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All real Lie algebras of dimension up to 8 that admit a nontrivial Levi decomposition are

found.

I. INTRODUCTION

The central problem arising in the theory of real Lie
algebras is determination of all nonisomorphic algebras. The
class of semisimple algebras has been determined long ago by
Cartan. Up to now, only some results on solvable algebras
are known.'~" The aim of the present paper is to investigate
algebras of a third group, namely the semidirect sums of
semisimple and solvable algebras.

Our motivation is applications to cosmology. We hope,
however, that the usefulness of the knowledge of algebras in
other physical contexts is evident.® As far as the (1 + 3)-
dimensional cosmological problem is concerned, algebras of
nine Bianchi types that classify homogeneous space-times
that are solutions to the Einstein field equations® are impor-
tant. Recently, multidimensional cosmologies have also
been proposed.'? Therefore, it becomes necessary to extend
the Bianchi classification of the real three-dimensional Lie
algebras to a more general case of larger dimension and to
face the problem of evaluating the structure constants for all
nonisomorphic algebras. The knowledge of the algebras im-
plies a classification of the homogeneous cosmological mod-
els. Furthermore, the field equations can be written down
directly in terms of scale factors and in terms of the structure
constants of the Killing vector algebras.’

In the following, we sketch the method of computing
algebras that are the semidirect sums of the solvable and
semisimple algebras. We apply this method to algebras of
dimensions up to 8. There is one five-dimensional algebra
and four six-dimensional algebras, summarized in Table 1.
Tables II and III provide seven algebras of dimension 7 and
22 algebras of dimension 8, respectively. These algebras lead
naturally to a class of cosmological models that we discuss
elsewhere.'?

Il. THE SEMIDIRECT SUMS

As far as the notation and method is concerned we fol-
low our previous work.'*> We shall use the symbol N&-S for a
semidirect sum, writing the ideal N first, and the subalgebra
S second.

We endow the semidirect sum with a Lie algebra struc-
ture by using [ , ]5 and [ , ]s in each of these subalge-
bras. For Lie brackets between these two subalgebras, we set

e;eS, e,eN, ()
where R is a linear mapping, R(e;): NDe, »R(e;)*e,eN.

For the linear subspaces N and § of the algebra L = N&S,
the following relations hold:

[NN]CN, [SS]cCs,

[eses] = R(e;)*e,,

[N,S]CN, (2)
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dim L = dim N 4 dim §. (3)

Furthermore, from the Jacobi identity, it follows that R (e;)
is a derivation of NV:
R(e;)*[e;ex] = [R(e;)*esex] + [essR(e;)*ex]. (4)
The set {R(e; )} forms a Lie algebra itself, called the deriva-
tion algebra, and the homomorphism of S into the derivation
algebra, SDe; — R (e, ), must be a representation of the semi-
simple algebra .S by real matrices. It is clear that the zero-
matrix representation of .S, acting in W, is a derivation of N.
This representation reduces the semidirect sum N&-S to the
ordinary direct sum Ne& S.

The fundamental Levi-Malcev theorem'* says that, for
an arbitrary Lie algebra L with the radical N, a semisimple
subalgebra S exists such that

L = N&S. ()

The semisimple subalgebra S'is called the Levi factor. Conse-
quently, Lie algebras fall into the following three categories:
the semisimple algebras, the solvable algebras, and the semi-
direct sums of solvable and semisimple algebras.

Hi. A CLASS OF SEMIDIRECT SUMS

Now, we shall determine all real Lie algebras L = N&S
such that dim L<8 and the semidirect sum is nontrivial:
N+#0,550,and ¢+ &.

