lY n with respect to the Hilbert space met­
ric. Moreover, they satisfy the usual boson commutation re­
lations for creation and annihilation operators: 

J ..I' I 1'] [J a 1'] roI 101' [Z J~ J'] = [a J>a J' = 0, ZJ> J' = U J'U J' 

As is well known, 10 from these operators one can obtain 
all the totally symmetric irreps of Un, all of the irreps of UN 
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and representations for UN ® UN' for which the Gelfand in­
variants of the two UN algebras are identical. II 

The simplest orthonormal set in lY n is given by 

,,/, . - z{n}/ rr::iTnl -' Inl n l nN ) 'f/n' - 'J "lrt:I - . l' 2"'" N' 

{ } , , n N 

where zn:=(zll)n'(zI2)n""(~N) Nand {n!} 
: = nll!nI2!" 'nN

N! The <Pn obey 

(<Pn l<Pn') = 0nn" 

The action of the operators ;I J and a J I on this set is of 
course the same as in the standard boson calculus of creation 
and annihilation operators, 

;lJlnll, ... ,nIJ, ... )~nIJ + 1In l
l , ... ,n

I
J + 1, ... ) 

and 

aJllnll,· .. ,nIJ"") = ~ nl
J Inll, ... ,nI

J - 1, ... ) . 

We will solve the neutrino equation for N = 2 as a 
warm-up exercise. In component form the neutrino equation 
is 

z\ a \1/11 1 + Zls a S

21/112 = A 1/11 1, 

rs a \1/11 1 + rs a S

21/112 = A1/I12. 

Assume 1/11 1 = Vi (n;) 10,n lz,0,n2
2 ), 1/1/ = v2 (n;) 10, 

n 12 - 1 ,0,n2 
2 + 1). The v~ are functions of the occupation 

numbers nI"l = :n;. Using the boson calculus leads to the 
following consistency requirement: 

( 

nl 

~nI2(n2: + 1) 

We abbreviate this equation as B·v = Av. This is an 
eigenvalue equation for B, which we call the dynamical ma­
trix. Solving it in the normal fashion gives two distinct eigen­
values: 

A_ = nl2 + n2
2 + 1, A+ = 0. (3.5) 

The corresponding eigenvectors v are 

and 

( Jnr; ) 
v+ = -~n\ + 1 . 

Multiplying 1/11 by a phase factor e - ;(m - Alt gives us a 
solution to (3.1). Defining the energy operator as usual as 
i at we obtain the following eigenvalue spectrum for E: 

E= m -A + (lIN)s, 

where s is defined as 

This s describes mathematically the degree ofthe poly­
nomial in z or more physically the total number of elemen­
tary bosonic "spins." It is clearly integer valued. Inserting 
(3.5) gives a positive and negative energy spectrum. Ac­
cording to our definition in (3.1), we have m = ~ for N = 2, 

E+=i+!s, E_=~-i(s+2). 
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Due to our assumption of the form of the state vector tPl' 
we have to treat nl2 = 0 as a special case. We find that for 
E+, s = 0,1, ... , while s = 0 is excluded for E_. This restric­
tion gives an energy spectrum where the positive and nega­
tive ground state is of equal magnitude. Moreover, Ref. 12 
showed by a different method that the number of positive 
energy states equals the number of negative energy states for 
a given energy. We also observe that the introduction of tor­
sion would have destroyed this symmetry. 

We tum now to the question of the completeness of the 
solution set. We first note that we can repeat the same calcu­
lations with tP/ = v/(n)ln l

l,0,n2
1,0) and tP/ 

= v/(n)ln l
l -l,O,n\ + 1,0) and obtain the same result. 

By applying the raising and lowering operators (3.3) and 
(3.4) of the invariance group, we can obtain even more solu­
tions. We note that these operators form two commuting U2 

algebras as follows. Define 

L'_:= -gtl2; L'+:= _g'2 1; 

L ' z: = -! (gtl I - g,22); 

L_:= _gI2; L+:= -g2l; Lz:= -!(gl l-g22); 

Lo:=!(ZTSBsT}; L'o:=!(zT
s Bs

T -I)12' 

Here L '0 and Lo are the U I generators. The other genera­
tors satisfy the usual angular momentum commutation rela­
tions: 

[Lz,L+] = L+; [Lz,L_] = - L_; [L+,L_] = 2Lz; 

[L'.,L'+] =L'+; [L'z,L'_] = -L'_; 

[L' + ,L'_] =2L'z; 

and 

[L',L] =0. 

Let us call the eigenvalues of L ' z and L z m, and ml' 
respectively. The eigenvalues of our two solutions 

~nIS(nZs + I} 

n2
s + 1 

Here B can be thought of as a dyadic product bb of a vector b 

with itself, where b A = ~ nA
s + 1 - ~A I' In dyadic notation 

B'v can be written as b(b·v). Because b spans a one-dimen­
sional subspace of an N-dimensional space, there are N - 1 
other eigenvectors v that are perpendicular to b with eigen­
value O. Thus v = b is the only eigenvector of B with a non­
zero eigenvalue, which is b'b or equivalently Tr(B}. The 
two eigenvalues, 0 and Tr(B), give rise to the two energy 
spectra, 

E+ = (N 2 
- 1)/2N + (lIN)s, s = 0,1, ... , 

E_ = (N2_1)/2N- [(N-I)/N](s+N), 

s= 1,2, ... , 

where we make use of the definition of m in (3.1). Here 
again s = 0 is not possible for E _. Once more this makes the 
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tPl: = (~:;) and tP2: = (~~; ) under these operators are 

LztPl = !(n I
2 - n2

2 - I)tPl; L 'ztPl = - !(n I
2 + n2

2)tPl' 

LztP2 = !(n l
l - n2

1 - 1 )tP2; L 'ztP2 = !(n l
l + n2

1 )tP2' 

Moreover one can show that 

tP (II,0,n
2
.,0») 

m: = v+ 10,0,n2
1 
+ 1,0) 

satisfies the requirement for the highest weight state, name­
ly, 

L+tPm =L'+tPm =0. 

ApplyingtheloweringoperatorsL_ andL' _ willgener­
ate a whole ladder of states. One expects this to produce a 
complete set, but the completeness proof is not available. 
Sen 12 proved a completeness relation for his solutions, based 
on the completeness of SU2 scalar functions. Our operator 
methods do not seem to work that easily, and already in Ref. 
7 Bargmann stated that the operator methods do not seem to 
help in proving completeness of the representations. 

We generalize now our approach to the case of arbitrary 
N. We work with the convention that the occupation 
numbers in vr which are not written out are assumed to be 
zero. There are N solutions tP which can be found immediate­
ly by generalization ofthe U2 solutions. They are labeled by 
the SUbscript S. The components of tPs written out in ket 
form look like 

tP1s = vls(n;)lnls,n2s,n3s, .. ·,nNs), 

~s = v2s(nj)lnls - I,n2
s + l,n3

s ,···,nN
s ), 

vrs = vl:s(nj)ln l
s - 1,n2

s ,· .. ,nl:s + 1, 

nl:+1s, ... ,nN
s ), l:=3, ... ,N. 

As can be easily checked, the dynamical matrix for the 
general case is symmetric and has the form 

I 
lowest positive and highest negative energy state have equal 
magnitude. The positive and negative energies are linear in s, 
but they have different slopes, depending on the value of N 
(see Fig. 1). This means that the negative energy spectrum is 
less dense, some positive energy modes do not have a corre­
sponding antipartner. The density ratio is N - 1, which is 
unity for N = 2. 

The question arises if the asymmetry in the behavior of 
positive and negative energy solutions is real or just an arti­
fact of an incomplete solution set. As before for N = 2 we can 
use the shift operators of our invariance group to construct 
new solutions, but do we get all the solutions? Due to the 
complexity of the higher UN groups it is even harder to get a 
handle on this problem and the question is still unsolved. 

A possible way to improve the calculations is to use the 
Gelfand states I (m» (Ref. 10) of UN ® UN' which are gen-
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Energy [natural units1 

9 10 spin number s 

FIG. 1. Energy spectrum ofthe neutrino (upper graph) and antineutrino 
(lower graph) for N = 3. The cosmological rest mass is ~ in natural units. 

erated by the scalar parts of our generators in (3.3) and 
(3.4), i.e., 

1,.1' • _ J' as r,.1' -s a I' 
I) [. - z- s [ and I) [: = z/ s' 

As remarked earlier, rg and Ig generate all the irreps of 
UN ® UN' but with the restriction that the Gelfand labels 
(m) of each state in the product are identical. 

The I (m) ) are orthonormal and the transformations in­
duced by r g and Ig are in principal well known. In fact, Ig are 
just the matrix elements of SD, and by using the Gelfand 
states as components of '" one should be able to find the 
general solution. The problem is that the induced transfor­
mations on I (m» consist of linear superpositions of differ­
ent states, which makes this approach algebraically difficult. 
Using a computer with an algebraic programming language 
could solve this problem. 

IV. CONCLUSIONS 

We gave the Lagrangians for the generalized Klein­
Gordon, Dirac, and Weyl-neutrino equations and discussed 
the symmetry properties of the flat space neutrino equation. 
We showed that for N = 3 and N> 4 all the discrete symme­
tries are broken, and even PCT is violated. 

The hyperneutrino equation on UN was solved by means 
of the boson calculus. The solutions gave rise to an energy 
spectrum that has symmetry between the negative and posi­
tive energy solutions only for N = 2. We found that the den­
sity ratio of positive to negative energy states was N - 1. The 
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hyperneutrino acquired a negligible rest mass (of the order 
10-31 eV) due to the global constant curvature ofU N' 

SO far only the hyperneutrino equation was studied on 
UN' Finding solutions to the generalized Dirac (or Klein­
Gordon) equation is another task. The application of index 
theory13 to the group manifold is possible and will give im­
portant information about the behavior of the solutions to SD. 
This would resolve any doubts about the neutrino spectrum. 

The difference in density of positive and negative energy 
solutions for N> 2 is quite surprising for a maximal symmet­
ric group like UN' If one assumes that the very early universe 
can be approximated by an UN' then the result could explain 
the matter-antimatter asymmetry in our universe. 

A good dimensional reduction procedure has to be 
found in order to make the model more physical and to study 
the behavior of the energy spectrum. 

What is the relevance of supersymmetry to hyperspin­
ors? For example, in the N = 3 theory a three-component 
hyperspinor can be thought of as a supermultiplet consisting 
of a spin-! ~ and a scalar ~. Nevertheless we have assumed 
that the transformation group is SL3 and not one of the su­
pergroups. From symmetry arguments ('" is a spinor) we 
would treat all three components of", as fermions and sec­
ond quantize them with anticommuting operators. But be­
cause ~ is a scalar under the Lorentz group, the spin-statis­
tics theorem is violated. 

If we wish to respect the usual spin-statistics connec­
tion, we should treat the external components as fermions 
and the internal components as bosons. It is even possible 
that all components are elements of an underlying Grass­
mann algebra, and then fermions are the odd elements and 
bosons are the even ones. The different treatment of external 
and internal spin components would have important conse­
quences for the spin vector. The components lfEE and lfII 

would result in commuting manifold coordinates, while the 
mixed components If EI and lflE give Grassmann (anticom­
muting) coordinates. Is this a possible link to supermani­
folds? Accidentally a B3 with five commuting coordinates 
would be much closer to the spirit of the original five-dimen­
sional Kaluza-Klein theory. 
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Three theorems dealing with transfer matrices in statistical mechanical systems are proved. 
The theorems state that the nonzero eigenvalues of transfer matrices formed through various 
prescriptions are identical. Hence it is possible to ascribe a physical meaning to all the 
eigenvalues of a transfer matrix, not just to the few largest eigenvalues. The first theorem states 
that the transfer matrix formed by building a system M layers at a time has as its only nonzero 
eigenvalues the eigenvalues of the transfer matrix formed by building the M layers of the 
system one at a time. This theorem relates the product of two nM X nM M-Iayer transfer 
matrices to the product of M one-layer M XM transfer matrices. The second theorem states 
that one of the nM X nM M-Iayer transfer matrices (for M> 1) has only one nonzero 
eigenvalue. A procedure for finding this eigenvalue and all eigenvectors is given. The third 
theorem generalizes the first to the case where the chosen layering is not an integer multiple of 
the interaction length. 

I. INTRODUCTION 

The transfer matrix formalism may be used to obtain the 
partition function of any statistical mechanical system when 
it has short-range interactions in at least one direction. 1-4 

This allows the system to be built one layer at a time in a 
direction with short-range interactions. The size of the trans­
fer matrix must be chosen to be equal to or greater than the 
size required to make separate layers, i.e., layers that interact 
only with at most two other layers. This property allows the 
analysis of the system in terms of a Markov process, since the 
interaction of one layer depends only on the preceding and 
following layers. For a statistical mechanical system, the 
partition function is given by 

Z = Tr(A1A2A3 ' •• ANB) ( 1 ) 

when the system has N layers. Here Ai is a one-layer transfer 
matrix, i.e., a matrix that adds the single layer i to the system. 
The matrix B describes the interactions at the boundary. 

The question that naturally arises is the relationship 
between the eigenvalues of the different transfer matrices 
formed when the transfer matrix is built up with more than 
one layer at a time. In particular, if each layer has n states, 
the one-layer transfer matrices that enter Eq. (1) are of size 
n X n. If one decides to build up the transfer matrix using M 
of these layers at a time, the M-Iayer transfer matrices one 
then uses are nM X nM 

• Physically, one would expect that at 
least the largest eigenvalue of the different ways of forming 
the transfer matrices must be invariant. This is because the 
largest eigenvalue is related to the partition function Z of the 
system, and physical quantities such as the free energy can be 
derived from the partition function. In the thermodynamic 
limit, N -+ 00 in Eq. (1), only the largest eigenvalue comes 
into the calculation of the partition function if all Ai are 
identical. Similarly, in this limit a correlation length is relat­
ed to the ratio of the largest and next-largest eigenvalues of 
the transfer matrix. Thus this ratio must also be invariant 
using various prescriptions to build the transfer matrices. 
But what about the other eigenvalues? This paper will relate 
the eigenvalues of the n X n one-layer transfer matrix to the 

nM X nM M-Iayer transfer matrix. In fact, it will be shown 
that quite generally the M-Iayer transfer matrix has at least 
nM 

- n zero eigenvalues, and the remaining n eigenvalues 
are just the eigenvalues ofthe product of M one-layer trans­
fer matrices. 

The next section contains a number oflemmas and three 
theorems. The first theorem relates the eigenvalues of the 
system when it is built up M layers at a time (an M-Iayer 
transfer matrix) to the eigenvalues of a product of M one­
layer transfer matrices. The second theorem describes the 
structure of a portion of the M-Iayer transfer matrix. The 
third theorem generalizes the first to the case when the cho­
sen layering is not an integer multiple of the interaction 
length. Finally, Sec. III contains a discussion of the physical 
importance of the theorems. All discussion of the physical 
and calculational properties of the three theorems and asso­
ciated lemmas of Sec. II will be deferred to Sec. III. Conse­
quently, the reader may initially skip over the proofs in Sec. 
II and concentrate on the discussion in Sec. III. 

II. THEOREMS AND PROOFS 

Throughout the manuscript, the mathematical proper­
ties of the row and column matrix products introduced in 
Ref. 5 will be used-the notation 5 (x.x) will be used to refer 
to Eq. (x.x) of Ref. 5. In particular, the reader should note 
that curly brackets, { }, denote the row and column prod­
ucts while parentheses, ( ), denote a regular matrix. The 
Hadamard (element-by-element) product will be denoted 
by 0, and the regular matrix product will be denoted by the 
juxtaposition of the matrices. In most instances, the dimen­
sion of the matrices will not be explicitly given-they are 
assumed to be such that the matrix products are defined 
(this assumption can always be met by having all matrices 
square of size n X n). All matrices are assumed to have ele­
ments from the field of complex numbers. The matrix I will 
be reserved for the identity matrix for regular matrix multi­
plication, and the matrix J will always stand for the identity 
for Hadamard matrix multiplication (hence J has all ele­
ments equal to 1). 

2280 J. Math. Phys. 29 (10). October 1988 0022-2488/88/102280-08$02.50 @ 1988 American Institute of Physics 2280 



                                                                                                                                    

Assume each of the N one-layers is numbered with the 
numbering performed to minimize the difference between 
the numbers of interacting one-layers. Then the range of in­
teraction is taken to be the largest difference between any 
two interacting one-layers. 

A. Interaction range 1 

The first two theorems deal with the trace of a matrix 
with None-layers, with one-layer i interacting only with one­
layers i-I and i + 1. The general matrix has the forms 

Z=Tr 

I AI J J J 
J I A2 J J 
J J I . J J 

J 

J J 
(2) 

and from 5(3.13) [without loss of generality set OJ = I in 
5(3.13) ] 

(3) 

Call Ai a one-layer transfer matrix, i.e., it is the transfer 
matrix that adds layer i (and includes all interactions within 
layer i and between one-layers i and i + 1). From 5 (4.3) 
(with all 0 = i and B = J) it is possible (when N /2 is an 
integer) to also write 

Z = Tr (e ~1 }{~2 ~} .. , e AN1_ I } [~N ~]). 
(4) 

Equation (4) gives a transfer matrix that adds two layers, 
e.g., layers 1 and 2, at a time. This transfer matrix has two 
parts. A diagonal matrix, an intra-two-layer matrix, adds the 
interactions within an added two-layer; e.g., the matrix con­
taining AI' The inter-two-layer matrix also has a special 
form. For example, the inter-two-layer matrix containing Az 
takes into account the interactions between the two-layer 
formed from one-layers 1 and 2 and the two-layer formed 
from one-layers 3 and 4. The question that will be addressed 
in this subsection is the relationship between the eigenvalues 
of the component one-layer transfer matrices and an M-layer 
transfer matrix. First, two lemmas that deal with the two­
layer transfer matrix are proved. 

Lemma 1: An inter-M-layer transfer matrix has the two 
equivalent forms 

{ Jnxp JJ
nxq

} = {A
Jnxp 

} {Ipxp JPXq }' (5) 
Amxp mxq mXp 

where the subscripts are used to show the size of the matri­
ces. 

Proof: The proof follows immediately from 5(3.8) and 
use of the associative law [5 (3.3)]. • 

Lemma 2: The two-layer transfer matrix 

(6) 

has the same nonzero eigenvalues as the matrix BC. 
Proof: Using Lemma 1, the associative law for the row 

and column products [5(3.3)], and 5(3.6) gives 
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e ~} {~ ~} = {{~} {~}} {~} {I J} 

=((e}J)0({~}C)){I J} 

= {~} cn J}. (7) 

However, for any two complex matrices Knx m and Lmx" the 
nonzero eigenvalues of KL and LK are the same.6 Thus the 
two-layer transfer matrix given by Eq. (6) has the same non­
zero eigenvalues as 

{I J} {~} C = (IB)0(JI»)C = BC, (8) 

where 5(3.6) has been used. • 
If both Band Care n X n, then the two-layer nZ X nZ 

transfer matrix given by Eq. (6) has at least nZ 
- n zero 

eigenvalues, with the remaining n eigenvalues the same as 
the product of the two one-layer transfer matrices BC. 
Theorem 1 generalizes Lemma 2 to the case of M-layer trans­
fer matrices. The form of the M-layer transfer matrix given 
by Eq. (9) follows directly from the use of the associative 
laws for the row and column products and 5 (3.13). 

Theorem 1: The M-layer transfer matrix 

I AI J J J 

J I A2 J J 
J J I . . J J . . . . . . . 
J J J A

M
_

I 

J J J J 
J J J J 
J J J J 
J J J J 

X . (9) . . 
J J J J 

AM J J J 

has the same nonzero eigenvalUes as A1Az" 'AM_ 1 AM' 
Proof: For any diagonal matrices 0 I and O2 the relation­

ship 010Z = 0100z holds. Thus the intra-M-layer transfer 
matrix in Eq. (9) can be decomposed into M - 1 diagonal 
matrices; one for each Ai' First multiply the diagonal matrix 
with AM _ I by the inter-M-layer transfer matrix, after using 
Lemma 1 to rewrite the inter-M-layer transfer matrix. This 
gives 

J J J J 
J J J J . . {I J '" J} . 
J J I A

M
_

I J 

J J J I AM 

J 

= ... J}, ( 10) 
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where use has been made of 5(3.6) and the fact that the 
regular matrix product of a J matrix and a row product made 
up of one I and the rest J matrices gives back a J matrix. Next 
multiply both sides of Eq. (10) with the diagonal matrix 
containing AM _ 2 to give 

I J 
J I 

J J 

J J 
J J 

. . . 

XAM{I J 

J 

J 
= AM_ 2 

I 

J 
J 

I 

J 

J 

J 
J 

AM- 2 

I 

J 
J} 

AM_\AM{I 

J 
J 

J 

J 

J 

J 
J 

J 

AM_\ 

J}. (11) 

Repeating this procedure for each of the other diagonal ma­
trices in tum finally shows that the product of the two matri­
ces in Eq. (9) is equal to 

{1'} A,A,' ··A,,_.A,,{I J ... J}. (12) 

Using 5(3.6) gives 

{I J (13) 

Since the nonzero eigenvalUes of any two matrices 
Knxm Lmxn are the same as LmxnKnxm, the product ofthe 
M.layer transfer matrices in Eq. (9) has the same nonzero 
eigenvalues as A\A2 •• ·AM. • 

Theorem 2: The inter-M·layer transfer matrix 

{~ ~} (14) 

has the same rank as the matrix C. Ifboth C and the matrix 
of Eq. (14) are square, then the matrix of Eq. (14) has at 
most one nonzero eigenvalue. 

Proof: For any nonsingular P, the rank of any matrix A 
satisfies6 p( PAl = p(A). Multiply the inter.M.layer trans­
fer matrix of Eq. (14) by a particular permutation matrix 
(which is nonsingular) to give 

(15) 

The last matrix in Eq. (15) is just the Kronecker (direct) 
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productofCmxp andJnxq [see 5(3.9)]. Usethewell·known 
relationship6 for the rank of a Kronecker product, 

( {
Cmxp Jmxq}) p J J =p(Cmxp)p(J"Xq) =p(Cmxp )' 

nXp "xq 
(16) 

together withp(Jnxq ) = 1 to complete the proof ofthe first 
part of the theorem . 

Use Lemma 1 and 5 (3.6) to find that the nonzero eigen­
values of a square inter-M-layer matrix of Eq. (14) (with C 
also square) are the same as the nonzero eigenvalues of the 
matrix 

{Imxm Jmxn } {~mxn} = (lmxmJmxn )0(Jmx "C"x/l) 
/IX" 

= Jmx"C"x,,' (17) 

However,6 

p(Jmx"C"x" )<min(p(Jmx " ),p(C"xn »)<1, 
since p(J InX ,,) = 1. Thus the square inter-M-layer matrix 
has at most one nonzero eigenvalue, since it has the same 
nonzero eigenvalues as a matrix that has a rank of at most 
1. • 

The structure of the inter-M-layer square transfer ma­
trix of size nM XnM ofEq. (14) (for the case where Cnx" is 
also square) can be easily illustrated. Use Lemma 1 and the 
properties 5(3.6) and 5(3.8) to show thatthe product of the 
matrix of Eq. (14) times itself is a matrix that has a rank 
equal to 1 [except in the trivial case where p(CJ) =0]. 
Thus the inter-M-layer transfer matrix has a null space of 
dimension nM 

- n, and has n - 1 generalized eigenvectors 
of rank 2 associated with the eigenvalue O. To find the eigen­
vector associated with the nonzero eigenvalue, let e be a col­
umn vector with all n elements equal to 1, and define the 
vector u = Ceo Then since J = ee T, clearly Je = ne and 
Ju = ee TCe = se, withs = l:ijcij the sum of all the elements 
ofC. Use Lemma 1 to give 

J e 
J e 

{I J ... J J} 

J e 
C u 

J e 
J e 

= (18) 

J e 
C u 

Hence the nM -dimensional vector in Eq. (18) is an unnor­
malized right eigenvector of the nM X nM inter-M-layer 
transfer matrix with eigenvalue snM 

- 2 • Similarly, if one de­
fines the vector y T = eTC, then the left eigenvector asso­
ciated with the eigenvalue snM - 2 is given by 

{yT e T e T}. (19) 

The generalized left eigenvectors of rank 2 are given by 

{e T ••• e T w?}, (20) 

for the n - 1 orthogonal vectors w / that have w /Ce = O. 
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The generalized right eigenvectors of rank 2 are given by B. Longer-range Interactions 

{} (21) 

where the n - 1 orthogonal vectors Xi satisfye TCX i = O. 

This section deals with the case where layer i can inter­
act with more than layers i-I and i + 1. However, it will be 
necessary to concentrate on the case of only pairwise interac­
tions between the layers. If the system has None-layers with 
one-layer i interacting with the 2R one-layers j with 
i - R <. j<.i + R, the partition function Z is given by 

I 

A1.1 A1,2 A1,R J J J 

J I A2•1 A 2,R_I A 2,R J J 

J J I A 3,R-2 A 3•R _ 1 A 3,R J 
Z=Tr . . (22) . . . . . . . 

AN, 1 A N,2 A N,3 AN,R J J I N,N 

The notation { ... } i,j will be used to show that the matrix product has i columns of matrices andj rows of matrices. If some 
Ak,/ = J, then one-layer k does not interact with one-layer I. Partition the row and column product in Eq. (22) into blocks 
with R matrices (when N / R is an integer and R > 1) to produce 

I A1,I A 1,2 A1,R_I A1,R J J J 

J I A2,I A 2,R-2 A 2,R_I A 2,R J J 

Z=Tr J J I A 3,R-3 A 3,R-2 A 3,R_I A 3,R J 
. . . . . . 

J J J R,R A R•1 A R ,2 A R•3 AR,R R,R 

AK+1,1 AK+ 1,2 AK+ I,R-I AK+1,R J J J 

J AK+ 2,1 A K + 2,R-2 A K + 2,R-I A K + 2,R J J 
x .. , J J A K + 3,R-3 A K + 3,R-2 A K + 3,R-I A K + 3,R J 

. . . . . . 
J J J R,R AN,I A N,2 A N,3 AN,R R,R 

(23) 

whereK = N - R. 
Lemma 3: If all the Ai,j' I, and J are n X n square matrices, then 

I A1,I A1,2 A1,R_I A1,R J J J 

J I A2,I A 2,R_2 A 2,R -I A 2,R J J 

J J I A 3,R-3 A 3,R-2 A 3,R_I A 3,R J 

J J J R,R AR,I A R,2 A R,3 AR,R R,R 

= SR [A1,IA1,2" 'A1,R ]SR [A2,I A2,2" 'A2,R]" 'SR [AR,IAR•2 •• 'AR,R]' (24) 

with the special matrix product defined by 

A/,I A/.2 A/.R _ 1 A/,R 

J J J 
SR [A/,I A/,2 "'A/,R] = J J J (25) 

. . . 
J J J R,R 

Proof' The left-hand matrix on the lhs ofEq. (24) is a diagonal matrix, and hence may be written as a product of R - 1 di­
agonal matrices with diagonal matrix i made from a product of the A/,j with 1 <.j<.R - i. The right-hand matrix on the lhs of 
Eq. (24) can be decomposed into a product of R - 1 diagonal matrices and R Kronecker products, which can then be 
multiplied together using 5(3.5). The equivalence of this decomposition follows directly from Appendix A of Ref. 7. Com­
muting each of the R - 1 diagonal matrices from the decomposition of the left-hand matrix on the lhs of Eq. (24) as far as 
possible into the matrices from the decomposition of the right-hand matrix on the lhs of Eq. (24) gives R terms of the form 
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I J J J J I J J J J 
J J J J J J J J . . . . . · 
J J I Ai,l Ai,R-i Ai,R-i+1 Ai,R_I Ai,R J (26) 

J J J J J J J J . . . . . . 
J J J J R,R J J J J I R,R 

Each of the R products of two matrices with the form of Eq. (26) can be multiplied together to obtain R matrices with a form 
given in Eq. (27). This yields that the lhs ofEq. (24) is equal to 

AI,R AI,I AI,2 AI,R_I J J J 

J I J J A2,R-I A2,R A2,I A2,R-2 
J J J J J I J 

. · . . . . 
J J J R,R J J J R,R 

J J J J J J 
J I J J J J J 

x .. · . . . . (27) . . 
AR_ I,2 AR_ I,3 AR_I,R AR_I,I J J J 

J J J R,R AR,I AR,2 AR,R-I AR,R R,R 

Define the permutation matrix P, which permutes matrices within the Kronecker product, i.e., which has the form 

J J J I 
I J J J 

P= J J J (28) 
. . . 

J J J R,R 

This type of permutation matrix has been extensively studied in the mathematical literature. 8,9 Insert the identity in the form 
pp-I (with p-I = P T) between each ofthe R matrices in Eq, (27). The leftmost matrix ofEq. (27) multiplied by P gives 
SR [AI,I .. 'AI,R ], while p-I multiplied by the rightmost matrix ofEq. (27) gives SR [AR,I ... AR,R ]. Similarly, p-I times the 
matrix in the middle ofEq. (27) formed from Ai,l " 'Ai,R times P gives SR [Ai,1 ,. 'Ai,R]' • 

Lemma 4: If D/x/ is a diagonal matrix, and the matrices A, B, and C are general matrices of the indicated size, then 

{
Aqx! Bqxq } = {Aqx! Bqxq } {D!x! C/ Xq }. 

D/x! C/Xq I/x! J/ Xq JqX! Iqxq 

(29) 

Proof: The last matrix on the rhs ofEq. (29) is a diagonal matrix. Use 5(3,3) and 5(3.6) to show that 

{
D!x/ C!Xq} 

{D/x! C/Xq } = {I!x/ J!Xq} J I ' 
qX/ qxq 

(30) 

Then use the transpose of5(3.7) (with Q = I) and the fact that D/x! is a diagonal matrix to produce the rhsofEq, (29). • Lemma 5: If Ai,j' I, and J are all square matrices of the same size, then the matrix 

I AI,I AI,2 AI,R J J J 

J I A2,1 A2,R _ 1 A2,R J J 

J J A3,R-2 A3,R-l A3,R J (31) 
. . . . . · 

J J J R+ I,R+I AR+1,1 AR+I,R J R+I,R+ I 
has the same nonzero eigenvalues as 

SR [AI,I .. 'AI,R ]SR [A2,1 .. 'A2,R]' "SR [AR + 1,1" 'AR+ I,R] . (32) 

Proof: Use 5(3.3) and 5(3,6), and the fact that the product of the leftmost column of the left-hand matrix product ofEq. 
(31) times the top row of the right-hand matrix product ofEq. (31) gives a J matrix, to show that this row and column may be 
eliminated from the products. Then use 5 (3.8) to make the rightmost matrix in Eq. (31) into a matrix formed from a product 
of Ai, j matrices and one formed from the product of only I and J matrices. Finally, use the transpose of 5 (3.7) on the rightmost 
matrix of Eq, (31) (with Q = I) to show that the product of the two matrices in Eq. (31) is equal to 
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AI,I A I,2 AI,R_I AI,R 1 A 2,I A 2,R-2 A 2,R_1 
1 J J J J 1 A 3,R-3 A 3,R-2 . . . . . . 
J J . . J J . 

J J AR,I J J J 
J J J J J J 1 R,R 

R+ I,R 

A 2,R J J 

A 3,R_1 A 3,R J 

{~ 
J J 

1.+. 
J x . . (33) . . . 

A R,2 AR,J J 
. 

J 
AR+I,I A R + I,2 AR+I,R R,R 

From Lemma 3 the middle two matrices in Eq. (33) can be written as the product of the R matrices SR [A2,1 •• 'A2,R]'" 

SR [AR+ 1,1" 'AR + I,R]' Use 5(3.6) to see that the rightmost matrix in Eq. (33) times the leftmost matrix in Eq. (33) gives 
SR [AI,I •• 'AI,R]' To complete the proof, use the fact that for any two matrices that have appropriate sizes, the nonzero 
eigenvalues of AS are the same as the nonzero eigenvalues of SA. • 

1 

J 

J 

J 

J 

J 

J 

Next Lemma 5 is generalized to allow for the length oflayering of the transfer matrix to be any integer greater than R. 
Theorem 3: If all A/j' I, and J are square n X n matrices, then the matrix 

A I•I A I,2 

1 Au 

J 1 . . . 
J J As, I AS,R_I AS,R 

J J J 1 As+ I,R-2 As+ I,R-I 
. . . 

J J J J 1 AK_I,I 

J J J J J 1 K,K 

J J J J J J 
J J J J J J 
J J J J J J 

X J J J J J J (34) 

AS+I,R J J J J J 

A K _ I,2 A K - I,3 AK_I,R J J J 

AK,I A K,2 AK,R_I AK,R J J K,K 

has the same nonzero eigenvalues as 

SR [AI,I •• 'AI,R ]SR [A2,1 •• 'A2,R]" 'SR [AK,I .. 'AK,R]' (35) 

where K = S + R, with 5'>0 and R > 1. The remaining nK 
- nR eigenvalues are equal to zero. 

Proof When S = 0 this is Lemma 3, and when S = 1 this is Lemma 5. Thus assume that 5'>2. As done in the proof of 
Lemma 5, eliminate the leftmost column of the matrix on the lhs of Eq. (34) and the top row of the matrix on the rhs of Eq. 
(34). Next use the fact that the matrices in Eq. (31) equal those in Eq. (33) to break the two matrices into four matrices with 
the form given in Eq. (33) [with the range in Lemma 5 settoK - 1, and some of the arbitrary Al,r matrices in Eq. (33) are 
equal to J matrices]. Define these four matrices to be 

{C}K,K_I {D}K_ I,K-1 {E}K_I,K_I {F}K-I,K' (36) 

where the forms of the four matrices are the same as the matrices in the corresponding positions in Eq. (33). For example, this 
has made the definition (withj> i) 
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{F} .. = {~ 
',} : 

J 

J 

J 

J 
J 

J 
J 

J 

(37) 

The product {D}K_I,K_I {E}K-I,K_I againhasthesameformasEq. (31) (with the range equal toK - 2), so Lemma 5 can 
be applied, and these two matrices can be broken into the product offour matrices with the form ofEq. (33). This process can 
be iterated until the center matrices are {D} R,R {E} R,R' This means that Eq. (34) is equal to 

{C}K,K_I {C}K_I,K_ 2' "{C}R + I,R{D}R.R{E}R,R{F}R,R + I {F}R+ I,R+2' "{F}K_I.K· (38) 

Use of 5(3.6) and noting which matrices are equal to J matrices shows that {F}i,) {F}j,k = {F}i,k' so 

{F}R,R+ I {F}R+ I,R+2 '''{F}K-I,K = {F}R,K' (39) 

Use Lemma 3 on the matrices {D} R,R {E} R,R , and the fact that the nonzero eigenvalues of KL for any two compatible matrices 
are the same as LK, to find that the nonzero eigenvalues of Eq. (34) are equal to the nonzero eigenvalues of 

{F}R,K{C}K,K_I {C}K-I,K_2" '{C}R+ I,RSR [As+ 1,1" ·AS+ I,R ]SR [AS+2,1 •• 'As+ 2,R]" 'SR [AK,I" ·AK.R ] . (40) 

Make use of5(3.3) and 5(3.6) to give (for i>R) 

(41 ) 

where {F}R,R = I. Finally, use Eq. (41) S times to perform the multiplication between the {F}R,K matrix and the {C}I,I_1 
matrices to complete the proof. • 

Lemma 3, Lemma 5, and Theorem 3 all require that the sizes of all the matrices in the product be the same. This was done 
to avoid too clumsy a notation in the proofs presented. However, the results can be generalized to remove this restriction. This 
generalization can be done in two ways. One way is to "pad" the Ai.) matrices with zeros so that they are all square and of the 
same size. This procedure will leave the physically important quantities such as the partition function invariant. The other 
way of generalizing the result when the matrices may have different dimensions is to use rectangular transfer matrices. In this 
case, Lemmas 3 and 5 and Theorem 3 can be generalized, but with the notation becoming slightly more cumbersome. For 
example, iflayer i has ni states and interacts with R other layers, then the corresponding matrix to Eq. (25) is 

A (1.1) 
n.Xn2 

A(I,2) 
n,Xn." 

A(I,R-I) 
n,XnR_l 

A(I,R) 
",XnR 

In2xn2 Jn2xn3 Jn2xnR_l Jn2xnR 

Jn3xn2 InJxnJ In)xnR_t Jn3xnR 

. . . 
JnRxn2 JnRxn) InRxnR_1 JnRxnR 

where SUbscripts denote the matrix size and superscripts de­
note the matrix of pairwise interactions. 

A more serious restriction is the restriction to pairwise 
interactions between the layers. However, in one of the most 
studied models in statistical mechanics, the Ising model, this 
restriction does not enter. This is because it has been shown 
by WegnerlO that for the Ising model, multispin interactions 
can be rewritten into single-spin and pairwise interactions by 
adding additional spins. Thus if all matrices are 2X2 and 
symmetric (the Ising model), the restriction to pairwise in­
teractions is not important. Unfortunately, for other models 
there is no general argument to overcome this restriction. 

III. DISCUSSION AND CONCLUSIONS 

The main result of this paper is Theorem 3, which has 
Theorem 1 as a special case. Theorem 3 shows that all the 
eigenvalues of transfer matrices formed by different layering 
prescriptions are the same, except that different prescrip­
tions have different numbers of zero eigenvalUes. This is im­
portant because it shows that assigning a physical signifi­
cance to "constrained" free energies (which are 
proportional to the natural logarithm of nonzero eigenval-
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(42) 

ues) is a mathematically well-defined procedure. For exam­
ple, the spinodal behavior of long-range Ising models was 
seen to correspond to the behavior of some of the smallest 
eigenvalues of the transfer matrix in Ref. 7. In addition, since 
the expectation values of operators are given by equations of 
the form 

(43) 

Theorem 3 also shows that the spectra for such operators is 
independent of the layering prescription used. These results 
hold for all models, but may be of particular importance for 
models that are conformally invariant. II It is worthwhile to 
note that Theorem 3 is easily generalized to the case where 
the layers have different numbers of states. Also, the restric­
tion in Theorem 3 to layers that interact pairwise is not nec­
essary if each layer has only two states. Thus if one regards a 
layer as a single spin, the restriction to pairwise interactions 
between the spins is not necessary for the Ising model. 

Theorem 2 concerns an interesting result that may be 
useful in numerically computing the partition function for 
various models. In particular, if one uses a layering with 
more than one layer, then the spectral decomposition of the 
inter-M-Iayer transfer matrix is easy to perform. There is 

M. A. Novotny 2286 



                                                                                                                                    

only one nonzero eigenvalue, and its associated eigenvectors 
are easy to calculate [see Eqs. (18) and (19) ]. The general­
ized eigenvectors of rank 2 used can be any vectors given by 
Eqs. (20) and (21), i.e., any set of vectors in n - 1 dimen­
sions that are orthogonal to the single eigenvector that has 
nonzero eigenvalue. Thus to compute the spectral decompo­
sition of the inter-M-Iayer matrix it is necessary only to get 
an orthogonal basis that includes the single eigenvector cor­
responding to the nonzero eigenvalue. This is to be com­
pared with the case where the spectral decomposition would 
have to contain a unique orthonormal basis if the matrix 
were to have all eigenvalues nondegenerate. 

The matrix defined by Eq. (25) adds a single layer at a 
time when there are longer-range pairwise interactions. 
When this is implemented with each layer used for a single 
spin, this gives the statistical mechanical model with 
"screw" boundary conditions. For example, when all 
Ai,j = J except forj = 1 andj = R, multiplying N such ma­
trices gives a square lattice of size R X N. Such boundary 
conditions were introduced by Kramers and Wannier4 in 
1941, and were used initially in the calculation of the exact 
partition function of the two-dimensional Ising model. 12-14 

Screw boundary conditions in two and more dimensions 
have been used also in numerical calculations for finite strip 
widths for the two- and three-dimensional uniform Ising 
model, 15,16 as well as for the random Ising model in two and 
three dimensions. 17 Equation (25) gives this sparse matrix 
in the general case. If all layers are of size n, then the nR X nR 

matrixofEq. (25) hasonlynR + 1 nonzero elements. This is 
a property that is extremely useful in numerical calculations, 
where the sizes of finite strips that can be studied are limited 
by the storage of the digital computer. Use of the properties 
of the row and column products also allows various relation­
ships of the matrix ofEq. (25) to be seen. For example, it is 
easy to break this matrix into the product of the permutation 
matrix defined in Eq. (28) times the product of a diagonal 
matrix times the product of a direct product matrix. (For the 
two-dimensional Ising model, this was done in Ref. 4.) An­
other property that can be utilized in numerical calculations 
of transfer matrices comes from the relation 

J 
J 

J 
R 

J 

J 
J l 

(44) 

Equation (44) ilustrates a property of the single-particle 
transfer matrix [Eq. (25)] for a square lattice with screw 
boundary conditions. (The property can be easily general­
ized to systems in different dimensions.) Equation (44) 
shows that whenever a layer is not interacting with an inter-
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mediate layer j, it is possible for any matrix R to find two 
matrices formed from Kronecker products of 1 and R that 
multiply the single-layer transfer matrix S to give back the 

A 

same matrix S. That is, ST = TS. Here T is a Kronecker 
A 

product containing R in position j, and T is a Kronecker 
product containing R in positionj + 1. The other matrices in 
the Kronecker products are identity matrices, I. Multiply 
f,q. (44) by the right eigenvector ofT, TVi =AjVj, to give 
A A 

TSVi = AiSVi. Thus SVj is a right eigenvector of T with 
eigenvalue Ai' If it is easy to calculate the eigenvectors and 
eigenvalues of the matrices T and T, one computational ad­
vantage that can be used in numerical calculations is to start 
with a complete set of eigenvectors of T, and then multiply 

A 

by S to transfer to the complete set of eigenvectors of T. In 
most cases, it is possible to make both of these sets the same. 
Then program the "easy" rules to multiply Vi by S, since if A 
has n states, then SVi is a linear combination of at most n2 

vectors. This property should be particularly useful in a ran­
dom system. For example, in the random Ising model stud­
ied in Ref. 17, it is possible to mUltiply S by all Vi with 
approximately the same computational effort and memory 
requirements that it takes to multiply S by a single arbitrary 
vector. Of course this result is trivialifR = I, but thenumeri­
cal advantage that should be utilized is that Eq. (44) holds 
for any R. 

ACKNOWLEDGMENTS 

The author acknowledges useful conversations with 
Hans Herrmann and John de Pillis. 

IW. J. Camp and M. E. Fisher, Phys. Rev. B 6,946 (1972). 
2E. H. Lieb, in Lectures in Theoretical Physics. edited by K. T. Mahan­
thappa and W. E. Brittin (Gordon and Breach, New York, 1969). Vol. 
XI-D. 

lE. W. Montroll. Ann. Math. Stat. 18. 18 (1947). 
4H. A. Kramers and G. H. Wannier. Phys. Rev. 60, 252 (1941). 
5M. A. Novotny. J. Math. Phys. 20, 1146 (1979). 
6M. Marcus and H. Minc. A Survey of Matrix Theory and Matrix Inequal­
ities (Allyn and Bacon. Boston, 1964). 

7M. A. Novotny. W. Klein, and P. A. Rikvold, Phys. Rev. B 33, 7729 
( 1986). 

8H. V. Henderson and S. R. Searle, Linear Multilinear Algebra 9, 271 
(1981). 

9B. Holmquist. Linear Multilinear Algebra 17.117 (1985). 
1°F. J. Wegner, J. Math. Phys. 12. 2259 (1971). 
IIJ. L. Cardy. in Phase Transitions and Critical Phenomena, Vol. II, edited 

by C. Domb and J. L. Leibowitz (Academic, London, 1987). and refer­
ences therein. 

12G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25,353 (1953). 
IlT. Oguchi. J. Phys. Soc. Jpn. 5, 75 (1950). 
14T. Oguchi and Y. Taguchi, Prog. Theor. Phys. Suppl. 87, 23 (1986). 
15S. Gartenhaus, Phys. Rev. B 27.1698 (1983). 
16N. H. Fuchs and S. Gartenhaus, Phys. Rev. B 31.7261 (1985). 
17T. Oguchi and Y. Taguchi, Prog. Theor. Phys. 77, 775 (1987). 

M. A. Novotny 2287 
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It is shown rigorously how to translate the ground state energy problem for some quantum 
systems into an equilibrium problem for an associated one-dimensional classical system. The 
case of the spin-boson model for which the connection is established with a previously obtained 
Ising model over R is explicitly treated. 

I. INTRODUCTION 

In order to study the ground state of some specific quan­
tum systems it can be useful to translate this problem into the 
computation of the partition function of an associated classi­
cal system. 1-3 The ground state is approached as a low-tem­
perature limit of equilibrium states for the quantum system 
and it is this limit that is turned into a thermodynamic limit 
of a one-dimensional classical system at a fixed temperature. 

Our contribution consists in a rigorous study of the 
translation to the classical system. For this purpose we start 
from a convergent series expansion of the free energy of the 
quantum system. This expansion is in terms of multitime 
correlation functions up to imaginary time i/3 and is based on 
a general stability result for equilibrium states. Such a meth­
od is an alternative for the usual transformations based on 
path-integral techniques. I

-
3 In the case of the spin-boson 

model the latter techniques yielded an Ising model over R. In 
this paper the spin-boson model will be treated by the pertur­
bation series approach by which we will get a classical parti­
cle model on R. Furthermore, we will prove that this model 
can be transformed into a continuous Ising model as found in 
the stochastic approach. 