We start with a semisimple algebra S, dim S < 8. To ex-
tend this algebra we proceed in the following way. The com-
mutation rules of [S,S] type are known:

[ene] = ; Ckijek’ €,5€},€,ES. (6)

Let » = dim N. One is looking only for #n-dimensional repre-
sentations of S. These representations are n X n matrices that
determine the commutators of [ N,S] type, as defined in Eq.
(1). Then, we make use of (4) and we calculate the radicals
N. Finally, to simplify the form of the radical, we perform
suitable transformations of its basis elements.

There are three simple algebras of dimension less than 8:
three-dimensional so(3) and sl(2,R), and six-dimensional
s0(3,1). To show how the method works let us consider the
algebra L = N&so(3), dim N = 4. The algebra so(3) with
the basis {e,,e,,e,} is defined by the nonvanishing structure
constants

C312= l, C23' = 1, C123= 1. (7)
Since s0(3) has the adjoint representation by 3 X 3 matrices,
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TABLE L. Real Lie algebras of dimensions 5 and 6 that admit a nontrivial Levi decomposition.

The representation of the Levi

Levi factor that defines

Name decomposition the semidirect sum Nonzero structure constants

L, 2L ,&s1(2,R) Dy C*,=2,C3;=—2,Clpy=1,
Cam =1, C425 =1, Cssa =1,
CSlS =~1

Ly, 3L,&s0(3) ad so(3) C*,=1,C% =1,C'y=1,
C:u =1, C624;= -1 Ciaa =1,
Clle=—1,C%=1C% = —1

L, A4;,&s1(2,R) D, 0D, C?,=2C*= —-2,C'yp=1,
C:u =1 C4zs =1, Cssa =1,
Cis=—1,
C645 =1

L, A;,&sl(2,R) D0 D, C%,=2C3,= —2,Clyy=1,
C:M =1, C425 =1, C534 =1,
Cis=—1,
C446 =1, C555 =1

Lg, 3L,&sl(2,R) D, C?*,;=2,C3;=—-2,C')=1,

C:,4=2, C425=2,C5346= 1,
Cte= —2,C525= 1, C% =2

TABLE II. Real Lie algebras of dimension 7 that admit a nontrivial Levi decomposition.

The representation of the Levi

Levi factor that defines

Name decomposition the semidirect sum Nonzero structure constants

L, Ai@so(3) adso(3)® D, C*,=1,C%,=1,Cly=1,
C615 =1, C624 = —1, C534 =1,
Cslé = —1, C‘zs =1, C“JS = -1,
0447 =1, 0557 =1, C657 =1

L, 4L,&s0(3) R, C’,=1,C%=1,C",=1,
C:M =4 Ciu =4 Co, 7= i
C5|5=£’ c 257= -4 C435= -4
g4l(>= _i,gsz():%’i 366‘5= —i,

17 — % 27T b 37=5
Lg, Al;‘s’@sl(Z,R) D, 02D, C2,2=2,C3,3= —2,C'yn=1,
p#0 C:14= ,C4%=1,C% =1,

C 15— — 1’
Ciy=1, C%;=1,C%,=p

L,, A5 @s1(2,R) D, ®2D, C?,=2C3;= —-2,C'py=1,
C:u =1, C425 =1, C534 =1,
C 5= — 19
C645 =1,
C';=1,C%%,=1,C8%,=2

L;s Al;;@-s](Z,R) D,eD, C2,2=2,C3,3= —2,C',=1,
C:u =2, C425 =2, Cssa 6= L,
C4|5 = _ggcsze = lzc 35 = 2,
Cl=10C%%=1C% =1

L, 4L &s1(2,R) Dy, C?,=2C%= -2,C'yy=1,
C*=3,C%%=3,C%=1,
C3s=1,C%=2,C%;=2,
C:,6= —1,C%,=1,C"=13,
Clyy=—3.

L,, 4L, &s1(2,R) 2D, C?,=2C3;= —-2,C'yy=1,

C‘M =1, C425 =1, C534 =1,
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TABLE III. Real Lie algebras of dimension 8 that admit a nontrivial Levi decomposition.