In the following sections we consider successively the 
following points. First, in Sec. II, we study the series expan­
sion for the free energy based on the perturbation theory for 
cyclic vectors representing equilibrium states. Section III is 
devoted to the spin-boson model. We use earlier results to 
compute explicitly the multitime correlation functions ap­
pearing in the series expansion of Sec. II; their properties will 
enable us to construct an associated classical particle model. 
Finally, we connect in Sec. IV this classical particle model to 
the Ising model over R which was obtained in Ref. 4. 

II. A PERTURBATION EXPANSION FOR THE PARTITION 
FUNCTION 

We describe here a quantum mechanical model as a W *­
dynamical system. A general reference for such a description 
is Refs. 5 and 6. The observables of the system form a von 
Neumann algebra JI with normalized cyclic and separating 
vector n°. The free dynamics {a?ltER} is the modular auto­
morphism group associated with the pair (JI,no). This 

a) Bevoegdverklaard Navorser N.F.W.O., Belgium. 
b) Onderzoeker I.I.K.W., Belgium. 

means that the state xEJf~(o,°lxo,o> of JI is a KMS state 
(i.e., a state satisfying the Kubo-Martin-Schwinger equilib­
rium condition, see Ref. 6) at inverse temperature /3 = 1 for 
the time evolution {a?ltER}. 

Any self-adjoint element P in JI defines a perturbed 
dynamics {a;ltER} of JI with generator 80 (') + i[P,·], 
where 80 is the generator of {a?\tER}. It is an important 
stability result in the study of equilibrium states that any 
such perturbed dynamics allows for a perturbed KMS state. 
To state the result we first introduce some notation: for n> I 
the vectors 

n~(XI> ... ,xn) =a~ (P) .. 'a~ (P)o,o, XiER, (1) 
, n 

have an analytic extension o,~ (z\>""zn) to the domain 

Dn = {(zl"",zn)IO<Imzl < ... <Imzn~}, 

which is continuous and bounded on Dn with bound7
•
8 

Iln~(ZI, ... ,zn)I\..;I\Plln. (2) 

The perturbed KMS state is now given by the cyclic vector 
o,P where (Ref. 6, Theorem 5.4.4) 

o,P= 0,0 + L (_l)n 
n>1 

In general, o,P will not be normalized; in fact it can easily 
be seen for finite systems that - 10gl\o,P 112 is the correction 
to the free energy due to the perturbation P. The aim of this 
section is to prove a simple expansion for lIo,P11 2

• 

Lemma 2.1: For n>2, let 

fE2" I({ (x 1""'Xn _ 1 ) IO";x.,,;· .. ,,;xn _ I ..; I},dx l ' "dxn _ d 

then 
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+ ( '" fdU "'du 
)0<u'<"'<un<1I2 I n 

n 

== L Bk • 
k=O 

Proof." Define the following subsets ofRn - I: 

AO = {(SI"",Sn_1 )/!<;SI<;' "<;Sn_1 <;l}, (4) 

An = {(SI"",Sn_1 )/O<;SI<;"'<;Sn_1 <;!}, (5) 

AI = {(SI"",Sn_ I) /O<;SI<;" . <;SI<;!<;SI+ I <; .. '<;sn_1 <; l}, 

for 1 <;/<;n - 1. (6) 

By an obvious substitution we get 

Bo = in ... f dSI"'dSn_I(~ -Sn_I)/(SI, ... ,Sn_I)' 

(7) 

Bn = in'" f dSI"'dSn_I(~ -Sn_I)/(SI, ... ,Sn_I)' 

(8) 

and for 1 <;k<;n - 1, 

B = ( . ··f ds .. 'ds (min(l.. S ) k )M' I n - I 2 ' k 

-max(sn_1 - ~'Sk_I))/(SI, ... ,Sn_I)' (9) 

where 

Mk = {(SI"",Sn _ I) /O<;SI<;'" <;Sk_ I <;!, 

Sk_1 <;Sk<;"'<;Sn_1 <;l}, 

and with the convention that So = 0. Clearly all the M k can 
be decomposed as unions of domains of the type AI. There­
fore 

i Bk = i ( I'" fdSI···dSn_III(Sw .. ,Sn_l) 
k=O I=O)A 

X/(SI,,,,,Sn_1 ), 

where II (s I,,,,,sn _ I ) is a bounded non-negative measurable 
function on AI independent off On the other hand, 

A = i ( .,. f ds l " 'dsn _ 1 (1 - sn_1 )/(SI"",Sn_I); 
1=0)A1 

hence the proof will be finished if we show that 

II (SI"",Sn _ I ) = 1 - Sn _ I' for alII = O, ... ,n. (10) 

We will now prove (10) /by /. From the expressions (4 )-(9) 
it is clear that, for a given I, the only contributions to II come 
from Bk with k<;1 + 1. From (7) it is obvious that k = ° 
contributes only to / = n. From (8) and (9) it can also be 
seen that forO<;I<n - 1 allBk with 1 <;k<;/ + 1 contribute to 

II' 
We first treat the case / = ° which by the remarks made 

above consists of the single term k = 1. On Min A ° one has 
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Now fix /, 1 <;/<;n - 1, and define for O<j<;/ (still with the 
convention So = 0) 

AIJ = {(SI"",Sn _ I )EAI/sj<sn _ I - !<;sj+ I}, 
then we have to consider contributions to II from M k, 

l<;k</ + 1. With {MknAIJ/O<j<;k - l} being a partition 
of MknA/, we have on MknAIJ, 

min (!,Sk ) - max(sn _ I -!h _ I ) 

= Sk - sn _ I +!, 
! -Sk_ P 

if k<;/ andj<;k - 2, 

if k<;/ andj = k - 1, 

if k = / + 1 andj<;k - 2, 

(11 ) 

(12) 

(13) !
Sk-Sk_I' 

1 - Sn_ P if k = / + 1 andj = k - 1. (14) 

Hence for 0<j<;1, 

which by (11 )-(14) can be computed as follows: (i) for 
j = I k only takes the value I + 1 and by (14) 

(ii) for 0<j<;1- 1 we have to consider the cases k = j + 1, 
j + 2<;k<;l, k = 1+ 1 which lead by (11), (12), and (13) to 

II/AIJ= (Sj+1 -Sn_1 +!) 

+ ± (Sk - Sk _ 1 ) + (l.. - SI) 
k=j+2 2 

= l-sn _ l • (15) 

Finally for I = n an analogous computation as in ( 15) can be 
made; however, the last term ~ - SI (with 1= n) is absent, 
but on the other hand there is an additional term arising 
from Bo which precisely equals! - sn _ I . So 

II (sw",sn _ 1 ) = 1 - sn -I' for all O<;I<;n. • 

We will now apply Lemma 2.1 to compute I/npl/2, 
where nP is the cyclic vector of a perturbed eqUilibrium 
state. Using the notation introduced in (1), the functions 

(zl,. .. ,zn ) ECn 
...... (nf (Zk,· .. ,zl) /n~ _ k (Zk + I , ... ,zn» 

for O<;k<n, are analytic on 

-! <Imzl < ... <Imzk <0, 

O<;Imzk+ 1 < ... <Imzn <!. 

Furthermore for zjER, j = t, ... ,n, we have by time transla­
tion invariance 

(nf (Zk"",Zk) /n~ _ k (Zk + 1 , ... ,zn» 

= (no/a~, (P)·· ·a~. (P)a~.+ J (P)·· 'a~n (p)nO) 

= (no/Pa~,_z, (P)"'a~n-z, (p)nO). 

Therefore by the edge of the wedge theorem6 all these analyt­
ic functions have a common analytic extension to the do­
main 
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and 

G n( UW",U n _ 1 ) == (nOI n~ (O,iul, ... ,iun _ 1 » (16) 

has an analytic extension to 0 < Re U1 < '" < Re Un _ 1 < 1, 
which is continuous and bounded on the closure of this do­
main and satisfies by (2), 

(17) 

Proposition 2.2: Using the notations (3) and (16) one 
has 

XGn(UI, .. ·,Un_ 1 ). (18) 

Proof: 

IInP II 2 = 1 + L ( - l)n i r ,,·fdSI" ·dsk 
n>1 k=O )o<s'<"'<Sk<l12 

and the series is absolutely convergent by (17). For n;;<>2 we 
can now apply Lemma 2.1 to each order, the case n = 1 
being trivial. • 

The explicit temperature dependence can be introduced 
by scaling appropriately the time parameter; an explicit ex­
pansion parameter p can also be introduced by replacing P 
by pP. By doing so ( 18) becomes 

IIn~112 = 1 + L (_p)n ( ". fdUI"'dUn 
n>1 )o<u'<'''<un<P 

where 

Gp(u1, .. ·,Un _ I ), 0<Reu1<"'<Reun _ 1 </3, 

is the analytic extension of 

(n~ I Pa?u , (P) ... a?u
n 

_ 1 (P) n~). 

(19) 

(20) 

Proposition 2.2 will be used to approach the ground 
state as a limit of temperature states for /3 ...... 00. If the func­
tions G p (u1"",u n _ 1 ) are suitable, formula (19) can be in­
terpreted as the grand-canonical partition function of a one­
dimensional classical system of size /3 and so the low 
temperature limit of the quantum system corresponds to an 
infinite volume limit of an associated classical system. Not 
all quantum systems will allow for such an interpretation; 
indeed a minimal requirement is that the G p should be posi­
tive. We will now explicitly carry out this program for the 
spin-boson model. 

III. A CLASSICAL PARTICLE MODEL FOR THE GROUND 
STATE OF THE SPIN-BOSON MODEL 

We first introduce the spin-boson model that describes a 
two-level system interacting with a scalar Bose field. The 
formal Hamiltonian H is given by9.10 
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H = L dk E(k)ata k + L dk ..1(k) (ak + at)cr + peT, 

(21) 

where ak' at are boson annihilation and creation operators 
and (eT,er,cr) are the Pauli spin matrices. The parameters 
p, E, A will be assumed to satisfy the following properties: 
PElR; E: lR -> lR + is piecewise continuous and V c > 0 and 
V/3>O, 

r dk_l_< 00; 

)Ik I>c eP£ - 1 
(22) 

A: lR ...... lR is measurable and satisfies 

i ..12 
and dk-< 00. 

R E 

The W*-dynamicalsystem (JI, n~,a?) corresponding 
to the unperturbed Hamiltonian (p = 0) will be defined on 
the Gel'fand-Naimark-Segal (GNS) representation of a 
state (llp on an appropriate C * algebra. For more details on 
this contruction and for a proof of the uniqueness of the 
equilibrium state we refer to Ref. 9. 

We consider the C * algebra .91 ® M2, where M2 are the 
complex 2 X 2 matrices and where .# is the canonical com­
mutation relation (CCR) algebra generated by the Weyl op­
erators 

satisfying 

W(tfo) We¢') = exp - i(7(tfo,¢') W(tfo + If), 
W(tfo)* = W( - tfo), (7(tfo,¢') = Im(tfol¢'), 

where 

(tfol¢') = L dk"(P¢'. 

(23) 

Writing the algebra .91 ® M2 as M2 (.#) we represent in the 
basis of 1(;2 that diagonalizes (7Z the equilibrium state (ll~ as 

o 1 ((llp, + 0) (llp = - (24) 
2 0 (llp,_' 

where (llp, ± are quasifree states of.# given by 

(llp,± (W(tfo)) 

= exp{ ± i Im(2i..1 IEltfo) - ~(tfolcoth(/3d2)tfo)}. 
(25) 

In the GNS representation of (M2(.#),(ll~) we can identify 
M2(.#) with its representation because M2(.#) is simple. 
Then J( is M2 (.91) II and 

(ll~ (x) = (n~lxn~), xEM2(.9I). 

Finally, setting (7± = ~«7x ± ier), the unperturbed dynam­
ics {a?ltElR} is a strongly continuous group of automor­
phisms of JI determined by the following relations: 

a?«7±) = (7± W( ± (2lA IE) (1 - eiU"»), 

a?«7Z) = (7z, 

(26) 

(27) 

a?( W(tfo») = exp{i(7z Im(2i..1 lEI (1 - eil£)tfo)} W(eil£tfo)· 
(28) 
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It can be checked that .n~ is a cyclic and separating vector for 
1 and that {a?lteR} is the modular automorphism group 
corresponding to n~. We will now apply the perturbation 
theory for equilibrium states of Sec. II for a perturbation 
P = /-lux. 

Proof: We start by computing 

Proposition 3.1: The functions G p defined in (16) and 
(20) are given by 

and then obtain G p by analytic extension and application of 
time translation invariance. 

Gp(UI""'Un _ l ) =0, ifnisodd, We first note that (j)~ is diagonal in the basis of (;2 which 
diagonalizes if; furthermore the automorphism G~n(UI"",U2n_l) = expB~n(0,UI, ... ,U2n_I)' n = 1,2, ... , 

where for O.;;;;s I';;;; ... ';;;;s2n ';;;;/3, 

B ~n(SI, •.. ,s2n) 

= 8 dk- £.. (_1)),+h 

y ..... u "yu z 

i A,2 ~ .. 

R C I.;J, <j,<2n 

X sinh(/3 - Sj, + Sj,) (E/Z»)sinh(sj, - Sj,) (El2») . 

sinh (/3E12 ) 

of 1 commutes with {a?lteR} and maps U
X into _ u X

; 

therefore F n vanishes for n odd. 

(29) 
We must now compute F2n. As U X = u+ + u-, we ob­

tain by (26) that 

Observe now that (j)~ is invariant under the automorphism 

of1. Hence 

- (II~ { . I (~( 1 - iI2l _ IE) I ~(1 - it2jE») W(2iA ( iI2/' _ iI2)_ IE»)}) - A 2n(t t) - (j}P. + exp I m e e e e - exp I"", 2n , 
j= 1 E E E 

(30) 

whereby (Z3) and (25), 

. ~ I (2iA (il2l,E il2l, - IE) 12iA (iI2},E il2l - IE») + . ~ I (U I U (il2jE il2l - IE») -I £.. m - e -e - e -e' I£.. m - - e -e 
1.;J, <j,<n E E j= 1 E E 

1 ~ ~ (U (iI2},E iI2), _ IE) I th( /3E ) U (iI2),E il2l, _IE») -- £.. £.. - e - -e - co - - e -e 
2 j, = 1 j, = 1 E 2 E 

= - 4 f dk ~ [n coth( /3
E

) + l ( - 1)j, +j, {i sin( (tj, - tj , )E) + coth( /3E )COS( (tj, - tj , )E)}]. 
t: 2 1.;J, <h<2n 2 
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By the conditions (22) the function 

can be analytically extended to the domain 

{(zl"",z2n)10<Imzl < ... <Imz2n <P} 

and for tj = isj,j = 1, ... ,2n, 

A 2n(islt ... ,is2n ) 

= 8fdk~ L (-I)j,+j, 
C 1<.i,j,.:;2n 

X sinh«p + Sj, - sJ, )(e/2»)sinh(sJ, - Sj) (e/2») . 

sinh (PE/2) 
(31) 

In order to get G ~n we use time translation in variance and 
put in (30) SI = 0, sj+ 1 = uj,j = 1, ... ,2n - 1. • 

Propositions 2.2 and 3.1 show already that 110.;112 can be 
interpreted as the grand canonical partition function at fuga­
city 11'1 of a continuous one-dimensional classical system of 
size P at inverse temperature 1 and with Hamiltonian 

H 2n - l ( ) (3 U 1"",U2n - 1 

2n-1 

= L (- l)jV(3(uj ) 
j=1 

L (-I)j, +}, V(3 (uj, - uj ,), 
1 <.i, <j,.:;2n - 1 

where 

(32) 

Vp(U) = 81 dk~ sinh«p- u)(e/2»)sinh(uE/2) . 
R C sinh (Pe/2) 

(33) 

It is possible to translate this classical "particle" model to an 
Ising model on R. Such a model was obtained in Ref. 4 by a 
path integral representation of the partition function of the 
full spin-boson model. 

IV. THE ISING MODEL OVER R 

The configuration space 0. L of a continuous Ising model 
on the interval [O,L) is the space of all functions 

XE[O,M) .... S(x)E{ - 1,l} 

that are continuous from the right and take the value 1 at 
x = O. The a priori measure on this space is determined by 
the jump process with transition time 1/ {). The jump process 
is a Markov process defined by the transition probability 

P(S(X) = IIS(O) = 1) =!(1 + e- 6x
). 

On the configuration space of the Ising model this process 
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induces up to normalization a unique measure v n on the 
configurations with exactly n jumps at the points 
O<UI < ... <Un <L, 

(34) 

We will now consider Hamiltonians of the following type: 

HL (S) = iL 
ds 1L dt UL (t - s)S(s)S(t) (35) 

and compute their partition function at inverse 
temperature 1 

where nt is the space of configurations consisting of the 
paths with an even number of jumps and where v is the (un­
normalized) measure equal to V 2n on the paths with exactly 
n jumps. We establish now the connection between such 
models and the classical models described in Sec. III. 

Proposition 4.1: Let tEl - L,Ll -GL (t)ER be twice 
continuously differentiable such that 

GL(t) = GL ( - t), 

GL (L - t) = Gdt), tE[O,L], 

GL(O) = 0, 

then 

Z(L,GZ) 

= i: {)2n f ... f du l " ·du2n 
n=O )o<u 1 <···<.U2t1<.L 

xexp{-8 L (-I)j,+J,Gd Uj,-Uj ,)}' 

I <.i. <j2<2n 

(37) 

Proof; By (33)-(35) we have 

Z(L,G Z) = i: {)2n f ... f du l " 'du2n 
n=O )o<u1""<U2n<L 

where U = (u 1, ... ,U2n ) and where Su is the configuration 

Su(x) = -1, U2k_I<'X<U2k , k= 1, ... ,n, 

= + 1, elsewhere. 

We now compute HL (Su) taking into account the conven­
tion Uo = 0 and U2n + 1 = L. Let I j , 0<j<,2n be the interval 
[ U 2jtU 2j+ 1 ) and let X I

j 
be the characteristic function of Ij , 

then 

and so 
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HdSu) = (L ds (L dtG£(t-s)~ .~ (-1)j,+j'Xl
j
,(S)X\(t) 

1 1 h=Oh=O 

2n 2n 
= I I (- 1)j, +j,{ - G L (Uj, + 1 - Uj, + 1) + G L (Uj, + 1 - Uj,) + G L (Uj, - Uj , + 1) - G L (Uj, - Uj,)} 

j, =OJ, =0 

2n 2n 2n + 1 2n 
= -4 I I (_l)j,HGL(Uj, - Uj,) + I (-l)jGL(L - Uj ) + I (-1)jGL (L - U) 

j, = 1 j, = 1 j = 1 j = 1 

2n 2n 2n + 1 

+ I ( - 1)jGL (L - Uj ) - I ( - 1) jGd u) - I (- 1)jGd Uj ) 
j=O j=1 j=1 

~ ~ 2n+l 
+ I (-I)jGL (L - Uj ) - I (-1) jGd Uj ) - I (-I) jGd Uj ) 

j=1 j=1 j=1 

~ ~ ~ 

+ I (- l)jGL (L - Uj ) - I (-1)jGL (uj ) - I (- l) jGd u) 
j=1 j=O j=1 

= - 8 I ( - 1)j, HGL (Uj, - Uj,), 
1 <.i, <j,<2n 

where we have used the symmetry properties of GL · • 

, . 
and wIth {j = fl. 

The symmetry properties of GL are satisfied by the 
choice 

The KMS property of the equilibrium state (J)~ of the origi­
nal unperturbed spin-boson model ensures that G p satisfies 

It is now clear by Proposition 4.1 that the classical model of 
Sec. III is equivalent to a continuous Ising model of size 
[O,m with interaction potential 

1 d 2 

Up (t) = - - Vp (t) 
8 dt 2 

- -- dkA. 
_ 11 2{e-Et+e-ECP-t)} 

2 R l_e- PE 
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The derivation of the regularized chiral Jacobian using the zeta function 
method 
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Using the zeta function method, a general formula for the regularized chiral Jacobian to 
theories including non-Hermitian Dirac operators g defined in arbitrary even-dimensional 
Euclidean space is derived. The agreement of this formula with the results obtained in the 
differential geometric approach is also clarified. 

I. INTRODUCTION 

Since Fujikawa made an important observation that the 
path integral measure is not invariant under chiral transfor­
mation,l it has been clear that the associated Jacobian factor 
is responsible for the anomalous term in the corresponding 
Ward-Takahashi identities in the quantum field theory of 
the path integral formalism. Meanwhile, the importance of a 
suitable choice of the regularization scheme was also noticed 
by many authors. One of the regularization methods that 
proved to be useful is the ;-function method2

•
3 based on tech­

niques developed by Seeley from his definition of the com­
plex power of pseudodifferential operators,4 and examples in 
some special cases and low dimensions have been worked out 
in Refs. 5 and 6. 

In this paper, by using the ;-function method described 
in Refs. 2 and 3, the derivation of an explicit formula for the 
chiral Jacobian in arbitrary even-dimensional Euclidean 
space-time is made, and the emphasis of the discussion is laid 
on the coincidence between this formula and the results of 
anomalies in the differential geometric approach (see, for 
example, Refs. 7-9). 

The Dirac operator fP considered in the generating 
function for the fermion including Y2n + 1 coupling defined 
in 2n-dimensional Euclidean space is 

fP = i(1l + t + .AY2n + I ) 

= iyl' (al' + VI' + AI' Y2n + 1 ) (1.1 ) 

with Clifford algebra {YI',Yv} = 20l'v' and Y2n+ I 

= rYI .. 'Y2n' where the anti-Hermitian background fields 
VI' or AI' take the value in the Lie algebra of some gauge 
group. Under an infinitesimal chiral transformation 
n = 1 + f3Y2" + I specified by f3(x), which also may be Lie 
algebra valued, the chiral Jacobian, which we derived in this 
paper, can be expressed as 

a) On leave of absence from Physics Department. Modern Physics Institute. 
Fudan University. Shanghai. China. 

- log J = 2 f d 2nx 
(41T)"n! 

xtr{f3Y2n + I mto B(m + l,n + 1) 

X [_1_ a2m L QI, QI'] } 
(2m)! au2m 

I, + I, = m + " + - u = 0 ' 

where 

and 

Q ± = F;vO'l'v ± F~vO'l'v + 2u.AY2n+ I' 

F;v =al'vv -avvl' + [VI',Vv ] + [AI'.A v ], 

F~v =al'Av -avAI' + [AI"Vv ] + [VI'.Av]' 

( 1.2) 

(1.3) 

( 1.4a) 

(l.4b) 

B(m + 1,n + 1) = m!n!/(m + n + 1)!, O'I'V = HYI"Yv]' 

( 1.5) 

In Sec. II, the ;-function regularization scheme for eval­
uating the chiral Jacobian is briefly reviewed. In Sec. III, 
some simplification is made for Seeley's formula of kernel 
Ko(x,x) in the case of the Dirac operator. Section IV is the 
detail derivation ofthe formula ( 1.2). The applications and 
discussions ofthis formula are made in Sec. V. 

II. THE ~-FUNCTION METHOD 

According to the description in Refs. 2 and 3 and the 
results of Seeley,4 let A be an elliptic invertible operator of 
order m > 0, defined on some compact manifold M without 
boundary of dimension d; then the complex power of opera­
tor A is defined as 

AS = _1_. r A S(A./ _ A) -I dA, 
2m Jr (2.1 ) 

where r is a curve beginning at 00, passing along the ray of 
minimal growth 10 to a small circle about the origin, then 
clockwise about the circle, and back to 00 along the ray. The 
generalized; function formed from the eigenvalues Aj of A is 
~(s.A) = ~jA j- s. DenotingK(x,y,O) as the kernel of opera­
tor 0, one can write 
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;(s,A) = fM df-lx tr K - S (x,x,A) (2.2) 

with Ks (x,x,A) = K(x,x,A S). 3 Seeley's results show that the 
series :I·A .- S converges only for Re s > d / m, and can be ana­
lyticall; :xtended to a meromorphic function of s in the 
whole complex plane; in particular, it is regular at s = 0.4 

Since the derivation of the ; function at s = 0 is formally 
equal to -:I. log A.., one defines the regularized determi-

) ) l' nant of the operator to be exp ( - d; Ids) Is = o' In the app 1-

cation of this method to the path integral approach of fer­
mions in the presence of background fields, the generating 
function is regularized from the beginning, 

Zreg = f D¢ D¢' exp( - f dx ¢ 9 ¢' ) 

= det 9 == exp - . { 
d;(S,fP)} 

ds s=o 
(2.3) 

If the Dirac operator 9 is invertible, this yields a natural 
definition for Jacobian J associated with a fermion transfor­
mation ¢' = O¢", ¢ = ¢'O, 

J- I = det(O fPO)/det 9. (2.4) 

In the case of the infinitesimal chiral transformation 
o = 1 + fly d + I , one can apply the differentiability result of 
the; function3 and obtain 

10gJ= -2 {.!!... [sTr(9- sYd+lfl)]} . (2.5) 
ds $=0 

This yields 

J = exp{ - 2 id df-l tr(Yd+ IflKo(x,x,9))} . (2.6) 

Thus we can evaluate the chiral Jacobian by use of Seeley's 
formula for Ko(x,x,9 ),4 

Ko(x,x9) =~ r dsi"" b_I_d(x,s,iu)du 
(21T)d)lsl=1 0 

and the relation of Seeley's coefficients bi's becomes 

b_l(al -A) =J, 

=0 (1)0). 

(2.7) 

(2.8) 

Here u( fP) = ao + a I is the symbol of the Dirac operator, 
a = (al, ... ,ad) is a multi-index, lal = :I~ = I a/J is of the 
order of a, 

d ( a )al' d (_ ia )al' (as)a= II - , D~= II - . 
1'=1 as/J 1'=1 aX/J 

(2.9) 

For noninvertible Dirac operator 9, one introduces the 
definition 

det'9 = lim det(fP + aJ)laN
• 

a_O+ 

It has been proved thatdet'9 = det(fP + P ker ), whereNis 
the dimension of the null set of 9 , P ker is the projection onto 
the null set of 9, and a similar treatment to that of the 
invertible leads to formula (2.6)Y 
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III. THE KERNEL OF DIRAC OPERATOR K(x,x,.@) 

The direct evaluation ofthe chiral Jacobian based on the 
relations of Seeley'S coefficients (2.8) appears rather com­
plicated and tedious when the dimension of the manifold M 
is more than 2. But, in the case of the Dirac operator, the 
principle symbol 0 I = t is independent of x, the relation of 
b's (2.8) can be greatly simplified. 

Proposition: If the symbol of the Dirac operator defined 
in a D-dimensional manifold M without boundary is 
u(9) = al + ao, in which al = - t, 0 0 = 0o(x), then 

b_ 1 = ( - t - Al)-I, (3.1) 

b_ I_ 1 = {[ - b_ l ( - Dx + ao) Jlb_I}(O) (/>0), 
(3.2) 

where Dx = Y/J ( - ia lax/J ); {F(Dx ) } (i) denotes only the 
terms in F(D x ) with homogeneous degree i in Dx being pre­
served. 

One obtains (3.1) from the first relation of (2.8). In 
order to prove (3.2) satisfies the second relation of (2.8), 
one should notice the following derivative property of b -I: 

(3.3) 

. a D~ao 
(b-IDx)lb_IOO=la~/sb_l~ (i~0), (3.4) 

{[b_ l( -Dx; +ao)]ib_J(i)ao 

(3.5) 

Hence 

b_ I_ 1 =([ -b_ l( -Dx; +ao)Jlb_I}(O) 

I-I 

= - L {[ -b_ l ( -Dx +oo)]/-lb_ I}( ilaoh_1> 
;=0 

(3.6) 

with the aid of (3.5), one can write 

I-I Daao = - '} a~ b_ I + 1al _x_,_; 
lar=O a. 

(3.7) 

this isjust the second relation in (2.8). 
Using expression (3.2), Seeley's formula for 

Ko(x,x,9) in (2.7) can be written as 
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Ko(x,x,fP) = ~ ( ds 
(21T)d Jls 1= 1 

X So"" [-b_ l ( -Dx +ao)]db_1du, 

(3.8) 

with b_ 1 = ( - t - iU)-I. We thus come to the following 
theorem. 

Theorem: If the symbol of a Dirac operator defined in 
the d-dimensional manifold without boundary is u( fP ) 
= - t + ao(x), then the kernel Ko(x,x,fP) can be ex­

pressed as 

i [ad i Ko(x,x,fP) = - - ds 
(21T)dd! a'T/d Is 1= 1 

X ('" du(-t-iu-D~+ao)-I] , Jo ~=o 
(3.9) 

in which D ~ = 'T/Dx, ao = 'T/ao, 'T/ is a real parameter. 

IV. THE EVALUATION OF THE CHIRAL JACOBIAN 

In the case of the Dirac operator as shown in ( 1.1 ), we 
compactify lR2n to s2n by stereographic projection. Denot­
ing L = -Dx + ao = rr + iAY2n + I' L I = 'T/L, one can 
write 

( - t + L I _ iu) - 1 

= ( - t + L 't + iu)[ ( - t + L I - iu) 

X( -t+L't +iU)]-1 

= ( - t + L 't + iu Hs 2 + u2 
_ R) - I 

=(-t+L't+iu) f (S2+ U2)-(l+I)R I, (4.1) 
1=0 

in which R = R(x,s,u,'T/) is defined as 

R(x,s,u,'T/) = - L 'L 't + iu(L 't - L ') + elL 't + Lit) 

= 'T/2(F:v - F~vY2n+ 1 )Up.v 

+2u'T/AY2n+1 +2'T/Sp.Lt +Rc' (4.2) 

Here Rc is the terms with y's contracted and F :v' F~v' and 
O'p.v are shown in (1.4) and (1.5). The kernel Ko(x,x,fP) 
shown in (3.9) can be written as 

3 

Ko(x,x,fP) = L Kg) (x,x,fP ) 
;=1 

with 

Cl r,;, -i i K 0' (x,x,.::v ) = --2- ds 
(21T) nisi = 1 

xL" du b (!} 1- 2n (x,S,iu) , (4.3) 

in which 
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b ~\ _ 2n (x,S,iu) 

b (':)1 _ 2n (x,S,iu) 

{
I a2n 

= (2n)! a'T/2n 

xLto Llt(s2+u2)-(n+m+I)Rn+m]L,=0' 

( 4.4b) 

b ~)I _ 2n (x,s,iu) 

{
I a2n 

= (2n)! a'T/2n 

X Lto ( -t)(S2 + u2) - (n+ m+ I)R n+ m ]L,=o' 
(4.4c) 

other terms related with the expansion of (4.1) vanished 
under (a 2n/a'T/2n ) 11) =0' 

Now, in evaluating the chiral Jacobian as shown in 
(2.6), further simplification can be made under the combi­
nation oftr f3Y2n + 1 (*), thesintegral, and (a2n/a'T/2n ) I~ = o· 

Ifwe denote b ~il as the terms in b _ 1 _ 2n that have no contri­
bution under this combined operation, we can write (4.4a), 
(4.4b), and (4.4c) as 

n iu2m+ I 

b ~\ - 2n (x,s,iu) = L 2 2 I 
m=O (s + U )n+m+ 

X [_1_ a
2m 

Qn+m] +b(\) 
(2m)! au2m - u=O c' 

(4.5a) 

b c.:)1-2n (x,s,iu) 
n u2m + I 

= m~o (s2+u2)n+m+l 

x[ 1 a
2m 

LtQn+m] +b(2) 
(2m + 1)! au2m + 1 - u = 0 c' 

(4.5b) 

b ~\ _ 2n (x,S,iu) 

n u2m + 1 ( - 25p.) [ 1 a 2m 

= m~o (S2 + u2 )n+m+ 1 (2m + I)! au2m + 1 

X I, + 12~m+ n Q\ L tQI=- L=o + b ~3), 
(4.5c) 
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where Q ± is shown in (1.3). In deriving these expressions, 
we have noticed the following two facts: (a) upon using the 
properties of Dirac Y matrices, the terms survived under 
tr /3Y2m+ 1 (*) must be of the form tr /3Y2n+ 1 (YI'I .. ·YI'2) 
with 11-1 i=11-2 i= ••• =1=/.L2n; (b) upon using the symmetric 
property of integration, all the terms without power of Sl' 
can be discarded. For example, in deriving (4.5a), the terms 
with one or more factor of S,.L,. of Rc in the expansion of 
R n + m do not contribute to tr /3y 2n + 1 K b I) (x,x,ii1 ). SO 
S,.L,. and Rc in the expression of R in (4.2) can be deleted 
and R(x,S,iu,1J = 1) = Q_(x,u) + .... Now, the terms 
with factor 1J2n in the expansion of Rn + m are accompanied 
with a factor u2m , thus we can make the replacement of 
[a 2n 1(2n)! a1J2n] 171 =0 with [a 2m 1(2m)! au2m ] lu=o as 
shown in (4.5a). In deriving (4.5b),S,.L,. andRe inR can 
also be deleted, the terms with the factor 1J2n in the expan­
sion of L t R n + m are now accompanied with u2m + 1 • From 
( 4.4c) to (4. 5c), we first collect the terms with an even pow­
er of s,. in the expansion of - t(R) n + m that contribute to 
tr /3Y2n + 1 K 63

) as 

I ( - t)R I, (2S,.L ~t)R I, 
I, + 12=m+ n 

I ( - 2s;')R I'L 'tR I" (4.6) 
I, + Iz=m+n 

where 
-. 2 Y A 
R(X,S,IU,1J) = 1J (F,." + F ,,"Y2n+ 1 )0'1''' 

+ 2U1JAY2n+ 1 + ... , 
and 

R(1J = 1) = Q+ + ... , 
then make a similar replacement as above, and we come to 
the result of ( 4. 5c). 

After integrating over sand u, the non vanishing part of 
K 6i)(X,x,ii1) under tr /3Y2" + 1 (*) becomes, respectively, 

1 00 I B(m + l,n + l)(m + n + 1) 
(41T)"n! m=O 

X [_1_ a
2m 

Q,,--+m(u)] , 
(2m)! au2m 

u =0 

_ i 00 

I B(m + l,n + 1) (m + n + 1) 
(41T)nn! m=O 

(4.7a) 

(4.7b) 

(4.7c) 

On the other hand, in the sense of neglecting the terms 
with Y matrices contracted, one can easily check 

iiQ_ = Q+ ut - iAY2n + 1 ) 

2297 

- ut - iAY2n+ 1 )Q_ + iu(Q+ - Q_) + ... ; 
(4.8) 
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this leads to 

L tQI_ = QI+ ut - iAY2n+ I) 

+ iU(QI+ - QI_ ) + .... (4.9) 

With the aid of the above relation, the summation over 
(4.7a), (4.7b), and (4.7c) can be simplified, the final result 
oftr /3Y2n + 1 Ko(x,x,ii1) can be written as 

tr /3Y2n + I Ko(x,x,ii1) 

We thus derive the general expression of the chiral Jacobian 
as shown in (1.2). 

v. APPLICATIONS AND DISCUSSIONS 

( 1) An example. In practical applications, the formula 
( 1.2) appears rather convenient. As an exmaple, one can 
easily obtain the Bardeen anomalyl2 in four-dimensional 
Euclidean space with the Dirac operator shown in (1.1 ) as 

-logJ =-I-fd 4
X 

( 41T)2 

X tr {j3€,."pu [ (F :vF::a + jF~vF:U) ] 
- ~(F :vApAu + A,.F ~Au + A,.AvF;u) 

(5.1) 

Here (F ::vF;u + jF~vF:U) is simply read out from the 
terms in tr /3YsB(1,3)(Q2+ + Q+Q_ + Q~ ) with factor 
uo, - ~(F ::"ApAu + A,.F ~Au + A,.AvF::a) is read out 
fromthetermsintr{j3YsB(2,3)(Q3+ + Q2+ Q_ + Q+Q~ 
+ Q 3_ )} with factor u2

, while JiA,.AvApAu is from the 
terms in tr{j3YsB(3,3)(Q~ + Q3+ Q_ + Q2+ Q2_ 
+ Q+Q 3

_ + Q~ )} with factor u4
• 

(2) The case of A = O. In this case, the Dirac operator 
ii1 = iD + it is Hermitian, and Q ± = F::v is independent 
of z, and the formula (1.2) yields 

-logJ = 2 fd2nx 
(41T)n(n + 1)! 

xtr{j3(x)€ .. v ..... v F" v ., ·F .. v }; (5.2) 
,-, I r-n n r-I 1 r-n " 

this result coincides with that based on Fujikawa's regular­
ization scheme. I 

(3) The case of chiral gauge coupling. The Dirac opera­
tor in the case of chiral gauge coupling is 
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~ = ilJ + iJ ( + )! (1 + Y2n + I ). (5.3) 

Since A = V = I 4 ( +) Q becomes 
~ ~ ~.~ , ± 

Q -F(+) pA + j(+) 
± - ~" u~" ± U41 Y2n+1 

A 

[P± =~(l +Y2n+I)] ' (5.4) 

where 

F( +) = a A (+) - a A (+) + [A (+),A (+)] 
J.l.V J.' v v P. I' v . 

In the sense of preserving terms with 2n Y matrices, we can 
replace 

L Q\ Q/~ 
I, + 12 = m + n 

(1- Q+)-I(1- Q_)-I = (1-F~:)u~" + u2j(+)j(+»-1 

by (1 - Q+) -I (1 - Q) -I. By using the formulas of chiral 
expansions 13 

(I-F~"u~yP+ +jY2n+1 )-1 
A A 

=p_ + {1-j)(I-F~"u~y +jj)-Ijp_ 

+ (1-j)(I-F~yu~" +jj)-Ip+, (5.5a) 
A j -I 

(1 - F~"u~"P - + 41Y2n + I) 

=P+ +P+j(l-F~vu~" +jj)-I(1-j) 

+P_(1-F~"u~" +jj)-I(1_j), (5.5b) 

we can expand (l - Q +) -I (l - Q _ ) -\ as 

- u2j (+)( 1 - F( + )u + u2j (+)j (+» -Ij (+)( 1 - F( +)u + u2j ( +)j (+»-1 
pv pv ~v ~v 

- u2 ( 1 - F1: )u~" + u2j (+)j (+» -Ij (+)( 1 - F1: )u~" + u2j (+)j (+» -Ij (+) 

+ (terms with odd number of y's). (5.6) 

Thus tr PY2n + 1 ( ••• ) in (4.10) becomes 

{ 

n 1 a2m 
[ tr PY L B(m + 1 n + 1) ---- (F( +)u - u2j (+)j (+»n 

2n+1 m=O ' (2m)! au2m ~" ~" 
n-I 

- u2 ~ j (+)(F( +)u - u2j (+)j (+»/j (+ )(F( +)u - u2j (+)j (+»n -I-I 
~ J.l.V pv p.v Jl.V 

1=0 

- u2 ~t~ (F~: )u~v - u2j (+)j (+»/j (+)(F~:)u~v - u2j (+)j (+»n-I-Ij lL=o 
=tr{PY ildt[(ii'(+)u )n_t(l_t)n~lj(+)(ii'(+)u )/j(+)(ii'(+)u ),,-1-1 

2n + I ~v ~v ~ ~v~" ~"~,, 
o 1=0 

- t{1- t) ~t~ (ii'1: )U~,,)/j (+)(tF~vu~,,)n-I-Ij (+)]} , (5.7) 

where the integral expression for the beta function, 

B(m + l,n + 1) = l' t"(1 - t)m dt, 

is used and F 1: ) is defined as 

F1:) = F~:) - (1 - t) [A ~ +),A ~ +)] . (5.8) 

Now, with the aid of the notation of the exterior differential 
form A =A~ dx~, F= ~F,uv dx~ I\dx", At = tA, Ft = dA t 

+ A;, we can express the chiral Jacobian in the case of 
gauge coupling as 

-logJ =2 1 Tr t dt{p(F~+)n 
(21Tl')"'n! Jo 

- nt( 1 - t) [A (+),P(A (+),F~ +)n - I)] )}, 

(5.9) 

or in more compact form 7 

1 i l 

- log J = 2 dt(l - t) 
(21Ti)"(n - I)! 0 

XTr[Pdp(A (+),F~ + )"-1)], (5.10) 

2298 J. Math. Phys .• Vol. 29. No. 10. October 1988 

in which P(AI, ... ,An ) is a symmetrized product. 
(4) Gauge anomalies. The ~-function regularization 

scheme can also be applied to derive the gauge anomaly. 
Rewrite the Dirac operator in gauge coupling as 
~ = (i1J + ij (+»P + + ilJ_P _ under gauge transforma­
tion A(+)--g~I(A(+)+d)g+, g+ = exp v+(x), the 
Dirac transforms as ~ -+~(g) = ~ + o~ with 

A 

o~ = [~P +,v+]. Here v+(x) is an infinitesimal quantity 
related to some gauge group G(+). In the path integral for­
malism, the Jacobian factor is related to the following equa­
lity: 

det.@ = J det ~ (g). ( 5.11) 

Within the ~-function regularization scheme, we can express 
10gJas 

10gJ = ~'(O,~(g») - ~'(O,~). (5.12) 

By applying the ~ -function differentiability results,3 we have 
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d A 
= -- [sTr(v+P+9'-') 

ds 

- s Tr(v+P _9' -')],=0 

= - ! [s Tr(v+Y2n+ 19' -')],=0' (5.13 ) 

Compare the expression above with that of (2.5), a factor 2 
has disappeared. So we can easily obtain a formula in exteri­
or differential forms for gauge anomaly from (4.10) as 

10gJ = 1 
(217"i)n(n - I)! 

xf dt(1- t)Tr[pdP(A (+),F: + In-I)]. 

(5.14) 

(5) The chiral Jacobian in differential forms. In the 
form of chiral projection, the Dirac operator (1.1) can also 
be written as 

9' = (il + iA. (+»P + + (il + iA. (-»P _, (5.15) 

withA( ± l = V ±A. Using a similar treatment as exhibited 
in the case of chiral gauge coupling, the formula shown in 
( 1.2) can recast into exterior differential forms of A ( ± l as 

-log J(A (+),A H) 

where 

win (A (+),A H) = (n + I) f dtstr{2/J,Fn(t)} 

with 

- n(n + 1) f dt t(1 - 1) 

Xstr{[2p,A (+) - A H], 

A (+) -A H,Fn-I(t)} 

(5.16) 

(5.17) 

F(t) = tF+ + (1- t)F_ - t(l- t)(A (+) -A (-»2. 
(5.18 ) 

Furthermore, by solving the equation dwin = bpW2n + I un­
der condition b2w2n + I = 0 we obtain 

W2n+ I (A (+),A H) = (n + 1) f dt{A (+) -A H,Fn(t)}. 

(5.19) 
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This is in agreement with the result of Lott using cohomo­
logy,14 and therefore the topological invariant associated 
with the Dirac operator (5.15) must be 

[(21T)n+ I(n + 1)!] -l(tr F( + In+ 1 _ tr F( - In+ I), 

(5.20) 

it is related to the Atiyah-Singer index density in 2(n + 1)­
dimensional space. 1.5 

As indicated in our previous paper, 16 we may conclude 
that all the differential geometric objects in the approach of 
anomalies, both Abelian or non-Abelian, can be traced out 
oppositely under the properly selected regularization 
scheme in the path integral formalism. 
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The scattering transform for the Kadomtsev-Petviashvili equation (KPII) is a local 
symplectomorphism. Pulling back the Hamiltonians for the linear evolutions of scattering data 
gives Hamiltonians for the KPII hierarchy: they are values of the associated scattering data at 
distinguished points. This method yields simple proofs that KPII has infinitely many 
commuting flows and simplifies their calculation. It also provides a Plancherel-type theorem. 

I. INTRODUCTION 

Fadeev and Zakharov l
•
2 have observed that the scatter­

ing map that underlies the inverse scattering method is a 
canonical transformation to "action-angle variables" for a 
number of (1 + 1 )-dimensional nonlinear evolution equa­
tions: sine-Gordon, nonlinear Schrodinger, Korteweg-de 
Vries, and the Toda lattice. Without dwelling on the analy­
sis, they discovered the appropriate symplectic structures, 
Hamiltonian functions, and Poisson brackets for these equa­
tions. The intention in this paper is to present similar results 
for the (2 + 1 )-dimensional Kadomtsev-Petviashvili 
(KPII) equation aJ(u + a~u + u aJu) + a~u = 0, and 
other equations in its hierarchy. An application of some pre­
vious work will, in addition, describe the underlying sym­
plectic manifolds in a neighborhood of their distinguished 
point O. This analytic information will be used to prove that 
the canonical transformation is in fact a (local) symplecto. 
morphism. 