The representation of the Levi
Levi factor that defines
Name decomposition the semidirect sum Nonzero structure constants
Lg, A $7P&s0(3) ad so(3) ® 2D, C'=1,C%,=1,C'y=1,
p#0 COs=1,C% = —1,C%, =1,
C516= -1, C426= | C“JS =-1,
C‘-ts =1, Ciss =1, C6es =1,
Cly=p
L, 4s54%s0(3) R,e D, C*,=1C%,=1C',y=1,
C:M=£' Ciz4=5’ C6347=5,
Cslsziyc zsf _%’C435= -4
€= —-5,C zo=§’c 6= —h
C417= - i, C627 = - 5’ C537= ir
C845 =1, Csm = -1
Ly, A}1@s0(3) R,eD, Cp=1,C%=1C'y=1,
Cﬁu—ia 24—5, 34—5
Csls—ia 25— -4 C75= —4,
g 16 = —i g 26 =4 C;}(g_ —i
7= — 0= — 37 =
Cle=1,C%=1,C=1,
Cly=1
L%, A 5Pdso(3) R, D, C,=1,C% =1,C'yy=1,
c’ 14=£»C 24—§’C 34—5,
5:5--% 25——$C35—“i»
C4|6— -4 C62o—iyc 365_ -5
C4|7= —Q,C 21 = —Q,C 37=14
gs“:p’ C:«z = -1,
=D C = - 11
Cout Co=p
C%4=1,C"py=p
Lgs 5L,&so(3) Rs C*,=1,C% =1C"y=1,
Cli=} Coy =4 C%y =2,
C6|s= —i,C 25—%’C 35— -2,
C3e=2,Cl=—2,C"js=1,
Cle= —1,C% = —2,C% = —1,
C417= -2, C827= -1,
C618=3! C728=3
L A, &s1(2,R) D,,,e3D, C?,=2C%,=—-2,C')=1,
g:“: 1,C%=1,C%, =1,
1s= — 1L
C845 =1,C%; =
LEg A Y294s1(2,R) D,,®3D, C*,;=2,C,= —-2,C'),=1,
pg#0 gm—lczs—lcu—l
5= —1
27‘8—1 Ciss=1,C% =p,
=9
Lz, AYPVPas1(2,R) D, ,,83D, C?,=2C3;=—2,C'y;=1,
p#0 Cha=1,C%=1,C%,=1,
Al54s1(2,R) Cis= —1,
p=0 g:u =1, sts =1,C%=p,
13=1,C'5=p
LS A 598s1(2,R) Dy, 3D, C?y=2C%=—2,C';=1,
q#0 g|4—lC25—1C34_1
5= —1
Cle=1,C=1,Co4=p,
Cles= — g, Co3 =g, C'4 =p
Lg.lo s 196'51(2 R) Dl/293Do Czl2 =2, C313 = -2, Clzz =1,
p#0 C'h=1C%=1,C%,=1,

C5|5= -1
C:48=1,C:53=I,C668=2,
Cl=pC%%=1,
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TABLE H11. (Continued.)