Earlier,3 we observed that certain values ofthe scatter­
ing data associated to a function u were constants of all KP­
type motions of u. In this paper we will show that these 
constants of the motion may be used as Hamiltonian func­
tionals which, together with a natural symplectic structure 
on the manifold of solutions, put the KP evolution into an 
obvious Hamiltonian form. Such a structure has been found 
for certain one-dimensional evolutions by similar means.4 

The advantages of putting the KP equation in Hamilto­
nian form are that symmetries and constants of motion may 
be very easily calculated. In particular, new quantities that 
are preserved under the KP flow may be explicitly written as 
integrals of polynomials in the potential and its derivatives 
with no more sophisticated a mathematical tool than the 
multiplication of power series. It may be of interest to con­
sider what physical meaning may be assigned to these con­
stants of the motion, as they are composed of polynomials in 
the terms of the KP equation itself. 

Results cited in this paper answer a question of Lipov­
skii5 who has independently discovered the Poisson bracket 
for the KP Hamiltonian system under the assumption that 
the scattering data satisfy certain boundedness properties. 

These results reproduce the construction of the 
Korteweg-de Vries (KdV) Hamiltonian system2 under the 
restriction dul dy = O. This implies that both dml dy = 0 
and dinldy = 0, resulting in the simplification in = m. One 
well-known but important consequence of this last equation 

is that the scattering problem for the KdV equation is self· 
adjoint, and that the recursion operator which generates the 
KdV hierarchy has m2 as an eigenfunction-it is the so­
called square-eigenfunction operator. Zakharov and Kono­
pelchenko have shown that no single recursion operator ex­
ists for the (2 + 1) - or higher-dimensional examples.6 Here, 
their obstruction is overcome by introducing an only slightly 
more complicated formula for elements of the hierarchy. 

Much of the novelty of the KPII equation develops from 
its non-self-adjoint scattering problem, and the resulting dif­
ficulty in the physical interpretation of eigenvalues. The 
method used in this paper departs from classical S-matrix 
scattering theory in that no explicit physical meaning is as­
signed to the function a. It is merely called scattering data 
for historical reasons and by analogy with the KdV and oth­
er (1 + I)-dimensional equations. It has been shown by 
Beals, Coif man, and others that the classical S matrix de­
pends upon too many variables to be in one-to-one corre· 
spondence with potentials for any example equation depend­
ing upon two or more space variables. As a consequence, 
there must be constraints upon S, which are in general non­
linear, and which it is difficult to show are preserved under 
linear evolutions. Without these constraints, the inverse map 
does not exist. Hence the classical scattering transform is not 
a symplectomorphism. It is necessary to use the "unphysi­
cal" scattering data of this paper to linearize the KP equa­
tion and write it in Hamiltonian form. 

II. KP HAMILTONIANS 

Let B = {ueL t nL 2 (]lt2) ls~ eo u(x t ,x2 )dx t = 0 a.e. 
x2 }. Then B is a closed subspace of L t nL 2. We shall be 
concerned with an open neighborhood of 0 in B: this will 
contain the integral curves of all KP-type evolutions from 
small initial conditions. 

Since B is a Banach space, we can identify it with its 
tangent spaces at each point: for all beB, TbBet.B. Also, its 
tangent bundle is trivial and may be identified as TB et.B X B. 
Hence for convenience we shall define our two-forms on 
B X Bet. (TB IB) X (TB IB),suppressingthedependenceon 
base points in TB. We shall do likewise for the (linear Ban­
ach) manifold of scattering data and its (trivial) tangent 
bundle. 

Introduce the bilinear form n: B XB .... C by 

n(u,v) = (at-tU,v) , (1) 

where 
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and 

(a,b) = f ab. 
JR' 

It is a simple exercise to show that n is both skew symmetric 
and weakly nondegenerate, and hence is a "symplectic" 
form on the linear Banach manifold B. 

Recall (see, for example, Ref. 3) that the KP evolution 
may be linearized by mapping a solution u to scattering data 
associated to the perturbed heat operator 

(2) 

After finding m = m(x,z), the solution to Lzm = um with 
m-l as Ixl- 00, the scattering data may be written as 

a(z) = f u(x)m(x,z)exp{x1(z -z) + x 2(r - .r)}dx. 
JR' 

(3) 

Then KP-type evolutions of u correspond to evolutions of a 
of the form 

a(z,t) = a(z)exp t (~(z) - ~(z») , (4) 

where~: C - C is suitably chosen. For example, the KP equa­
tion itself arises from ~(z) = z'3. 

Observe that if z is real, then 

!!.. a (z,t) = [~(z) - ~(z) ]a(z,t) = 0 . 
dt 

(5) 

Hence a (z,t) , zER, is a constant of every KP-type motion of 
U. Fixing zER, we can use a(z,t) as a Hamiltonian function 
onB: Let 

H(u) = a(z) = f u(x)m(x,z)dx. 
JR' 

(6) 

Here z - z = 0 and r - .r = 0, simplifying Eq. (3), and m 
solves Eq. (2). Notice that we can take 

m(x,z) = (l- GzMu)-ll, (7) 

where Gz is convolution with the Green's function of Lz [in 
Eq. (2)] andMu is multiplication by u(x). Such solutionsm 
are normalized, in the sense that limlxl_oo m(x,z) = 1. The 
existence and uniqueness of m in L 00 (R2) is guaranteed for u 
near 0 in B (see Ref. 3). Thus 

H(u) = f u(l-GzMu)-lldx. (8) 
JR' 

It is evident what the corresponding Hamiltonian vector 
field is. First, we calculate the gradient of H, 

(dH(u),r) =.!!.. H(u + €r) I 
d€ E=O 

X Gzr(x)m(x,z»)dx; 

then combining terms, 

= f (l-MuGz)-lr(x)m(x,z)dx; 
JR' 

and transposing, 
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(9) 

= f [(l-G;Mu)-ll]r(x)m(x,z)dx. 
JR' 

Here we make the definition 

m(x,z) = (l-G;Mu)-ll. 

This yields 

(dH(u),r) = f m(x,z)r(x)m(x,z)dx, 
JR' 

and (by the nondegeneracy of the inner product) 

( 10) 

dH(u) =m(x,z)m(x,z). (11) 

Second, we calculate the Hamiltonian vector field asso­
ciated toH, 

n(XH,r) = (dH,r) , 

XH(u) = al(m(x,z)m(x,z»). 
(12) 

These natural choices for the symplectic structure and 
for the functional have led us directly to the fundamental 
evolution as Hamilton's equation of motion: 

!!.. u = XH (u) = at!i1'i(x,z)m(x,z») . 
dt 

III. COMMUTING FLOWS 

( 13) 

Let H, K be two functionals on B. Define the Poisson 
bracket as usual: 

(14) 

Theorem: If z, ware distinct reals, and we set H(u) 
= a(z), K(u) = a(w), then {H,K} = O. 

Proof 

{H,K} = i m(x,z)m(x,z)al(m(x,w)m(x,w»)dx. 
R' 

Now 

al(m(x,w)m(x,w») =!!.. u, 
dt 

and for this fundamental evolution of u one has 

!!.. act) = [(; - w) -I - (t - w) -I ]a(t) 
dt 

as in Eq. (5). 
But also, this integral is the tangent map for the scatter­

ing transform, 

da(z) = f m(x,z) [!!.. u(x) ]m(X,Z)dX. 
dt JR' dt 

So since z is real, 

{H,K} = [(z - w) -I - (z - w) -I ]a(z) = 0 . o 
Remark: If z = w, then H = K and the antisymmetry of 

n guarantees that {H,K} = O. 
This provides a simple proof that there are infinitely 

many commuting flows: there is a different one for each 
choice of ZER. To obtain the Hamiltonian for the k th evolu­
tion in the KPII hierarchy, one takes the appropriate combi­
nation of these fundamental flows. The fundamental evolu­
tion whose Hamiltonian function is given by Hz (u) = a(z) 
can be written 
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• _ <SO a,Mk(x) 
u = a,(m(x,z)m(x,z») = I k ' 

k=' z 
where M k (x) is a moment of min and gives the k th evolution 
in the KPII hierarchy. We can exploit the smooth depen­
dence of Hz on zto pick out the k th moment. WritingXH (z) 
for the Hamiltonian vector field given by the functional 
u -+ a (z), then the k th moment is extracted by 

~~XH(~)I 
k!dzk z z=o' 

Alternatively, one can think of this as the Hamiltonian vec­
tor field corresponding to the functional 

u-+~~a(~)1 
k! dzk z z=o 

since operations in z commute with everything in sight. The 
KPII equation corresponds to k = 3. 

IV. SYMPLECTOMORPHISM 

There is also a symplectic structure on the (linear) 
manifold of scattering data that puts all KP-type evolutions 
into (linear) Hamiltonian form. 

Let C = L 2(C; dz dz). 
Define w: C XC ..... C by 

w(a,/3) = L sgn(Im z)a(z)p(z)dz dz. (15) 

Evidently w is skew-symmetric bilinear and weakly nonde­
generate. By setting A equal to mUltiplication by 
,p(z) - ,p(z), which is w skew, one has by a familiar argu­
ment (Ref. 7, p. 459) that A satisfies the following proposi­
tion. 

Proposition: A is Hamiltonian on some domain in C, and 
the equation a =Aa = [,p(z) - ,p(z)]a is the equation of 
motion for the functional HA (a) = 1 w(Aa,a). 

These Hamiltonian systems on (B,O) and (C,w) are 
related by the forward and inverse scattering maps. Denote 
these by S: B -+ C and S -': C -+ B. Then as derived in Ref. 3, 

S(u)(z) = ksgn(Imz) r u(x)m(x,z)expx'v(z)dx, JR2 

S-'(a)(x) = k' ~ r sgn(Imz)a(z)m(x,z) 
ax, Jc 

X expx'v(z)dzdz, 

(16) 

(17) 

where v(z) = (z - z, r - r)ElR2
, ZEC, and k, k I are con­

stants, k = l/21T and k / = l/2r. 
Using the relationship between u and m, or between a 

and m, it is a simple matter to compute the gradients dS(u) 
and dS -'(a), 

dS(u)(x) = k sgn(Imz)m(x,z)m(x,z)exp x'v(z), (18) 

dS -'(a)(z) = k I ~ (m(x,z)m(x,z)expx'v(z», (19) 
ax, 

wherem is defined atuby Eq. (10) andataby matS -, (a). 
Extending both 0 and w to the tangent bundles TB and TC 
in the natural way yields the following Plancherel-type re­
sult. 

Proposition: If a = S(u), then 
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O(dS -'(a) 'a,u) = cw(a,dS(u) 'u), 

where c = - k 'lk = il1T. 
Proof' 

O(dS-'(a)'a,u) 

= 1, a I-lidS -'(a)'a)(x)u(x)dx 

= 1, al-I[k/al i m(x,z)m(x,z) 

X eXPx'v(z)a(z)dZdZ]U(X)dX 

= k / i a(z) [1, m(x,z)m(x,z) 

x eXPx'v(Z)U(X)dX]dzdZ 

= - ~ r sgn(Im z)a(z)(dS( u)· u)(z)d z dz 
k Jc 

= - ~ w(a,dS(u) ·U). 
k 

Theorem: The scattering and inverse scattering maps 
are symplectomorphisms between (B,O) and (C,w). 

Proof' That Sand S -I are local isomorphisms between B 
and C follows from Ref. 3. Both SandS - , are real analytic in 
the sense of Coifman and Meyer,8 being expressible as power 
series in a functional variable. Hence they are both local 
diffeomorphisms. 

It remains to show that cw = S "'0, where c is some con­
stant, in fact the same one as above. But this follows from the 
last proposition. If uEB, p,qETuB, aEC, S,T/ETaC, and 
everything is related by a = S(u), S = dS(u) 'p, T/ 
= dS(u) 'q, then 

w(s,T/) = w(dS(u) 'p,dS(u) 'q) 

= c-10(dS -l(a)odS(u) 'p,q) = c-lO(p,q). 0 
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It is shown that under certain conditions one may associatively matrix-multiply Lie-algebra­
valued matrices with a componentwise Lie bracket. Using this, a simple algebraic constraint on 
a Lie-algebra-valued antisymmetric n X n matrix F, which in n = 4 is essentially self-duality or 
anti-self-duality, is described. Somewhat in analogy with Liouville's theorem for the Cauchy­
Riemann equations in n = 2, it is shown that, for n > 4, the constraint implies that the Lie 
subalgebra generated by the matrix elements {F/l1' } decomposes into copies ofSO(n) plus a 
few degenerate cases. The result may be relevant to the structure of the quantum 
chromodynamic vacuum. 

I. INTRODUCTION 

The results in this paper, Theorem 1 and Theorem 2, are 
purely linear algebra concerning matrix multiplication with 
a Lie bracket of matrices A,BeM(n,G) = nXn matrices 
with values in a Lie algebra G, possibly infinite dimensional. 
By matrix multiplication we-shall always mean 

A'B/l1'= [A/l a,Ba V] , 
where [ , ] denotes the Lie bracket. Namely, we will show 
that if an antisymmetric Lie-algebra-valued matrix F obeys 
W(F,F) = 0 in the expression (1.5) below, and if n> 4, 
then all higher matrix products-with-commutators F m are 
antisymmetric and obey (i.8). This result complements a 
standard product encountered in Yang-Mills gauge theory, 
namely, the exterior product-with-commutators ofLie-alge­
bra-valued forms. 

It is remarkable that the proof of this little fact will take 
several pages of tensor algebra, albeit index m~nipulations of 
a sort with which theoretical physicists are surely familiar. 
The author has not been able to come up with an abstract 
proof as more usual methods (for analyzing the decomposi­
tion of tensor products) do not seem to be applicable in a 
useful way to the case of multiplication-with-commutators. 
Therefore a few motivating remarks are perhaps in order. 
The first two have to do with the geometrical setting con­
cerning Yang-Mills connections of high symmetry, while 
the third is algebraic. These remarks are not used in the pa­
per, which will be entirely taken up with the proof of the 
above statement. 

Remark 1 (Liouville theorem for the self-duality equa­
tions): On a Riemannian manifold of dimension n, (M,g, V), 
the derivative of vector field S can always be decomposed 
under the action of O( n) as 

V/lS1'=((VS))/l1' +! V I\S/l1' + (g/l,,/n)V's, (1.1) 

where ((V S )) denotes the symmetric traceless part, 
V 1\ S = d 1\ S is the curl, and V' S is the divergence. The 
equation 

((VS)) = 0 ( 1.2) 

says that S is a conformal Killing vector. The Lie bracket of 
two conformal Killing vectors is again one; so these generate 
a group, the conformal group (di1feomorphisms of M that 

preserve g up to scale). In n = 2 on R2 with the flat metric 
and standard coordinates x, (1.2) is just the Cauchy-Rei­
mann equations for SI + tS2 as a function ofz = XI + £X2, 

af:" at- af:" 1 af:" 
((Vs))=O¢>_~_1 =_~_.2 and _~_I =-a's=-~-·2 

aX2 aXI aXI 2 aX2 

¢> s(z) analytic (for n = 2) , (1.3) 

and Liouville's theorem I asserts that 

conformal group (Rn) = O(n + 1,1) (for n>2). (1.4) 

For a general Riemannian manifold the corresponding as­
sertion is 

dim{s: ((Vs)) = O}(;dim O(n + 1,1) (for n>2). 

Similarly, let Fbe an antisymmetric Lie-algebra matrix 
[or. more generally, let F be the curvature two-form of a 
connection on a principal bundle P over M with structure 
group G, FE02(M) ® ad P G]' Such a matrix can be decom­
posed under the action of O(n) as 

=: W(F,F ) /lvafJ + [1/( n - 2) ] (gvaF!P - g/laF~ 

- g1'pF!a + g/lpF~) • (1.5) 

which defines the tensor W(F,F). where F 2=:F'F multi­
plied as a matrix (using g), and with commutators in the Lie 
algebra G. A similar decomposition is well known for the 
RiemaDIl tensor, where it proved very interesting to study 
the case when the Weyl tensor vanishes. Therefore consider 
F, antisymmetric, for which 

W(F,F) =0, ( 1.6) 

which turns out in n = 4 as essentially the self-duality or 
anti-self-duality equations 

W(F,F) = 0 ¢> [F + /lv,F _ a{3] = 0 
G= SU(2)'SU(3).U(2) 

¢> F + = 0 or F _ = 0 or Abelian 

(for n = 4) , ( 1. 7 ) 

where F ± are the self-dual and anti-self-dual parts of F. The 
proof of this is essentially given in Lemma 4.6 and Proposi­
tions 7.1 and 7.2 of Ref. 2, and also below in Eq. (2.18). For 
n > 4 our Theorem 1 (ii) asserts that higher-matrix prod-
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ucts-with-Lie-bracket Fm are also of this type, and indeed 

W(F,F) =o::::::} Fm antisymmetric, Vm~l, 

[F;,:,F~] = [1I(n - 2) 1(gyaF;:'p + m, - g/taF~.B + m, 

_g Fm,+m'+g Fm,+m,) vp Ita /tP va 

(for n >4) . ( 1.8) 

So matrix multiplication generates a ring whose elements 
F m span as a vector space the Lie algebra of the primitive 
holonomy group of F (which is by definition at each point in 
M the Lie subalgebra generated by the matrix elements 
{F/tv}C g). Theorem 2 asserts that generically, for n > 4, the 
primitive holonomy group Lie algebra is equal to 

( 1.9) 

for some integer q. Here "generically" means that the roots 
of a certain characteristic polynomial should be nondegener­
ate, typical exceptions being when F is nilpotent under ma­
trix multiplication. This is a completely local theorem and 
applies at each point in M independently. 

A study of connections whose curvature obeys con­
straints such as (1.6), i.e., differential geometric aspects 
aiming at a structure theorem (cf. that of locally symmetric 
spaces3

), has been undertaken and may be reported else­
where. Examples of W(F,F) = 0 in n = 4 are provided in 
Ref. 2 by the curvature of connections on S 4 that are minima 
of the Yang-Mills action (i.e., for which the Hessian of sec­
ond derivatives is ~o). The authors thereby show that all 
such connections for G = SU (2), SU (3), or U (2) are either 
self-dual or anti-self-dual. An example in n:>4 is provided by 
the one-quasi-instanton/anti-instanton whose O(n) sym­
metry was exploited in Ref. 4. According to our Theorem 2, 
this is the prototypical example. This is recalled in the Ap­
pendix along with an estimate of how hard it is in general for 
matrices to obey (1. 6) . 

Remark 2 (Significance for the quantum chromodyna­
mic vacuum): With regard to the physics literature, many 
authors have previously studied generalizations of the self­
duality equations5 to higher dimensions.6 These have all 
been concerned with algebraic constraints on the curvature 
such that the Yang-Mills equations or some related equa­
tion follows automatically. The present work has also been 
motivated by physics. In the background field method to the 
quantum field theory of gauge fields, 7 one wishes to mini­
mize the effective action due to all particles in the theory 
moving in background A. This effective action-not at all 
the Yang-Mills action-is impossible to evaluate in general. 
However, the minimum, the expectation value of the quan­
tized gauge field in the quantum chromodynamic (QCD) 
vacuum configuration, is expected to be highly symmetric. 
One may therefore try to guess or classify the connections 
with high symmetry and look for the vacuum connection by 
minimizing only among these. Unfortunately our Theorem 
2, which would be highly restrictive, is not directly applica­
ble to n = 4, but one may note that the pole in our proof, 
11 (n - 4), is quite reminiscent of the uv divergences of 
QCD when parametrized by dimensional regularization as, 
for example, in Ref. 4, already referred to in remark 1. What 
is needed is a structure theorem for connections of high sym-
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metry. For example, in the G = U ( 1) case, the only Poin­
care-invariant connections have F = O. 

Remark 3 [Kac-Moody algebra Sl)(n))" It is perhaps 
worth pointing out that Kac-Moody loop-group algebras 
(which were recently connected with the Yang-Mills self­
duality equationS) provide an example of Theorem l(ii). 
This is also given in the Appendix. 

Returning to the paper, in order to prove Theorem 2 we 
shall actually be forced to prove a more general theorem to 
the effect that antisymmetric matrices A, B, C obeying cer­
tain conditions including W(A, B) = 0 are closed under a 
matrix multiplication similar to that above which becomes 
commutative and associative up to certain scale terms in­
volving g/tv' This will be the main theorem, Theorem 1. For 
various reasons we refer to this algebra as "conformal" alge­
bra. 

II. ON TtiE MULTIPLICATION OF LIE-ALGEBRA­
VALUED MATRICES 

In the rest of this paper we work entirely locally, mostly 
with antisymmetric matrices with values in G, a Lie algebra 
over It, possibly infinite dimensional. In fact Theorem 1, the 
main theorem, applies whenever there is an anticommuta­
tive bilinear bracket obeying the Jacobi identity on g, a vec­
tor space over a field of suitable characteristic: 

[a,[b,c]] = [[a,b],c] + [b,[a,c]] , 

[a,b] = - [b,a], a,b,CEg. 
(2.1) 

For convenience one can also consider all matrices as two­
forms with one index raised by a metric g a symmetric posi­
tive definite matrix. There is a natural operator generating 
the action ofSO(n) preserving this g, the spin operator 

(2.2) 

which will play the role of an identity. On the space M( n,G) 
we will always denote by . or by omission the product -

.: M(n,G) ®M(n,g) -+M(n,g): A/tu ®B7V 

(2.3) 

which is of course nonassociative in general. The definitions 

A2 ®g= {AeM(n,g)IA antisymmetric}, 

C 2 ® g = {AeM(n,g) IA symmetric traceless} , 

(2.4) 

will always hold, and Tr will always denote trace in M(n) 
(never in some enveloping algebra of g), 

Tr A =A/t/t =A/tvg/tv . (2.5) 

To start with, ® means over It, but very soon, at Eq. (2.11), 
we introduce ® to mean "with commutators." 

Lemma 1 (Projections and inclusions): Corresponding to 
the essentially unique contractions provided by the metric g, 

g n g n 
A2 ®A2 

-+ M(n) -+ AO: X/tvaP f-+X/t \p=XJ43 f-+XAA , 

(2.6) 

there exist unique spin-invariant inclusions 
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I' i 

AO '-+ M(n) '-+ A2®A2 

such that gi = 1, Tr i' = 1. Indeed, explicitly, 

= (gva XpJJ - gv/JX",a + gpJJXva - g".aXyp ) 
n-2 

which implies 

AO '-+ [1] '-+ [1], 

EEl EEl 

A2 '-+ A,2(A2®A2), 

EEl EEl 

C 2 '-+ ('2(A2 ® A2), 

(2.7) 

(2.S) 

Tr 
AO +-

Tr 

0 +-

Tr 

0 +-

To see this one has only to check the symmetry properties of 
(2.6) and (2.S). The space [1] is just A ° with the inclusion 
understood to give a tensor of appropriate rank as the identi­
ty. 

Finally, with these inclusions understood, g itself is a 
projection operator. So 

wEker gl C'(A'eA') , 

ditn W = [(n - 3)/S]n(n2 + n + 2) , 

wEker gl A'(A'eA') , 

dim W = [(n - 3)/S](n - l)n(n + 2) , 

WEker g = WEElW, 

dim W= [en - 3)/4]n2 (n + 1), 

giving ("spjn" decomposition) 

A2®A2 =wEElwEElA2EE1C 2 EE1Ao. 

[In components this reads 

X",vap = w",vaP (X) + w",vaP (X) 

(2.10) 

+ (gvaXpJJ - gv/JX".a - g",uXvp + gpJJXva ) 
n-2 

_ (gvagpJJ - g",agyp )Tr X 
(n - 2)(n-1) 

and 

XpJJ = X", \.1'1 = X[pJJ I + X'(JlIJ)) + (Tr X /n )gpJJ . 

For example, X",vaP = R",vap, W = Weyl tensor, X",v 
= Ricci, W related to torsion.] 
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,p:" (gvagpJJ - g",agyp) ,p. 
n(n - 1) 

These are clearly unique given only the metric g [which is 
invariant under (2.2)]. 

With these inclusions understood g and Tr are projec­
tions g2 = g and Tr2 = Tr, and thus have eigenvalues 0 or 1. 
Thus 

M(n) = [1] EEl ker Tr = [1] EEl A2 EEl C 2 
antisym sym. traceless 

Similarly, thinking of SO ( n) ~ A 2, and of A 2 ® A 2 as tensors 
of rank 2 associated to Te SO(n) we have 

A 2 ® A 2 = [1] EEl ker Tr 

= [1] EEl A,2(A2®A2) EEl ('2(A2®A2) 
antisym [",vl-Illp I sym. traceless [",yl-I",p I 

Indeed 

g 

[I] [1 ], 

EEl EEl 
g 

A2 +- A,2(A2®A2), (2.9) 

EEl EEl 
g 

C 2 ('2(A2®A2). 

Now consider M( n,q) and define ® q, which is not asso­
ciative, by (equality for q semisimple) 

M(n,q) ® qM(n,q) 
def def 

= {A",v ® qBap} = {[A",v,BaP]} 

~(M(n) ® RM(n») ® q. (2.11 ) 

Then, with product (2.3) and A,BEA2 ® G, (2.10) becomes 
in this case -

def 

A ® qB = w(A,B) + w(A,B) + [AB] + ((AB)) + Tr AB . 

(2.12) 

Then 

[AB] = [BA], ((AB)) = - ((BA)), Tr AB = - Tr BA, 

w(A,B) = - w(B,A), w(A,B) = w(B,A) . (2.13) 

Here the projectors w: A ® qBt--+<JJ(A,B), etc., are just the 
projections onto the respective spaces in (2.10) and 
W=w + W. 

Examples (low dimensions, A,BEA2 ® q, ® q under­
stood) : 

n=2: 

A ®B = Tr AB (by inspection) , (2.14) 

i.e., WEO, WEO, [AB] EO, ((AB ))EO in (2.12). Some inter­
mediate inclusion maps are singular, which could lead to 
infinite-dimensional algebras if limits such as [AB] -0, 
n-2 are taken suitably. (Compare the conformal group in 
n = 2.) 
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.u.=.1 
A®B= [AB] +((AB))+TrAB (dim W=O). 

(2.15 ) 

~ 
A+ ®B+ = (J)(A+,B+) + [A+B+] + Tr A+B+ , 

[A+B+]eA 2+ ®(j (2.16) 

[cf. spin decomposition 

(1,0) ® (1,0) = (2,0) E9 (1,0) E9 (0,0) 

(*(J)o:Tr W· = Tr A+B+)], 

A+ ®B_ = (J(A+,B_) + ((A+B_)) (2.17) 

[cf. (l,0) ® (0,1) = (1,1) «(J-W'=((A+B_)) over-
counts)] . 

Proof: Equation (2.17) is essentially Ptoposition 7.16 of 
Ref. 2, and Eq. (2.16) is Lemma 4.6 of Ref. 2, so I shall be 
brief. One may choose a basis T' for the Lie algebra with 
structure constants fa be; then A = A aT', etc. The ordinary 
tensor product of matrices A a ® B b may then be decom­
posed according to the ordinary representation theory of 
SO(4), which was indicated below (2.16) and (2.17). (One 
can only lose representations when one antisymmetrizes 
[A,B]a=AbB'i\c') Now 

((AB))e(1,1), [AB ]e(1,O) E9 (0,1), 

W(A,B)e(2,0) E9 (0,2) E9 (1,1) . 

So comparing with (2.12) we deduce W(A+,B+)e(2,0), 
W(A+,B_) -((A+B_))e(1,l), and (0,0) and (1,0) terms 
vanishing or as included in (2.16) and (2.17). Here - de­
notes the identification through 

W~W,pv=l E W. <TaP -2 p,ua{3 v , 

which is symmetric as W is contractionless, and for which 
the contribution from (J in W is traceless in view of the sym­
metries of the totally antisymmetric tensor E. This much 
does not use the bracket; it applies for ordinary tensor prod­
ucts also. Next We(2,0) E9 (0,2) is equivalent to saying that 
WpvaP = WaPpv (as with the Weyl tensor), which, bearing 
in mind the anticommutativity, is equivalent to 
W(A+,B+) = - W(B+,A+), i.e., (J vanishes in (2.16). 
Similarly W(A+,B_) = W(B_,A+) = (J e(1,l), which 
completes the proof. 

From this we see that 

W(F,F) = 2W(F +,F _) -((F +F _)) = O{:}F + ® F _ = 0, 
(2.18) 

where we have to check that the - is nonsingular in the 
present context, i.e., W· = 0 {:} ((F +F _)) = O. One can in 
fact show by applying the Hodge operator * to (2.12) that 

((AB)) = ((A+B_)) + ((A_B+)), 

W·(A,B) = Tr AB + ((A+B_)) - ((A_B+)). 

For G = SU(2), SU(3), U(2) one may easily see that the 
right-hand side is equivalent to F + = 0 or F _ = 0, which is 
Lemma 7.2 of Ref. 2. Afinalpointinn = 4, also from (2.16) 
and (2.17), is that the product (2.13) acts naturally on qua­
ternions ® (j = (A2+ E9 AO) ® (j. 
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So far the only difference with ordinary matrix multipli­
cation has been anticommutativity in G. The real problem 
comes when we consider higher products. 

Theorem 1 ["conformal algebra," with the decomposi­
tion (2.10), (2.12) understood and with ®Qunderstood]: 
(i) IfA,B, C, [A] ® [B], [B] ® [C], [C] ® [A]e(A2 E9Ao) 
® q, with n > 3 and 

o:A ®B~[A]' [B]: (A2 E9Ao) ® q 

(2.19) 

then 

AoB - BoA = 2 Tr AoB , (2.20) 

Ao(BoC) - (AoB)oC = [A ]Tr BoC + [C] Tr AoB 
n n 

+[B] Tr CoA-TrBo(CoA), 
n-\ 

(2.21) 

and, for n > 4 only, 

[A ] ® [BoC ]e(A2 E9 A") ® q , (2.22) 

closing the algebra. 
(ii) if A, A ®AeA2 ® G [i.e., W(A,A) = 0, AeA2 ® G] 

and n > 4, then - -

A moA m' =A m.A m' =A m+m' 

=Am®A m'eA2 ®q, 'o'm,m';;;.1. (2.23) 

To prove this we shall prove a sequence oflemmas. Our 
proof will be computational since a number of basic algebra­
ic properties need to be verified. 

The Jacobi identity is 
~ 

A®(B®C) = (A®B)®C+A®(B®C), (2.24) 

where AC indicates that the Lie bracket acts between these 
two first. Otherwise the order will be denoted by brackets or 
by emphasizing the"·". 

Lemma 2: 

(i) Tr A·BC + Tr B'CA + Tr C'AB = 0, 

and for A,B,CeA2 ® (j, 

Tr A' BC = Tr A . CB. 
(ii) (associativity) ForA,B,CeA2 ®qwith 

B: W(A,C) pv == [ B aP, Wpavp (A,C) ] , 

A·BC-AB·C 

= - B:W(A,C) - B Tr AC 
(n - 2)(n-1) 

1 n 
+--(B'AC-AC'B) ---TrB·AC. 

n-2 n-2 

(2.25) 

(2.26) 

(2.27) 
Proof: (i) With~aeM(n,R), {T'} = q, directly 

L TrA'BC=Tr~a~bqc L [T',[-rP,r]]=O, 
cyclic cyclic 

since Tr is cyclically invariant and 

Tr A'BC= TrA'[BC1 = Tr A'CB 

on A2 ® G. 
(ii) Contract (2.24) to obtain (2.27) and again to ob-
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tain (2.26). This is straightforward and is left as a simple 
exercise in tensor calculus. Use (2.12) and (2.13). Ift de­
notes the twist map as in (2.30) below, the first step is 

A ®BC = (A ®B)'C - (1 ® t)(A ® C) ·B. (2.28) 

From this lemma we see that on projection to C 2, 

((A'BC)) - ((AB'C)) = - ((B:W(A,C»)) 

+ [2/(n - 2) ]((B·AC)). 

Thus under the hypotheses of the theorem now with 
[B], [C] eA 2 ® G as in the lemma, 

BoC= [B ]. [C] = [[B ] [C]] + Tr BoC (by hypothesis); 

hence 

((Ao(BoC»)) + ((Co (AoB»)) = [2/(n - 2) ]((Bo(CoA»)). 

Subtracting cyclic permutations this implies ((Ao(BoC»)) 
= 0 for n;6 3. Note in passing that 

!(AB+BA) =!([A HB] +TrA' TrB+ (TrA)'[B] 

+ (Tr B)' [A ] + B~A ) = [AoB ], 

and with 

[B ] . [A H C] - [A H C] . [B ] 

= 2 Tr Bo(AoC) + (2/n) [B ]Tr AoC 

in the lemma and with WeAl ® [C] = 0, by hypothesis, we 
obtain (2.19)-(2.21). 

To prove (2.22) withA,B,CeA2 ® q (the scale parts are 
consistently projected out) from (2.28), 

A®BC= (A®B)'C- (1®t)(A®C)'B, 

A ® [BC] = (1 ®A2)(A ®B)·C+B~C. 

Here A2= [(1 - t)/2] projects onto A2 and' denotes con­
traction of adjacent indices with [ , ]. Inserting (2.12), 

A ® [BC] = (1 ®A2)( WA ®B)'C 

+ (1 ®A2)(iAB)·C+B~C. (2.29) 

InA2 ® A2~ A2 ® A2 ® A2 
..... A2 ® A2thepossiblepositionsof 

the contraction and inclusion maps do not commute; in this 
one equation we have to write the inclusion maps explicitly. 
We find 

2(1 ® A2) (iX)' Y 

i'n 
=i(X'Y) +--TrXY 

n-2 

- TrX(iY+~Tr Y) +RX® Y, 
n-l n-2 

where R is defined in the following lemma. 
Lemma 3: Define 

R:M(n) ®M(n) ..... A 2®A2:XUT/W 

....... (XTIl<7V - X UIlTV - X TVall + X<7VT1l )/(n - 2), 

T: M(n) ®M(n) ..... M(n) ®M(n): XUTIlV ....... XIlVUT' (2.30) 

t: A2 
..... A2

: XIlV ....... X VIl ' 

Q: M(n) ®M(n) ..... A2 ®M(n): X UTIlV ..... X TIl<7V - X UIlTV ' 

so R = Q( 1 + T)1(n - 2). Then 

(i) TR = Rt® t, (2.31) 
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R:C2®C 2 ..... (i), 

R: A2®A2 ..... S2(A2®A2), R: A2 ..... 0, 

1 TrX 2 
R: I®X ....... -X+--, R: I ....... -=--I 

n n-2 n-2 

(inclusions understood); 

(" Q2 {2+Q, on A
2

®M(n), 
11) = 

- Q, on S2®M(n) 

(where S2=C 2 + Tr = symmetric matrices), 

R 2 = (~)2(1 + T)(1 + t®t) 
n-2 

( _2_)2(1 + T) +_2_R, on A2®A2, 
n-2 n-2 

(2.32) 

(2.33 ) 

(2.34) 

(2.35) 

0, on A2®S2 or S2®A2, (2.36) 

2 
---R, on S2®S2. 

n-2 
Proof: (i) By inspection and 

(gRX) a \v = (X\av - Xa \v 

-XA
VUA +Xav

A
A)/(n-2) 

and comparison with (2.6)-(2.8) =>i = nRI ® - i'Trl 
(n - 2),1 o::RI ® 1 and use (ii) for R 2. 

(ii) Q 2: XllvaP " · ....... X vaIlP - X/lQVP" · ....... XallvP - X vilaP 

Then 

R 2 = (--L)(1 + T)R 
n-2 

=--L R (1+t®t)= Q2 2(1+T)(1+t®t). 
n-2 (n-2) 

Lemma 4 (A,B,CeA 2 ® q): 

(i) WA®[BC]=W(1®A2 )(WA®C)'B 

- W(RI2)B®((AC)) 

- (R/2)WB® [AC] +B~C, 

where, from the definition, W = 1 - g. So 

W(1 ®A2)( WA ® C)'B 

= (1®A2)(WA®C)'B+!B: WA®C, 

(2.37) 

WRB ®((AC)) = RB ®((AC)) + 2[B'((AC))]/(n - 2)e7J. 
(2.38) 

(ii) {7JA®B =0 7JB®C=O 7JC®A =O} 

=> WA ® [BC] + WB® [CA] 

+ WC®[AB] =0. (2.39) 

Proof: Applying the previous lemma to (2.29) we have 

A ® [BC] = 2(1 ®A2)(WA ®B)'C+AB'C 

+ [n/(,; - 2)] Tr AB·C 

- [lI(n - 1) ](Tr AB)C + RAB® C, 
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with averaging of B~C left understood in this proof. We have 
from Lemma 2 

(a) Tr B·AC = ~ (Tr B·AC + Tr C·AB) 

= -~TrA·BC=TrC·AB= -TrAB·C 

and 

B·AC -AC·B = 2[B((AC))] + 2BTr AC + 2((B [AC ])). 

Thus Lemma 2 (ii) becomes 

(b) 
B 

AB·C=A·[BC] -!TrA·BC---­
n(n - 1) 

XTr AC - _2_[B((AC))] 
n-2 

__ 2_((B [AC])) +B: WA®C. 
n-2 

(Note here that Tr ACEA ° ® G. We could also have written 
- [lI(n - 1) ]B·Tr AC, me;ning Tr ACES2 ® G by inclu-

sion.) -
Finally, using the previous lemma, 

(c) RAB®C = -RC®AB= -RWC®[AB] -RC·[AB] -RC®((AB))-RC®TrAB 

= - RWC® [AB] - R ((C· [AB])) - R Tr C· [AB] - RC® ((AB)) - C(1ln)Tr AB 

= - RWC® [AB] + [2/(n - 2) ]((C· [AB])) - [lI(n - 2)]Tr A·BC - RC® ((AB)) - C(1ln)Tr AB. 

Then combining these results and comparing with the spin 
decomposition (2.10) we see 

(d) WA® [BC] 

= 2(1 ®A2)(WA ®B)·C -RWC® [AB] 

+ B: WA ® C - RB® ((AC)) 

- [2/(n - 2)][B((AC))], 

i.e., we obtain the lemma. We see as a check that WA ® [BC] 
is contractionless. The second part (ii) follows easily from 
(2.13) and (i) by adding cyclic permutations. 

We are now able to complete the proof of Theorem 1 (i). 
Under the conditions ofthe theorem the last lemma (i) be­
comes, with A,B,CEA 2 ® g, 
WA ® [BC] = - (R 12) WB® [AC] 

- (R 12) WC® [AB] => (i)A ® [BC] = 0, 
(2.40) 

usingLemma3(i). Writing a = [2/(n - 2)] wehave,from 
Lemma 3(ii), 

RwA ® [BC] = - a 2wB ® [AC] 

+ awA ® [BC] - a 2wC ® [AB ]. 

Inserting cyclic permutations into (2.39) we have 

lwA ® [BC] = (a2 - a)wC® [BA ] 

+ (a2 - a)wB® [CA ] + 2a2wA ® [BC]. 

So for n =1= 4 we have 

wA® [BC] + (1ln)wC® [BA] + (lIn)wB® [CA] =0 

=> (1 - lIn)wA ® [BC] = 0, 

which completes the proof of (2.22) and Theorem J(O, where 
[A],[B],[C]EA2 ® Gas used in all our lemmas. In n = 4 we 
can only conclude that (i)A ® [BC] = 0, which is true for the 
class of self-dual fields (2.16). One may be able to prove it 
only assuming as much for A ® B, B ® C, C ® A. 

To prove Theorem 1 (ii) , since all the results of Theorem 
1 (i) hold we have W(A ®A 2) = o. Now A 2EA2 ® g auto-
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maticallyby (2.13) andA·A 2E(A2 E& AO) ® G, etc. We have 
to show that the traces Tr A-A 2, etc., all-vanish. Using 
Lemma 2(i), 

def 
Tr AP-m·A m= Tr AP-m. (A.A m-I) 

= -TrA·(Am-I·AP-m) 

- Tr A m-I. (A p- m·A). 

We assume as an induction hypothesis that the result holds 
for p - 1, i.e., 

A m'·A m" =A m'+m"EA2®G, V2<,m' + m"<,p - 1 

(true for p - 1 = 2). (2.41) 

Thusfor 1 < m <p, using Lemma 2(i), 

am =Tr AP-m·A m = Tr AP-I·F+ Tr AP-m+ I.A m-I 

= a I + am _ I ... = ma I = - ap - m 

by (2.41) assumption; therefore mal = - (p-m)a l 
=> a l = O. 

Thus from Theorem 1 (i) 

AP-m.A m =AP-m+ I.A m-I ... =A PEA2®G. 

This concludes the proof of Theorem 1. 
We now investigate the case W(F,F) = o. From 

Theorem l(ii) we see that now FmFm' =Fm +m'EA2®G 
(anti-Hermitian in g) and -

[F;v,F:;~] 
= [lI(n - 2)](gvaFp,Bm+m' 

F m+m' Fm+m'+ Fm+m') (242) 
- gvfJ p.a - gp.a va gp.fJ va • • 

Theorem 2: For g finite dimensional, n > 4 and generi­
cally, 

W(F,F) = 0 
q 

=> -!!'O = primitive holonomy = .$ §Q(n)c, (2.43) 
1=1 

for some integer q. Except for singular points this integer q 
should be constant over the manifold. (This will not be prov-
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en here; cf. Ref. 9.) The decomposition is over C. 
def 

Since the Lie algebra l!o = {F/tv} ~ q is finite dimen-

sional, there exists q such that (withllk real for Fanti-Her­
mitian in q) 

Fq+ 1= IlqFq + ... + IlIF. 

III 
0 

A= . . . . . 0 . 
Ilq 

represents F acting as the ring of polynomials in F, 
F·akFk = (Aa)kFk, and has eigenvalues A. (i) and eigen­
vectors e(i) gi~en by solutions of 

o 

o 

Thus 
q 

A. q = L IlrA. r- I, 

r= I 

r q-r 

er=A. -r L IlkA.k-I=A.q-r- L Ilr+,A.,-I. 
k=1 ,=k-r=1 

Then E (i) (F) acts on E(j)(F) as 

e~i) A. (j)r = ± A. (j)rA. (i) - r( ± IlkA. (i)k - I) 
r= I k= I 

q . q A. (j) 
= ~ II. A. (/)k-Iak ~ a r- k a=--
~ ,-k ~'1 (i) , 

k=1 r=k ;'L 

for 

A.(j),t:A.(i):= ± IlkA.(i)k-lak(l-aq-k+l) 
k= I 1 - a 

2309 

_ A. (j) - A. (j)q _ a q 
+ I f A. (i)k - I = 0 

- A. (i) _ A. (j) 1 - a k~1 Ilk , 
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Define 

q 

P(t) = L Ilk tk - I. 
k=1 

Explicitly in terms of the data (Ilk) and independent ofthe 
signature of g, 

e~i)= (A.(i»-'L Ilk A. (j)k-I (nondegeneratecase), 
k=1 

{ 

r 

where A. q = p(A.) has solutions A. (i) over C. Complex 

solutions give conjugate pairs E (i), E (i) for Ilk real. 

q 

A. (j) = A. (i) : = L IlkA. (j)k - I (q - k + 1) 
k=1 

= ( q - t :JP(t) I t =,t (}) • 

(2.44) 

It remains only to normalize the generators E(i) to ob­
tain generators of§g(n). (The degenerate cases A. (i) = A. (j), 

j,t:i, E (i) = E (j) leave open a variety of exceptional spaces, 
for example, A. (i) =Ilk =0, i.e., Fq + I = 0.) 

This concludes our purely algebraic considerations. 
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APPENDIX: EXISTENCE AND SOME EXAMPLES 

( 1) The prototypical example of a W(F,F) = 0 connec­
tion is, according to Theorem 2, the one-quasi-instanton 
with curvature 

F= [4A. 2/(A. 2 + X2)2] l:; 
(Al) 

l:/tv =! [Y/t'Yv], {Y/t'Yv} = 28/tv' 
which, for n = 4, is an instanton and an anti-instanton in 
each SO(3) =SU(2)/Z2 factor. (For higher dimensions 
they still playa vital role and have been termed quasi-instan­
tons.)4 Here l: in the Clifford algebra generates rotations in 
SO(n), and the SO(n - 1) factors are picked out by the 
projection 

l: ± = [(1 ± t n12n/2] l:, 
(A2) 

r = yOyl ... yn-I, r 2 = ( _ l)nI2. 

From this it is very easy to prove that in n = 4k dimensions 
these obey the so-called generalized self-dualityJO (chira­
lity), 

A nl2 ® Cliff( Rn) 3 *l: t\ l: t\ ... t\ l: 

(A3) 

The above construction is well known for n = 4. II One may 
easily see that for n;;;.4 the quasi-instanton instead extre­
mizes the action 
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(A4) 

and that in fact there is an O(n + I) symmetry up to gauge 
transformationsY Typically, as checked for n = 8 in Ref. 
10, they are also related to topological lower bounds. 

(2) Let L ~':), m~,.denote the operators generating a 
Kac-Moody algebra SO(n) defined by the structure rela­
tions L ~':) = - L ~;) and relations of the form 

[L~,:,),L~p')] = [l/(n - 2)](gvaL~,+m,) 

_g L (m,+m,) _g L (m, +m,) 
Ita vp vp Ita 

+ gltpL ~, + m,» 

+ en (m l ,m2 ) (gvag/lfJ - gltagvp), 

where e is the central extension. From this we see that the 
L(m) fulfill all the requirements of Theorem I(i). In accor­
dance with the theorem the L (m) under the product 0 form 
an almost commutative algebra. In the present case it is clear 
that the noncommutativity is due to the presence of the cen­
tral extension e, and that the algebra is in fact associative 
because the Tr terms are proportional to the identity. This is 
central so it contributes nothing in (2.21). 