The representation of the Levi
Levi factor that defines
Name decomposition the semidirect sum Nonzero structure constants
Ly, A%,&s1(2,R) Dy, ®3D, C*,=2C3=~2,C';y=1,
C414 =1, C‘zs =1, C534 =1,
CSIS =-1
Cle=1, Cos=1, Cés=2,
C67s =1, C773 =2, C645 =
L{,, A;;;"Q'SI(Z,R) D, e2D, C*,=12, Cli= -2, C'y=1,
p#0 C44=2,C%=2,C5%, =1,
Clhe= —2,C% =1,C%,=2,
C44s =1, Csss =1, Cﬁss =1,
Clp=p
Lgs Ag &st(2,R) 2D,,e D, C?,=2C%=-2Cl,=1,
e=+1 Chy=1,C'%=1C% =1,
CSIS =1
C:16= 1, C627 =1, C7so= 1,
C'h,=—1,
C“:: 1,C¥%=¢
Lg 4 A, ,481(2,R) 2D, 0 D, C2,2=2,C3,3= -2,C, =1,
Cle=1,C%=1C%,=1,
CSIS =-1
C:m: 1,C% =1,C"y =1,
Cliy= -1,
C";: 1,C3% =1
Lg,s As;&sH(2,R) 2Dy, D, C?,=2,C%3=-2,C'y=1,
C414 =1, C‘zs =1, C534 =1,
CSIS = -1,
C:15= 1, 0627 =1, C735 =1,
Cly=—1,
C‘es =1, Csn =1, 0867 =
Ly A;_,,@-sl(Z,R) 2D, D, C2,2=2,C3,3= -2,C'y=1,
C‘u =1, C‘zs =1, Cssa =1,
Co= —1,
C:m =1, C627 =1, C736= 1,
Cly,=—1,
Cle=1,C%=1,C%=1,
Co=1,C=1C"y=1,
L3y, A 55°6s1(2,R) 2D, 0D, C*,=2,C’3=—-2,C';=1,
—1p<1 C:u =1, C‘zs =1, Cs:u =1,
C’s= —1,
C:lo =1, C627 =1, C736= 1
Cly=~1,
C:u =1,C%%=1,C%=p,
Clu=p
L{, A VRPasl(2,R) 2D, e D, C?,=2,C3%;=—-2,C'yy=1,
p>0 Cly=1,C%=1, Cou=1,
CSIS = -1,
C:|o= 1, C627= 1, C736= 1,
Clhn=—1,
Cls=p Cou= —1,
C558=pr Clg= —1,
Clsg=1,C%; =p,
Co=1,Cpy=p
Ly, A, 8s1(2,R) Dy, D, C%,=2,C3;= —-2,C'yy=1,

C‘M =3, C:zs =3, C534 =1,

C:ls =1C 26=2, Cb3s =12,

g_lus = = ;v Coy=1, C736 =3,
7= TS

Cly=1, Clse= —3
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TABLE III. (Continued.)

The representation of the Levi

Levi factor that defines

Name decomposition the semidirect sum Nonzero structure constants

Ly A3Yésl(2,R) D,,0 D, C?,=2,C%y=—-2Cl,y,=1,
C414 =3, C:2s =3, C534 =1,
Csns =1,C"%%=2, 0635 =2,
C:m = -1, C627 =1, C736 =3,
Cc'y,= -3,
C:,,;: 1,C%,=1,C%; =1,
Clg=1

Ly, 5L,@sl(2,R) D, C?’=2C%3=—-2C'y=1,
C‘u =4, C‘zs =4, C534 =1,
CSIS =2, Csza =3, C635 =2,
C717 =-1 0627 =2, C736 =3
Cla= —4,C"=1,C%,=4

Lgy 5L&sl(2,R) DeD,, C%,=2C%=—-2C'y=1,
C414 =2, C‘zs 5= 2, C534 =1,
C616 = —2C=1, C635 =2,
C;n =1, C.’zs =1, C837 =1,
Cl=—1

i

we can define R = ad so(3) @ [0],

(o 0 0 0
00 —1 0
Red=ls 1 o o)
\o 0 0 0
0 0 1 0\
0 0 0 0
Red=t 1 o 0 ol
\o 0 0 o)
(o ~1 0 0y
1 0 0 0
Red=ly o o of
o o o o/

This, via relation (1), implies the following commutation
relations:

[elresl = + e6, [e21e4] = — e6’ [33,64] = + eSy

where {e,,es,e,,e,} are the basis elements of N. With the help
of Jacobi identity (4) we find that the four-dimensional solv-
able algebra N is either Abelian or a solvable algebra given by
the following nonzero commutators:

[ese;] =e,, J=4,56. 9

This is the algebra 4 }§ in the list by Patera et al.* Hence we
distinguish two types of algebras defined by Egs. (7), (8)
and (7)-(9), respectively,

L7 = Ll 53] (3LlG'SO(3)) = Ll ®L6,1
and
L,, =A4}5&s0(3).

The term L, ; denotes an r-dimensional algebra of jth type,
and nL; an Abelian #-dimensional algebra.

In all other cases we proceed analogously. The results
are given in Tables I-III in which we present radicals, Levi
factors, representations of Levi’s factors determining semi-
direct sums, and all nonzero structure constants. The follow-
ing notation is used. The term 4, ; denotes an r-dimensional
solvable algebra of the jth type; for commutation relations

(8) see Ref. 6. The term D, denotes the real representation of

[ees]l = —es, [enes]l = + e, [es65]1 = —e,, sl(2,R) and is taken in its standard form,
J
2J
2y 0
22 0 27-1 1 0
e, — . y €5— y €3— 2 0 ’
.. : .
ad 0, 2 0

where {e,,e,,¢;} with the following multiplication table: [e,,e,] = 2e,, [e;,e;] = — 2es, [e,,e,] = e,, form a basis of s1(2,R).
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The terms R, and R, denote the four-dimensional and five-dimensional (respectively) real irreducible representations of

so(3),

00 0 —} 0 —4 0 0
_fo o —3 o) _ fy o o o
el—b s ez-—)

04 0 0 0 0 0 —}

} 0 0 0 0 0 } 0

0 0 0 -2 0 0 -2

0 o0 2 0 0 0 o0 0
e-~-l0 —1I 0 0 3], e.—~]4 O 0

y} 0 0 0 0 0 4L O

0 0 —1 0 0 0 O 0

where {2,,¢,,¢,} forms a basis for so(3). In the names of
some algebras the superscripts are given to specify the val-
ue(s) of continuous parameters on which the algebra de-
pends.
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Superposition formulas are derived expressing the general solution of several different systems
of nonlinear ordinary differential equations in terms of a fundamental set of particular
solutions. The equations, as well as the superposition formulas, are induced by the action of the
exceptional Lie group G, (complex or real) on a homogeneous space G,/G, where GCG, is a
maximal subgroup of G,. When G is either parabolic, or simple, three particular solutions are
needed. When G is SL(2,C) XSL(2,C) (or one of its real forms), then two particular solutions

suffice.

I. INTRODUCTION

The present paper is the third (and last) in a series'”
devoted to systems of nonlinear ordinary differential equa-
tions with superposition formulas, based on the Cartan ex-
ceptional Lie group G,. The first' (further referred to as I)
was devoted to a study of subalgebras of the real and com-
plex forms of the algebra g, and their matrix realizations.
The nonlinear equations were derived in the second paper?
(further referred to as II). In this paper we present the actu-
al nonlinear superposition formulas.

We recall that a system of » first-order ordinary differ-
ential equations (ODE’s)

y=%(yt), ymeF", tcR, F=R or C, (L.1)

is said to allow a nonlinear superposition formula, if its gen-
eral solution can be expressed functionally in terms of a finite
number m of particular solutions, and » significant con-
stants,

V(1) =F(y;(2),ec0s¥ 1 (£),€1 50005C) - (1.2)

If such a formula exists, then the set {y,(?),..,y,, (£)} is
called a fundamental set of solutions.