Again, our "Liouville theorem" asserts this is the proto­
typical example in the infinite-dimensional case. Namely, 
suppose instead we are given just three operator-valued ma­
trices L (0), L (I), and L (- I), obeying a relation of the general 
form above-perhaps a more complicated operator in the 
extension- and n > 4. Then define L ( ± m) = (L ( ± I» m. By 
Theorem I (ii) these are all antisymmetric operator-valued 
matrices and obey the same relation as the Kac-Moody alge­
bra above, except that the theorem does not predict anything 
about the extension term, only that such trace terms are al­
lowed by the algebra. 

(3) Finally, we give an intuitive estimate of how hard it 
is to satisfy W(F,F) = O. For Co;:: {Fltv } c q let 

dim[CO,CO] =A dim CO 

as vector spaces in G. Then the dimension of the solution 
space per dim Co- is essentially [using (2.10) with 
W(F,F) = m(F,F)] 

2310 

dim F - dim W(F,F) 
dim CO 

= n(n - I) _ (n - 3)(n - I)n(n + 2) A 
2 8 

=n(n;l)(I_A (n-3~(n+2»). 
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So the critical A above which there are no solutions is, for 
example, 

n =4, A =j; 

n = 5, A =,; 
n = 6, A =!. 

So long as A > 0 there should be a class of sparse matrices for 
which W(F,F) = 0 holds identically. For example, in n = 4 
we have seen that the class of all F;v' with self-dual and anti­
self-dual parts decoupled, leaves behind in [CO,CO] just ~ of 
the possible cases 

and is just the class for which W(F,F) = 0 in n = 4. This 
estimate shows quantitatively how W(F,F) generalizes self­
duality to higher dimensions where it involves G in a more 
detailed way. -
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A detailed study of the degenerate representations of the U ( 1 ) xU ( 1) conformal current 
algebra and field-theoretical models based on it is presented. The main peculiarity of these 
mo~els is that they contain an infinite set of fields with unfixed anomalous dimensions. Simple 
fUSion rules for these fields are found, and their four-point functions are calculated explicitly. 
The case of Thirring-like two-dimensional models is discussed in detail. 

I. INTRODUCTION 

The recent applications of the methods of the short-dis­
tance operator product expansions (OPE's) to different 
two-dimensional, field-theoretical, critical statistical and 
string models 1-12 are based on the specific properties of the 
reducible representations of the Virasoro algebra. 2 The cru­
cial property is that for each value of the central charge 
0< e< 1 and for special values of the conformal dimensions 
there exist "null vectors" in the representation space. 1,2 
Then as a consequence of the conformal invariance and the 
null vector condition, only a finite number of conformal fam­
ilies contribute to the OPE of two degenerate representations 
(giving rise to the so-called fusion rulesl).1t turns out that 
because of the fusion rules, the associative OPE algebra of 
the fields corresponding to these degenerate representations 
is closed under the usual OPE multiplication. In this way, 
for each value of 0 < e< 1 we have a finite-dimensional asso­
ciative algebra of the conformal fields, which defines a so­
called minimal model. An important property of these mod­
els is that due to the existence of null vectors, the four-point 
functions of the fields satisfy specific differential equations 
and can be found explicitly7 (the same is true in principle 
also for the n-point functions). 

In the cases where e;> I (fore = 1, ~#n2/4, n = 0,1, ... ), 
because of the absence of null vectors the infinite conformal 
symmetry is not enough to find the exact solutions of the 
corresponding models. This problem has a simple solution 
for models (with e;> 1) possessing a symmetry larger than 
the conformal one, such as the minimal models with 
N = 1,2,3 extended superconformal symmetry4.10--13 and the 
conformal current-algebra models.3

,6,9 In these cases the 
null vectors of the larger algebra of symmetry (the confor­
mal subalgebra has no null vectors for e > 1) lead to corre­
sponding new fusion rules, which in turn provide equations 
for the four-point functions.4.11

•
12 For each fixed value of 

a) On leave of absence from the Institute for Nuclear Research and Nuclear 
Energy, Bulgarian Academy of Sciences, Solif 1184, Bulgaria. 

e> 1, the corresponding minimal model (with larger symme­
try) contains only a finite set of fields whose dimensions are 
rational numbers given by Kac-type formulas. 14 

Since many of the well-known two-dimensional models 
with e;> 1 and based on the conformal current algebras such 
as the Thirring model (e = 1) or the string models (e = D, 
D = positive integer) contain fields with arbitrary (non­
quantized) anomalous dimensions, a natural question arises 
as to whether these models have all the properties of the 
minimal models, i.e., null vectors, fusion rules, and equa­
tions for four-point functions but without Kac2 quantization 
of the dimensions. The positive answer to this question is 
based on the properties of the degenerate representations of 
the U ( 1 ) .. D ® U ( 1 ) .. D chiral conformal current algebra. IS 

In this case the only new property is that we do not have a 
finite closed OPE algebra of the fields, but nevertheless, be­
cause of the existence of null vectors in the full algebra, we 
have simple fusion rules for this infinite set of primary fields I 
(ofthe full algebra), and the calculation oftheir four-point 
functions is straightforward. The main part of these results 
can be seen immediately from the "bosonization rules" for 
the representations of the U ( 1 ) .. D conformal current alge­
bra. ls 

In this paper we present a detailed study of minimal 
models based on the representations of the conformal 
U ( 1 ) xU ( 1) current algebra in two-dimensional Minkow­
ski space-time. This algebra can be written as a direct sum of 
two "one-dimensional" U (1 ) current algebras (CA's) 
(right: L n , I n ; and left: I",],,): 

[L",Lm] = (n-m)Ln+m + (clI2)n(n2 -1)15,,+m,o, 
( 1.1a) 

[L",Jm] = -mJ,,+m' (1.1b) 

[In,Jm] = nl5" + m.O, m,neZ, ( 1.1c) 

and the same for I,., 1,.. We shall study the field-theoretical 
models in the compactified Minkowski space-time M, 
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M=stxst={(Z,Z): (~) =Ct +i);tl+/t), 

5=Xt- Xo, t= _Xl -xo, (I~( = I}, 
that are invariant under local reparametrizations 
z .... w = w(z) [z .... w = w(z)] and local U(1) xU(1) gauge 
transformations. Due to the splitting of the variables z and z 
we can consider only the right counterpart of these models, 
leaving two-dimensional constructions to the last section of 
this paper. 

The reparametrizations are generated by the symmetric, 
conserved, and traceless stress-energy tensor 0pv,_a~d 
hence with two independent components 0(5) and 0(5) 
only. 

In the compact picture we have 

T(z) = - [81T/(1 - iZ)4]0[ (z - i)/1 - iz)], 

aT(z) = 0 = aT(z), 

and T(z) transforms inhomogeneously under reparametri­
zation: 

T(z) .... T(z) = (w' (z) )2T(w(z») + ~ (~ _ ~(~)2) . 
12 w' 2 w' 

( 1.2) 
The conserved currentr(x) and its dualjf(x) = EP}v (x) 
generate the U L ( 1 ) X U R ( 1) local gauge transformations, 
and in the light-cone variables we have 
(-)(-) (-) 

j (5) = jo(x) + jt (x), aj (5) = 0, 

J(z) = - [41ri/(1 - iz)2 ]j[ (z - i)/(1 - iz) ], a.r(z) = 0, 

on the unit circle. The current J(z) has anomalous gauge 
transformations, 

J(z) .... J(z) = J(z) + u'(z), (1.3 ) 
and transforms homogeneously under reparametrizations: 

J(z) .... J(z) = w'(z)J(w(z»). (1.4 ) 

According to ( 1.2 )-( 1.4 ), for infinitesimal transformations 
w(z) = z + E(Z) and u(z) = 1 + v(z) we obtain 

8" T(z) = (E(Z)a + 2E'(Z»)T(z) + c/l2Em (z), 

8J(z) = (E(Z)a + E'(Z»)J(z), 

8J(z) = v'(z). 

( 1.5) 

Equations (1.5) can be rewritten in the form of operator 
product expansions3

: 

T(Zt)T(Z2) = _c_ + ~ T(Z2) + _1_ T'(Z2) + 0(1), 
2Zt2 zr2 Z12 

( 1.6a) 
T(Zt)J(Z2) = (lIzr2)J(Z2) + (1/Zt2)J'(Z2) +0(1), 

(1.6b) 

( 1.6c) 

where the normalization of the c-number term in Eq. (1.6c) 
is due to our choice 

(J(Zt )J(Z2» = lIzr2' 
Using the standard definition of the normal product, 

:J2(z): = lim {J(Zt)J(Z2) - (J(Zt)J(Z2»}' 
Z,-Z2=Z 

in Eq. (1.6c) and taking the limit, we get the well-known 
Sugawara formula 
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T(z) = ~ :J2(z): . ( 1.7) 

Equations ( 1.6), written in terms of the Laurent coefficients 
of the fields T(z) and J(z), 

" Ln T(z) = ~-, 
neZZn + 2 

" I n 
J(z) = ~-, 

neZzn+ t 

Ln = f T(z)zn+ t dz, 

I n = f J(z)z" dz, 
( 1.8) 

take the form (1.1) of the U ( 1) conformal current algebra. 
The Sugawara formula for the Laurent coefficients Ln , I n , 

Ln =~( r + r)J-kJn+ k, (1.9) 
2 k> - n k>t 

demonstrates that the Virasoro algebra belongs to the envel­
oping algebra of the U ( 1) current algebra. 

The main building blocks in the construction of the min­
imal models invariant under transformations of the algebra 
( 1.1) are the so-called primary fields. t They transform ho­
mogeneously under reparametrizations and local U ( 1 ) 
gauge transformations, 

8e¢Jt.,q(z) = (E(Z)a + aE'(Z»)tPt.,q (z), 

8v tPt.,q (z) = - qv(z)tPt.,q (z), 

or, equivalently, in terms of Ln and I n, 

[Ln,tPt.,q (z)] = (zn+ ta + (n + l)azn)tPt.,q (z), 

[In,tPt.,q(z)] = - qz"tPt.,q(z), neZ, 

( 1.10) 

( l.l1a) 

(1.11b) 

where each primary field tPt.,q is completely determined by 
its dimension a and by its U( 1) charge q for fixed c. 

The Hermitian conjugate field tP!,q (z) has a charge op­
posite to tPt.,q (z); so we have 

(In,tP!,q (z)] = qzntP!.q (z), neZ. (1.11c) 

We shall use also the following more compact form of these 
commutation relations: 

[T(-)(z),tP(z,)]=(_I_~+ a 2)tP(z'), 
z - z' az' (z - z') 

[J( - ),tP(z')] = - [q/(z - z') ]tP(z'), (1.12) 

where 

and 

00 L 
T(-)(z) = r _n 

n=ozn+2 

The properties of both the primary states t [correspond­
ing to the primary fields (1.10)] and the null vectors pre­
sented in the next section are the basic tool in our examina­
tion of the U ( 1) conformal current-algebra fusion rules. 
These rules determine the structure of the conformal field 
OPE associative algebra (infinite dimensional in our case), 
which defines the corresponding minimal model. Since the 
Sugawara formula (1.7) implies that the central charge is 
uniquely fixed to be c = 1, it seems that we have only one (1-
D) minimal model corresponding to this value of c. But the 
analogy with the minimal models of the Virasoro algebra, 
where for each fixed c we have only one model, does not 
work in our case because of the absence of quantization of 

Furlan, Sotkov, and Stanev 2312 



                                                                                                                                    

the dimensions. In fact, the only restriction we have is the 
equality (2.4b) 

A =q2/2. 

Then following the fusion rules (2.13) and considering, for 
example, a conformal field with integer charge, we see that it 
creates an infinite set of fields with integer and half-integer 
dimensions only. Starting with the half-integer value of the 
charge we obtain another infinite set of fields with dimen­
sions and charges different from the first ones. So we shall 
have many different models corresponding to c = 1. Indeed, 
if we want to have a model with arbitrary (unfixed) anoma­
lous dimension of the field, then we have only one infinite set 
of fields whose dimensions and charges are parametrized by 
the charge q ofthe initial (primary) field <P.1,q' The conclu­
sion is that the symmetries of the model are not enough to fix 
some critical values of the charge and of the anomalous di­
mension. 

All the four-point functions of the fields of the model are 
calculated in Sec. III. The fourth section of the paper is de­
voted to the construction of two-dimensional models by dif­
ferent compositions of left and right one-dimensional mod­
els. We analyze in detail the case of the massless 'thirring 
model, 16,17 where c = 1 and IA - XI = !. In the last section 
we present our investigation of the reduction of the U ( 1 ) 
conformal CA representations to the representation of the 
Virasoro subalgebra. 

We will conclude this general discussion of the proper­
ties ofU ( 1 ) .. D conformal CA minimal models with the case 
c = D> 1 (say D = 26). As is shown in our recent paper, 15 

the structure of the representations of the U ( 1 ) .. D confor­
mal current algebra is the same as in the case c = 1. Then the 
corresponding minimal models contain an infinite set of con­
formal fields with arbitrary anomalous dimensions parame­
trized by D arbitrary "charges" (or momenta) of the initial 
field. The case D = 26 provided us with fusion rules for the 
string vertex operators and simple differential equations for 
the string vertices four-point functions. 

The generalization of these results to the case of super­
symmetric minimal models of U ( 1) .. D ® CAR" D supercon­
formal current algebra (CAR is the canonical anticommuta­
tion relation algebra {iiJ,.,t/JD = bn+ mbij) seems to be 
straightforward. 

II. NULL VECTORS AND FUSION RULES 

The representations of the U ( 1) conformal current al­
gebra (1.1) can be characterized by three numbers: dimen­
sion A, charge q, and central charge c. Since the energy posi­
tivity implies positivity of the L o, we shall be interested only 
in the lowest-weight representations of the algebra (1.1). 
Each representation of this kind is generated by the primary 
state I A,q) defined as follows (c is fixed): 

LoIA,q) = AIA,q), 

JoIA,q) = qIA,q), 

I n IA,q) = 0 = Ln IA,q), 

(2.1a) 

(2.1b) 

(2.Ic) 

Then the representation space (called the conformal family 
of I A,q) ) is spanned by the vectors 
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L _ n, ... L _ nkJ _ m, .. ·J _ m/IA,q), 

m l >m2> .. ·>m/ > 0, n l >n2> ... >nk > 0, 

with charge q and dimension Ak,/ = A + Nk ,/, where 
k / 

N k,/ = L n; + L m; 
;=1 ;=1 

is called "level" Nk,I' The correspondence between primary 
fields ( 1.11 ) and primary states (2.1) is given by the follow­
ing almost obvious equality: 

(2.2) 

The vacuum state 10) is a SL (2,R) ® U (1) = {L ± I ,Lo,Jo} 
invariant primary state with A = 0 = q. Therefore we have 

Ln 10) = 0, n> - 1, I n 10) = 0, n>O. 

The reducible (or "degenerate") representations of 
( 1.1) are defined by the condition that there exists a state 
IA + N,q) at level N that is again a primary state. Using the 
definitions (2.1), (1.1), and the Hermiticity conditions 
L : = L _ n' J: = J _ n' it is easy to show that I A + N,q) is 
orthogonal to each vector in the representation space 
spanned by I A,q), that it has zero norm, and therefore that it 
can be consistently put equal to zero: 

IA + N,q) = O. (2.3) 

An important problem we have to solve is the explicit con­
struction of the null vectors (2.3). For the first level 
(N = 1), Eqs. (2.1a), (2.tb), and (1.1a)-( 1.1c) imply 

1;(1) = (L -I + alJ -I) IA,q). 

Imposing that I; (I) satisfies Eq. (2.Ic) we get the relations 

al = - q, (2.4a) 

A = q2/2, (2.4b) 

and finally 

1;(1) = (L_I - JoJ -I )IA,q) = 0 (2.5) 

iff A = q2/2. The same considerations at the second level 
give us 

1;(2') = (L_2 _!J 2
_ 1 -JoJ_ 2 )IA,q) =0 (2.6) 

iff c = 1 and A = q2/2. 
In principle we can continue this construction to higher 

levels, and at each level we find a new null vector without any 
new restriction on the parameters of the model: c,A, q. This 
means that the primary state IA,q) with c = 1, A = i/2 is 
degenerate at each level NeZ+ (contrary to the case of the 
Virasoro degenerate primary states). In fact all these proper­
ties of degeneracy are coded within the Sugawara formula 
( 1. 9) . Using the definition (2.1) and Eq. (1. 9) we get the 
following general construction of the null vectors: 

I; (n» = (L _ n - ~ kto J - kJk_ n )iA,q), n>O (2.7) 

(iff A = q2/2 and c = 1). The null vector condition (2.5) 
can be written as an equation for the primary field <P.1,q (z) 
corresponding to the primary state IA,q) via Eq. (2.2). Tak­
ing into account Eqs. (1.11) we get for <P.1,q the Thirring-like 
equation 

a 
az <P.1,q (z) = - q :J(z)<p.1,q (z): , (2.8) 
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where the normal product: : is given by 

:J(z)t/J(z): = J< + ) (z)t/J(z) + t/J(z)J< - )(z), 

andJ(+)(z) =J(z) -J<-)(z). 

(2.9) 

The key points in our construction of the fusion rules for 
degenerate primary fields of the algebra (1.1) are the null 
vector constructions (2.5) and (2.7) together with Eq. 
(2.4b) and the V ( 1 ) charge conservation law. Let us consid­
er two degenerate primary fields XI (z), X2(Z), with dimen­
sions ai' a 2 and nonzero charges ql,q2 related through Eq. 
(2.4b) : 

al ,2 =! tJi,2' 

In principle many conformal V ( 1) current-algebra families 
can contribute to the OPE of these fields. We denote by 
O(i)(z), i= 1,2, ... , the primary fields of each one of these 
families, with dimension a (i) and charge q(;). Because of the 
Sugawara formula (1.9), for each primary field of the alge­
bra (1.1) we have 

(2.lOa) 

or 

a(i) = !(q(i»2, (2.lOb) 

which means that each primary field is degenerate at zero 
level [i.e., Eq. (2.10) presents the O-level null vector.] Then 
taking only the leading term contributions in the well-known 
OPE formulas, 18 

(2.11 ) 

we can analyze the charge conservation law, commuting 
both sides of Eq. (2.11) and Jo and using Eq. (1.11 b), since 
the 0 (i) (z) fields are primary fields for the full algebra. We 
obtain the identity 