Lie and Scheffers® have characterized all such equations
and proven that they must have the form

vy =S Z, 0k (y),

k=1
where the coefficients &, (y) are such that the vector fields

d a
X, = ®
k #zl §%(y) a*
generate a finite-dimensional Lie algebra L.
It was recently shown* that indecomposable systems of
nonlinear differential equations with superposition formulas
are associated with transitive primitive Lie algebras.* Relat-

(1.3)

(1.4)

) Present address: Centre de Recherches Mathématiques, Université de
Montréal, C.P. 6128, Succ. A, Montréal, Québec H3C 3J7, Canada.
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ed papers were devoted to equations based on the classical
Lie groups and their maximal subgroups.>~® For the motiva-
tion of our interest in superposition formulas and applica-
tions we refer to earlier papers.'>*~'! For an extension of the
approach from Lie algebras to Lie superalgebras, see Ref. 12.
For applications to the study of nonlinear wave equations see
Ref. 13 and references therein. The relation between nonlin-
ear ODE’s with superposition formulas and Biacklund trans-
formations is discussed, e.g., by Chau.'*'*> Such systems of
first-order ODE’s can be used to integrate interesting sec-
ond-order ODE’s.'*"’

The right-hand side of Eq. (1.3) can, for ¢ fixed, be
viewed as an element of the Lie algebra L [with a basis
(1.4)]. As time ¢ varies, the right-hand side of Eq. (1.3)
describes a curve in this Lie algebra.

The solutions of the equations can in turn be written in
the form®”’

y(t) = G(t)y() »

where y, is a constant vector and G(¢) is a path in the Lie
group G, corresponding to the Lie algebra L. In order to
obtain the superposition formula (1.2) explicitly, we pro-
ceed as follows.

(i) Construct the model of the homogeneous space
G /Gy~ M for which the infinitesimal group action is given
by the vector fields (1.4). Here G is the connected compo-
nent of the Lie group corresponding to the Lie algebra L of
Lie’s theorem, G, is the subgroup leaving the origin invar-
iant. The Lie algebra L, C L corresponding to G, is the subal-
gebra of vector fields (1.4), vanishing at the origin. Choose
some parametrization of the group G and write the formula
for the (in general nonlinear) action of G on M. This is for-
mula (1.5).

(ii) Reconstruct the path G(¢) in the group G. To do
this we take m solutions of Eqs. (1.3) and write (1.5) for
them;

Y () = G(D) Yo

(15)

k=1,..m. (1.6)
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We must then solve Egs. (1.6) for the matrix elements of
G(t) (in the chosen parametrization). The set of algebraic
equations (1.6) will determine G(¢) uniquely if the isotropy
subgroup of G leaving the initial conditions invariant is only
the identity group. In other words, y,(?),...,¥,, (#) will be a
fundamental set of solutions if the equations

yk (0) =G(t)yk0’ k= 1,...,m, (1.7)
imply
G()=1d,

where Id is the identity transformation on M [and y, (0) are
viewed as m points on M]. Once G(¢) is completely deter-
mined in terms of the solutions y, (¢), formula (1.5) is the
required superposition formula.

Each solution y, (¢), together with its initial condition
value y, (0), when substituted into (1.6), provides » alge-
braic equations for the matrix elements g;, (¢) of G(¢). Since
the dimension of the Lie group G is by assumption
dim G = r, we need at least r equations to determine G(r).
Hence we obtain a lower limit on the number of solutions m
in a fundamental set, namely,

nm>r. (1.8)

In the case of the G, groups we have r=14and n =5
for the case of maximal parabolic subgroups, n = 6 for sim-
ple SL(3,C) type subgroups, and » = 8 for semisimple sub-
groups like SL(2,C) ® SL(2,C). We shall see that we have
m = 3 in the first three cases and m = 2 in the last. Thus the
inequality (1.8) comes as close as possible to being saturated
and the system of algebraic equations (1.6) is only slightly
overdetermined.

The actual task of reconstructing the group element can
be viewed as a problem in algebraic geometry. Thus we can
consider the general element of G, (C) to be represented by a
matrix G(1)eC’7, The 49 matrix elements g,
(i,k=1,..,7) are subject to 28 orthogonality relations
[since we have G,(C)eO(7,0) ], seven relations expressing
the invariance of three-index tensor T, and n-m relations
obtained from (1.6). The 35 + n-m surfaces in C’*’, corre-
sponding to these relations, must intersect in precisely one
point (for any fixed ¢).

The reconstruction procedure in all cases treated in this
paper will be essentially the same. The equations to be solved
are nonlinear; however, it is always possible to solve them in
two steps. In the first step we solve all the equations that are
linear in some of the matrix elements g;, and express these
elements in terms of known solutions and one or more re-
maining matrix elements. The second step is nonlinear and
consists either of solving a nonlinear algebraic equation for
one remaining matrix element, or of finding the eigenvalues
and eigenvectors of some given matrix.

The final results and the calculations involved can be
quite cumbersome. In these cases we shall only outline the
results here and refer for details to Ref. 18.

The paper is organized as follows. In Sec. I we obtain
the superposition formulas related to the two different maxi-
mal parabolic subgroups of the complex group G,(C) and
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also of the noncompact real group G}'“(R). The simple sub-
group SL(3,C) CG,(C), as well as the corresponding real
forms, are treated in Sec. III. Section IV is devoted to the
case of the semisimple subgroup SL(2,C) ® SL(2,C), and
also to the corresponding real forms.

. SUPERPOSITION FORMULA RELATED TO MAXIMAL
PARABOLIC SUBGROUPS

The complex Lie algebra g,(C) has two different maxi-
mal parabolic subalgebras, denoted p,, and Po, inland IL
Both of them are nine dimensional. The homogeneous
spaces G,(C)/P,, and G,(C)/P,, (P, are the correspond-
ing maximal parabolic subgroups) are hence five dimension-
al.

The nonlinear equations corresponding to the action of
G,(C) on G,(C)/P, are a set of five coupled complex con-
formal Riccati equations [see IT, Eq. (2.11) ]. These are spe-
cial cases of the conformal Riccati equations corresponding
to the action of O(7,C) on the homogeneous space O(7,C)/
P, (seeland II). For the G,(C)/P,, space we have obtained
a set of five coupled equations in which the right-hand sides
are polynomials of order 4 in the dependent variables [see II,
Eq. (2.22)].

The homogeneous spaces GZ(C)/P,,[ (i=1,2) in these
two cases are Grassmannians of isotropic i planes in C">’,
The group G,(C) is realized as a subgroup of O(7,C), leav-
ing a certain third rank tensor T invariant.

When discussing parabolic subgroups P, , it is conven-
ient to use a realization in which G,(C) is realized as a group
of matrices GeC’*" satisfying

GUG=J, 8uTos = Tinn8me8na » (2.1a)
(Nap =08,84 abemn=1,.,7, (2.1b)
Toia= —Tp4e=(Ty) e »
(TDra= — A2 (T))se=1,
(Ty)2e = (1/\2)(Ty)s; =1,
(T3)3= — (AN2) (T =1,

(2.2)

(T4)|7= (T4)26= (T4)35= —1i,
(T5)45= - (l/ﬁ)(Ts)|2=iy
(T6)46= (l/ﬁ)(TG;)B:i!

(T7)47= - (l/ﬁ)(T7)23=i

(the superscript T denotes transposition).

In keeping with II we shall use both homogeneous and
affine coordinates to parametrize the Grassmannians
G,(C)/P,,. In homogeneous coordinates we have

X,
5 — X2 , XI,X3€Cixi, X2€C(7 —2D)Xi , i= 1,2 ,
X,
(2.3)
§E=0

and two points £’ and £ coincide if
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§'=¢H, HeGL(;QC). (2.4)

In affine coordinates the redundancy (2.4) is removed
and we have

Z,
= (zz)’
Zl —_ XlX:i- lecixi, 22 =sz3— IEC(7—2i)><i ,
ZITJi +J,Z, = — ZzTJ7—2izz
(J#EC'“X” and it has 1’s on the antidiagonal and O’s else-
where).