N(il 

~~~(I)-a,-a2[ _ (q +q )0 (i)(z ) +O(z )] 
~ N(i) 12 1 2 2 12 
;>1 0 

(i) 

=~ N I20 ~(i)-a,-a2[_q(i)0(i)(z)+O(z )] 
~ (i) 12 2 12' 
;>1 No 

which proves the conservation of the V ( 1) charge, i.e., 

q(i)=ql+q2' foreachi>1. (2.12) 

Therefore only one primary field t/J a,q with charge 
q = ql + q2 and dimension a = !(ql + q2)2 contributes to 
the OPE (2.11) of the fields XI and X 2' and the fusion rule 
can be written symbolically 

XtX1:2 = [x1' + q2] . 

We denote with [Xa] the conformal family of the primary 
field Xa. 

Let us suppose we have a model with only two basic 
primary fields X 1,2 [together with their Hermitian conju­
gates XT.2 with opposite V ( 1) charges]. Then we can write 
the fusion rules as follows: 
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XIXt = XU:'! = [I], 

XIXI = [S'], qs = 2ql' as = 2tJi, 

XU:'2 = [71], q." = 2q2' a." = 2qL (2.13a) 

XIX2 = [0], q(J = ql + q2' a(J = !(ql + q2)2, 

XIX! = [cp], q", = ql - q2' a", = !(ql - q2)2. 

Repeating the same procedure for the composite primary 
fields S',7J,oo. we have to introduce the new primary fields, 

S'XI = [:::d, q=., = 3ql' a=:, = ~qi, 

S'X2 = [:::2]' q='2 = 2ql + q2' a=:2 = !(2ql + q2)2, 

S'xt = [Ed, qs, = ql' as, =! qi, 

S'x! = [E2 ], qS2 = 2ql - q2' a S2 = ! (2ql - q2)2, 
(2.13b) 

and the corresponding ones for 7J,0,cp (indicated by E, e, 
and <1». We can continue this procedure, but already at this 
level we can completely verify the characterizing features of 
our model. 

(i) At each step we must always introduce new compos­
ite primary fields; therefore we have an infinite set of them in 
the full associative algebra. 

(ii) Nevertheless we perfectly control their V(1) and 
conformal properties. 

(iii) Many of the families we find, going from level to 
level, are identical to other families; for example, 

[Ed = [02] = [<1>2] = [xd, [E2 ] = [0d = [X2], 

[ed = [:::2], [e2] = [Ed, [<I>d = [E2], (2.14) 

[q)d = [X!], [q)2] = [En· 

III. FOUR-POINT FUNCTIONS 

In this section we shall show how conformal invariance, 
V ( 1) charge conservation, and the existence of the null vec­
tor 1;(1) ofEq. (2.5) [together with the relations (2.4)] 
allow us to calculate the four-point function of any four pri­
mary fields X;(z), with V(1) charges q; and dimensions 
a; = !q;, where i = 1,2,3,4. 

The projective Ward identities, obtained by imposing 
sl( 2,R) invariance of the N-point functions, I give us the gen­
eral form of the four-point function, 

(OlxI (ZI)X2(Z2)X3(Z3)X4(Z4) 10) 

(3.1a) 

where 

71: = ZIJZ24/ZlzZ34' (3.lb) 

and f ( 71) is a function to be determined. The relation 

(0IxI(zl)X2(z2)X3(z3)X4(z4)JoI0) = 0, (3.2a) 

with the help of Eq. (1.11 b), leads to the V ( 1) charge con­
servation, i.e., 

4 

L q;=O. (3.2b) 
;=1 

Translational invariance and the null vector condition (2.5) 
give us the relation 
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(0IxI(zI4)X2(z24)X3(z34)(L- I +q4J-I)lx4) =0, (3.3a) 

which, using Eqs. (1.11), provides us with the following 
first-order differential equation for the four-point function 
(3.1a): 

(
a + a + a qlq4 q2q4 q3q4) 

aZl4 aZ24 aZ34 Zl4 Z24 Z34 

X (OIXI (ZI)X2(Z2)X3(Z3)X4(Z4) 10) = 0. (3.3b) 

Inserting the expression (3.1a) intoEq. (3.3b) and making 
use ofEqs. (2.4b) and (3.2b), we transform Eq. (3.3b) into 
a first-order differential equation for! ( 1]), 

(q2q3/ (1] - 1) - q3q4l!(1]) = 1]1'(1]), (3.4) 

which we easily solve, getting the final result for the four­
point function: 

4 

(0IxI(zl)X2(z2)X3(z3)X4(z4) 10) = C(q) II z'!r, (3.5) 
i<j= I 

where ceq) is a constant possibly dependent on q;. 
i = 1,2,3,4, and the q;'s are related to the conformal degrees 
aj by Eq. (2.4b). 

IV. TWO-DIMENSIONAL MODELS: THE THIRRING 
MODEL 

Let us consider a particular set of two-dimensional mod­
els (i.e., models in which fields are functions of both z and z) 
that can be "factorized" as products of two one-dimensional 
models of the same kind we dealt with in the previous sec­
tion. To this end let us introduce two one-dimensional pri­
mary fields: X(z) with V(1) charge q and dimension 
a = !q2, and X(z) with q and X = !q2. We define the follow­
ing two-dimensional field (q and q are supposed to be non­
zero): 

tP(z;i) : = X(z)X(z). ( 4.1a) 

It is immediately seen, using Eqs. (1.11) and the analogous 
ones for the z-dependent fields, that tP(z,z) is a primary field 
under both the left and right current and Virasoro algebras 
with dimensions 

(a,X) = <!q2,~q2) 
and V ( 1) charges 

(q,q). 

Therefore its dimension is given by 

d: = a + X = !(q2 + q2), 

while its helicity is given by 

h : = a- X = !(i _ q2). 

(4.1b) 

(4.1c) 

(4.2a) 

(4.2b) 

It is well known 1.3.6 that, in order to have a local theory, 
fields must have integer or half-integer helicity (i.e., spin); 
therefore we shall put this constraint on Eq. (4.2b) when we 
shall deal with a concrete case in what follows. 

The existence of the one-dimensional fusion rules of Sec. 
II and the complete factorization of the z and z dependence 
allow us to write down immediately the fusion rules for the 
two-dimensional models we consider here. Let us suppose 
we have two primary fields, 

(4.3a) 
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with V(1) charges (ql,ql), and 

tP2(z;i) = X2(Z)X2(Z), (4.3b) 

with V ( 1 ) charges (q2,q2); their dimensions are given by Eq. 
( 4.1 b). Then taking into account the results of Sec. II, we 
have 

tPj (z,z)tPj (z;i) = [\II(i,i) (z,z) ], i = 1,2, 

tPl (Z;i)tP2 (z;i) = [\11(1,2) (z,z) ], 

tPl (z;i) t/Jr (z;i) = [qi(1,2) (z,z) ], 

(4.4) 

where the composite primary fields \II are given by [see Eqs. 
(2.13a) ] 

\II(1,I)(z;i) = s(z)t(z), 

\11(2.2) (z;i) = 1](z);;(z), 

\11(1,2) (z;i) = 8(z)8(z), 

qi(1,2)(z;i) = q:'(z)qi(z). 

Their V ( 1) charges are given by 

q'lJ(U) = 2qiO q'lJ".il = 2qiO i = 1,2, 

q'lJ(I.21 = ql + q2' q'lJ(I.2l = ql + q2' 

q'f,(I.2) = ql - q2' q'f,(I.2) = ql - q2' 

(4.5) 

(4.6) 

while their dimensions are easily recovered from Eq. (4.6) 
with the help of relation (4.1 b) . 

Let us write, as an example, the OPE of tPl tP2; we havel6 

tPl (zl;il ) tP2 (z2;i2) 

= (tPl (zl;il)tP2(Z2;i2» + ~2-.:I., - .:I.'zf2-~' -~, 

00 00 N 
X L Z~2 L ~ ~B-I(61 +n,62 +n) 

n=O m=O Nn,m 

xB -1(81 + m,82 + m) 

· II du(1_u)6,+n-l u6z +n-1 

· II dv(1 _ V)6, + m - IV6z + m - I 
X \II~I~)n.~ + m (Z2 + UZl2;i2 + VZ I2 ), (4.7a) 

where N l2n.m is the coefficient appearing in the three-point 
function 

(tPl tP2 \II~1~):'~ + m ), 

while N n•m is that appearing in the two-point function 

(\II~I~)n.~ + m \II~I~):'~ + m ) , 

and the two-dimensional quasiprimary fields \II~I~)n.~ + mare 
given by (for definitions and more details see Ref. 16) 

, ,NI2n.m ,TI( 1,2) _ (-) n. m.--- T.:I.+n . .:I.+m z,z 
N".m 

= lim lim D (6,.6,) (a a )D (6,,6,) (a- a- ) 
n I' 2 m I' 2 

ZI.2- Z %1,2-% 

· {~2 +.:1., - .:I.zf2 +~, - ~tPl (zl;il )tP2(Z2;i2)}' (4.Th) 

Taking into account factorization, we easily find that 

N 12n,m ,T,(1,2) _ (z -) = N I2"N12m 
N T.:I.+",.:I.+m,z N N 8.:1.+,,(z)t%+m(z). 

n,m n m 

(4.8) 
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If we now adopt the quasi primary (one-dimensional) field 
normalization 16 

(4.9a) 

supplemented by the analogous one for two-dimensional 
fields, i.e., 

(4.9b) 

we get the complete factorization of the quasiprimary fields, 

'I' ~ + n,::l + m (z,z) = O~ + n (z)(j~ + m (z), (4. lOa) 

together with the factorization of the coefficients, 

N I2n,m = NI2nNI2m (4. lOb) 

and 

( 4.1Oc) 

Using again factorization and Eq. (3.5), we can easily 
get the explicit form of the four-point function of tP fields: 

< tPl (ZI,ZI) tP2 (Z2,Z2) tP3 (Z3,Z3) tP4 (Z4,Z4) ) 

= <XI(ZI)X2(Z2)X3(Z3)X4(Z4» 

X <XI (ZI )X2(Z2)X3 (Z3)X4 (Z4) ) 
_ 4 4 __ 

= C(q)C(q) II z~iqj II Z !1q
,· (4.11 ) 

i<j~ I k<l~ I 

Let us now come to a concrete example: the Thirring 
model. 16,17 In our framework it is a two-dimensional model 
with two primary fields having equal dimensions and oppo­
site fixed helicities ±!; let us denote them by 

tPl (Z,Z) , with helicity hi = -~, 
tP2(z,z), with helicity h2 = +!. 

From Eqs. (4.2) we see that the U ( 1 ) charges must obey the 
following relations: 

qi + qi = ~ + qL qi - qi = - 1, q~ - qi = 1. 
(4.12) 

Therefore we can express all four charges in terms of only 
one (positive) parameter A: 

(4.13 ) 

The conformal degrees are then 

.!ll = K2 = A, .!l2 = KI = A + ~. (4.14) 

The fields tPI,2 can be identified with the fields appearing in 
Eqs. (4.3) once we fix the charges with Eq. (4.13). All fu­
sion rules (4.4) are valid again with 

q'l'(I.1) = 2.,fU, q'l'(I.I) = 2~U + 1, 

q'l'(2.2) = 2~U + 1, q'l'(2.2) = 2~U , 

q'l'(I.2> =.,fU + ~U + 1, q'l'(I.2) =.,fU + ~U + 1, 

qq;(I.2) =.,fU - ~U + 1, qq;(I.2) = ~U + 1 -.,fU. 
(4.15 ) 

We see that 

( 4.16) 

i.e., '1'(1,1) together with '1'(2,2) corresponds to spin 2, while 
'1'(1,2) and \ii(1,2) are scalar fields. From Eqs. (4.6) and 
(4.16) it is evident that while U(1) charge is conserved, 

2316 J. Math. Phys., Vol. 29, No.1 0, October 1988 

there exists no "helicity conservation" in the fusion 
rules (4.4). 

As already remarked in the general case, and as appears 
from the first level's analysis just outlined above, we have in 
the Thirring model an infinite set of primary fields, but we 
can have complete control of all fusion rules, going level by 
level with the same kind of analysis we have exploited above. 

Also, all four-point functions of primary fields are easily 
made explicit using Eq. (4.11). For example, 

(tPl (ZI;ZI) t/fr (Z2,Z2) tP2 (Z3;Z3) t/Ir (Z4;Z4) ) 

= C(A) (Z13Z24!Z12Z34)J2A(2A + l)z i:; 2AZ23 2A - I 

X (Z13Z24! Z12Z34) JU(U + l)zi:; 2A - IZ23 u, (4.17a) 

( \ii(I,2)(Z Z )\ii(1,2)*(Z Z )\ii(1,2)(Z Z )\ii(1.2l*(Z z- » 
I' I 2' 2 3' 3 4' 4 

=b(A/- Zl3Z24 X Z13Z24 )4A+I-2JU(U+ll 

\;lzZ14Z23Z34 ZIzZI4Z23Z34 
(4.17b) 

Even if the factorization of the Thirring model greatly facili­
tates its understanding, as we have just seen, we can get the 
same results using the two-dimensional formulation only. 

Let us start from a massless spin-! field coupled to a 
canonical U ( 1) vector current, which is conserved together 
with its dua1.3•6,16.17 Let the fields tPl and tP2 be the left and 
right components of the spin-! field and ql' q2' ql' q2 their 
U (1) charges; i.e., we postulate that the following commuta­
tion relations hold (in the compact picture): 

[In,tPl,2 (z,z)] = - ql,2ZntPI,2 (Z,Z) , 

[In,tPl,2 (z,z)] = - ql,2zntPl.2 (Z,Z) , nEZ. 

( 4.18a) 

(4.18b) 

Furthermore we suppose that the fields tPI,2 transform ho­
mogeneously under conformal transformations, i.e., that 
they are primary conformal fields with dimensions (.!l I,K I) 
and (.!l2,K2 ), satisfying the commutation relations 

[ Ln, tPI,2 (z,z) ] 

= zn(z ! + (n + 1 ).!l1,2 )tPl'2 (Z,Z) , 

[In ,t/tI,2 (Z,z) ] 

( 4.19a) 

= zn(z ! + (n + l)KI,2 )t/t1.2 (Z,z), nEZ. (4.19b) 

The presence of zeroth-level and first-level null fields or, 
equivalently, the existence of the Sugawara formula (1.7) 
[or (1.9)] and the analogous one for T(z) (or In) again 
constrains U ( 1) charges and conformal dimensions to be 
linked by Eq. (4.1b), while tPI,2 (z,z) must obey the Thirring 
equations 

Jt/t12 (z,z) _ 
'Jz + ql,2 :J(Z)tPl,2 (z,z): 

JtPI,2 (z;Z) _ - _ _ 
= 0 = Jz + ql,2 :J(Z)tPl,2 (z,z): . (4.20) 

Since tPl and tP2 have the same dimensions and their 
helicities are ( -!) and ( + D, respectively, we can state 
Eqs. (4.13) and (4.14) again. We can show here also that 
there exists only one conformal family of the full algebra 
contributing to the OPE of any two among the four chiral 
fields t/t I' tP2' t/Ir, t/fr. Let us take the case tP I t/fr as an example, 
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and let us denote by rp (0 (z,z), t;p 1, all primary fields that 
contribute in principle (together with their descendants) to 
their OPE; i.e., in analogy with Eq. (2.11), 

- (i) .,. ( _) .,'* ( -) _ ~ N 120,0 ~ (I) _ 112 _ 2-< ~(I) - 112 - 2" 
'1'1 ZIZI '1'2 Z2,Z2 - £.. - (i) 12 12 

i>1 No,o 

X [rp(i)(Z2,Z2) +O(zd +O(Z12)]' 
(4.21 ) 

Using (the global version 00 Eqs. (4.18) and taking 
into account that all fields appearing in Eq. (4.21), being 
primary, transform homogeneously under current algebra, 
we get from Eq. (4.21) 

[J( - )(z),rp (i) (z',z') ] 

= [("U+ 1-~)/(z-z')]rp(i)(z',z'), (4.22a) 

[J< - )(z),rp (i) (z',z') ] 

= [(~ -"U + l)/(z-z')]rp(i)(z',z'). (4.22b) 

Then using the Thirring equations (4.20) in the three­
point function < rP I t/!f rp (i) 0) together with commutation rela­
tions (4.22), we get the following first-order differential 
equations: 

(...i... + "U(U + 1) + U - "U(U + 1») 
az, Z12 Z13 

X < rPl (ZI,ZI )t/!f(Z2,Z2)rp (i) 
0 

(Z3,z3» = 0, (4.23a) 

(
a "U(U + 1) U + 1-"U(U + 1)) --+ + -------'-----

az, Zl2 Z13 

X < rPl (Zl,zl) t/!f (Z2,Z2)rp (0
0 

(Z3,Z3» = 0, i ;;;.1. 

(4.23b) 

Inserting the explicit expression for the three-point function 
<rPlt/!frp (i)0), dictated by conformal invariance, into Eqs. 
( 4. 23), we find at last that 

a(o=K(o=U+!-"U(U+l), i>1. (4.24) 

We see that the conformal degrees of all primary fields rp (0 

coincide, signifying that we have only one conformal (and 
current-algebra) family contributing to the OPE of rPlt/!f. 
The same demonstration holds for the OPE of any other two 
among our chiral fields rPI' rP2' t/ff, t/!f. 

In reaching Eq. (4.24) we have intentionally stressed 
the role played by the Thirring equations (4.20). We could 
have started instead from the observation that relation 
( 4.1 b) holds for a generic primary field; then the uniqueness 
of U (1) charges for all fields rp (il, shown by Eqs. (4.22), 
would have implied uniqueness of all conformal degrees 
also. 

The explicit form of the four-point functions can also be 
easily recovered using the Thirring equations and the rela­
tions (4.13) and (4.14). Let us see how to obtain Eq. 
(4.17a) again. 

From conformal invariance we have that 

< rPl (ZI,ZI) rP! (Z2,Z2) rP2 (Z3,Z3) t/ff (Z4,Z4) ) 

= ZI3 2-< - IZI4Z24 2" - I ZI3 2-< ZI4 I Z24 2" f (rJ) I riO, 
(4.25) 

where f and I are unknown functions of 7] and 1j, defined 
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by Eq. (3.1b). Using the Thirring equation (4.20) in ZI for 
rPI(ZI,ZI) and with the help of (the global version 00 Eq. 
(4.19a), we get the following first-order differential equa­
tion for f ( 7] ) : 

[(U + 1)/(7] - 1) 

- "U(U + 1)] f( 7]) + 7]f' (7]) = 0, (4.26a) 

which can be easily solved, giving 

f(7]) = const X (7]/(7] - 1))2-<+ I X7]~2"(2"+ I). (4.26b) 

Proceeding in the same way for the ZI dependence of 
rPI(ZI,ZI)' we finally get Eq. (4.17a) again. 

V. REDUCTION TO THE VIRASORO SUBALGEBRA 

Until now we have always dealt with the representations 
of the full algebra (1.1). Since the irreducible representa­
tions of the U ( 1) conformal CA are, in general, reducible 
representations of the Virasoro subalgebra (1.1a), an inter­
esting problem for the description of the explicit reduction of 
a given conformal CA Verma module into a sum of the Vira­
soro algebra's representations arises. 

Following the methods and the results of Refs. 19 and 20 
for the character of the irreducible lowest-weight degenerate 
(a = q2/2) representation of the algebra (1.1), we get 

Xq(t) = tq'/27](t), (5.1) 

where the Dedekind function 7](t) is given by 
00 

7](t) = t 1/24 II (1 - tn). 
n=1 

In the case c = 1 for the representations of the Virasoro alge­
bra (1.1a) one has to distinguish two different expressions 
for the characters ofthe corresponding representations '9,20: 

XXir(t) = t"/7](t), for a=l=n2/4, nEZ, (5.2a) 

X~1;4 (t) = (t n'I4 - t (n + 2)'14)/7](t), 

(5.2b) 

Then for q = n/.J2 we can represent the character (5.1) in 
terms of the Virasoro characters (5.2b), 

X nN2 (t) = _1_ i: (t (1) + 2k)'14 _ t (1) + 2k + 2)214) 
7](t) k=O 

00 

L xi!r+ 2k)'/4 (t), 
k=O 

(5.3 ) 

and consequently for these special values of the U ( 1 ) charge 
q = n/v"1 the corresponding representations of the CA ( 1.1 ) 
contain infinitely many Virasoro representations with di­
mensions 

In the field-theoretical language this observation means that 
the U (1) conformal current family [t/1. = '1'12] splits into 
infinite sets of Virasoro conformal families [rP X~] generated 
by Virasoro primary fields (states). We shall give as exam­
ples the explicit constructions of the simplest primary states 
of Vir [they are not primary ones for the full algebra ( 1.1 ) ] : 
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q=o J_1IO,0) 

q= 1Iv'2 
q=v'2 

k=1 
k=2 
k=1 
k=1 
k=1 

(4J -3J _I - 3J 2_ 2 - 2J1_1 10,0) 
(J -2 - vlJ2_ 1 ) Ip/v'2) 
(J -3 - 3/v'2 J _~ _I + J3_ 1 ) 11,v'2) 

q = 3/v'2 ( - 3&_4 + 8J _3J _I + 3J 2_ 2 - 6& _2J 2_ 1 + 2J~ I) la,3/v'2). 

In the general case (when!::. =/= n 2/4), because of the co­
incidence ofthe characters (5.1) and (5.2a) only one Vira­
soro representation corresponds to each conformal U ( 1 ) 
CA representation. Because of the fusion rules (2.13), even 
in these models (q=/=nlv'2) we need the family ofthe unity 
operator [1] (q = 0), which contains infinitely many Vira­
soro conformal families: 

00 

Xo(t) = L Xr~r(t). 
k=O 

Here k = ° corresponds to the family of the Virasoro unit 
operator, k = 1 gives the family of the U( 1) current, and 
k = 2 (!::. = 4) describes the new "conserved current" fam­
ily of the Virasoro primary field 

00 

V(z) : = L Vnz- n -4, 
n=O 

where the Laurent coefficients Vn can be realized in terms of 
the U( 1) current modes I n , 

Vn =C~n + kt)[(k-l)(k-2) 

+ (n+k+ l)(n+k+2) 

+3(k-l)(n+k+ 1)]J_ kJn+k 

-4Ltl/tl J_kJ_ILn+k+1 

00 00 

+ 2 L L J _kLn+k_IJI 
k= 1/=0 

+ kto Ito Ln_ k_IJkJI] , 

and Vn 10,0) = 0, n> - 3. This current has rather compli­
cated transformation properties, 

[Lm,Vn l = (3m-n)Vm+n, 

[ J m' Vn 1 = 2m [ (m - 1)( m - 2) 

+ (m + n + l)(m + n + 2) 

+ 3(m -l)(m + n + l)]Jm+n 

-16mLt/ _kLn+k + kto Ln_kJk ]. 

with respect to the full algebra (1.1), and it has no simple 
physical meaning as the U ( 1) current and the stress-energy 
tensor do. The same is true for the currents with dimensions 
k 2 (k = 3,4,5, ... ). 

The simplest fusion rule for two primary fields with op­
posite charges (2.13), 

tp,)Jl tp?/2Q
) = [1] (= [tp6°)P, 

can be rewritten (with respect to the Virasoro algebra) in the 
form 
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00 

tp ,)J1 tp ?/2Q
) = L [tp kq)] , 

k=O 

and, together with the other fusion rules (2.13), gives the 
multiplication laws of the infinite associative algebra of the 
Virasoro conformal fields describing the corresponding 
c = 1 model. 

Note added: After the completion ofthe manuscript we 
received the preprint by Bagger et af.21 where results similar 
to ours connected with the treatment of the Thirring model 
appear. 
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ERRATA 

Erratum: New classes of symmetries for partial differential equations 
[J. Math. Phys. 29,806 (1988)] 

G. W. Bluman and G. J. Reid 
Department of Mathematics. University of British Columbia. Vancouver. British Columbia V6T 1 Y4. 
Canada 

5ukeyuki Kumei 
Faculty of Textile Science. Shinsu University. Ueda. Nagano-ken 386. Japan 

(Received 28 June 1988; accepted for publication 13 July 1988) 

The following corrections should be made. 
(i) InEq. (4.6) a /atshouldbereplacedbya /au. Equa­

tion (4.9) should be replaced by 

- a 2 a [( 2) 2KX] a L4=X-+- (U+K) -+ 1 +- cp+-- --. 
ax v au v vacp 

(ii) Result 3 on p. 810 should read as follows. 
3. K(u) = A.(u + K) -2, {..t,K} arbitrary constants. Here 

GT is an co-parameter group with infinitesimal generators 
Io, II' and 13 given by (4.8), 14 given by (4.9), and 

- a a 
Ls= -X[(cp+KX)2+Ut]-+4..tt 2-

ax at 

+ (u + K)[ 6..tt + (cp + KX)2 

a 
+ 2x(u + K) (cp + KX)]-

au 

a 
+ [KX(cp + KX)2 + Ut(2cp + 3KX)]-, 

acp 

I", = e(w,t)~ - (u + K)2 ae(w,t) ~ 
ax aw au 

a 
-K9(wt)-. 

, acp 

( 4.lOb) 

(4.1Oc) 

- a a 
Here w = cp + KX and v = e(w,t) is an arbitrary solution of 
the linear differential equation 

L2 = - x(cp + KX)- + (u + K) [cp + 2KX + xu]-
ax au ..t a 2V _ av = O. ( 4.11) 

awl at 

a 
+ [Ut + KX(cp + KX)]-, 

acp 
(4.lOa) 

(iii) In result 4 on p. 810 condition (a) should be re­
placed by 

(a) p2 - 4q -,:z = 0, p2 - 4q>0. 

Erratum: The Vaidya-Patel solution with Robertson-Walker metric as a 
rotating inflationary scenario [J. Math. Phys. 29, 1514 (1988)] 

Oyvind GrOn 
Oslo College of Engineering. Cort Adelers gt. 30. N-0254 Oslo 2. Norway and Institute of Physics. 
University of Oslo. P.O. Box 1048 Blindem. N-0316 Oslo 3. Norway 

Harald H. 50len9 
Institute of Physics. University of Oslo. P.O. Box 1048 Blindem. N-0316 Oslo 3. Norway 

(Received 13 July 1988; accepted for publication 20 July 1988) 

- C~I C~2 - C~I C~3 - C~2C~3] 

+ H (C~2 + C~I)2 + (C~3 + C~I)2 

+ (C~3 + C~2)2]. (3.11 ) 

In Sec. III, p. 1516, left column, it is stated that the 
structure coefficients in an orthonormal basis satisfy the re­
lations C,. OV = - C v 0,.. This is not correct in general. Ac­
cordingly the general expression for the shear scalar ex­
pressed in terms of the structure coefficients of a comoving 
tetrad basis, Eq. (3.11), should read 

In the particular model under consideration, C,. ov = 0, 
when f.l =1= v, and the cross terms of Eq. (3.11) are zero. 

~=H(C~I)2+ (C~2)2+ (C~3)2 Hence the error does not affect the results obtained. 
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