In homogeneous coordinates we write the superposition
formula (1.5) as

(2.5)

X, (1) G, (1) Gty G\ [X(0)
Xz(’) = Gzl(t) Gzz(t) G23(t) Xz(o) ’ (2-6)
X5 (1) G, (1) Gi(t) Gy(t) 5(0)

where the nonlinearity is introduced by the condition (2.4).
In (2.6) G,, (¢) is a complex matrix of the appropriate di-
mension (1<a,b<3).

In affine coordinates the superposition formula is non-
linear, namely,

Zl(t) = [anl(o) + GIZZZ(O) + Gl3]

X [G3lzl(0) + G3ZZ2(0) + G33] -1 E) (2 7)
Zz(t) = [Gzlzl(o) + Gzzzz(o) + Gz3] '

X [G5,Z,(0) + G3,Z,(0) + G551,

where the constant matrices Z,(0), Z,(0) are related to the
initial conditions.

We recall that the equations are written in affine coordi-
nates and that knowing a solution means knowing its affine
coordinates. From them we can get the homogeneous co-
ordinates up to the ambiguity given by (2.4).

Each solution has five independent components and
hence, when substituted into (2.6) or (2.7), provides five
equations for the 14 independent components of the G,(C)
group elements g, . Since we have 3 X 5> 14, at least three
solutions are needed to obtain g, uniquely and we shall
show below that indeed three generically chosen solutions
are sufficient, both for the case of P, and P,.

A. The G3(C)/P,, equations

The maximal parabolic subgroup P, of G,(C) leaves a
one-dimensional lightlike vector space invariant. The Grass-
mannian consists of isotropic one-planes in C'*".

1. A fundamental set of solutions

It is convenient to perform most of the reasoning in ho-
mogeneous coordinates. In this case we have X, X;eC,
X,eC>*!. Let us assume that we know (up to a nonvanishing
scalar factor) the homogeneous coordinates of three solu-
tions u(t), v(t), and w(z). Out of these solutions we can
form four G, (C) invariants, namely the scalar products

(ww) =u"l, (ww)=u"Jw, Ww)=vJw, 2.8)
and the trilinear product
S=Tluww=T,,. (Ju),v,w. . 2.9)
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We proceed to establish the conditions to be imposed on
the initial conditions #(0), v(0), and w(0) for their joint
isotropy subgroup of G,(C) to be the identity group. Thus

the conditions
Gu(0) = Au(0), Gv(0) = uv(0),

ApveC, Auv#0,

Gw(0) = vw(0),
(2.10)
should imply

G=pl, peC, p#0. (2.11)

With no loss of generality we can, in view of transitivity,
choose

u(0) =(0000001)"a, a#0. (2.12)

The first of conditions (2.10) determines all off-diagonal
elements in the last column of G tobeg,; =0,/ = 1,...,6. The
orthogonality condition in (2.1) then yields g, =0,
i=2,...,6,and also g,,8,7 = 1. Combining these results with
the invariance of T'in (2.1) [choosing, e.g.,c = 7in (2.1)],
we obtain further restrictions on g, . Finally, the isotropy
group of u(0) in (2.12) consists of G,(C) matrices, satisfy-
ing

87 = 0, i=1,..,6, 818 = 1,
g; =0, j=2..6,
82=82=8:2=0, 853=853=8:=0.

Now let us choose the initial condition for the second solu-
tion to be

v(0) =(1000000)"8, B#O0. (2.14)

Two constant vectors # and ¥ on the Grassmannian can be
transformed into 4(0) and v(0) as long as their scalar prod-
uct satisfies

(@,0) = (u(0),0(0)) =aB #0. (2.15)
Imposing the second of conditions (2.10), and using orthog-
onality as well as the invariance of the tensor 7, we find that

the isotropy group of the pair {u(0),v(0) } consists of matri-
ces of the form

(2.13)

g, 0 0O O 0 0 0
0 g, & O 0 0 0
0 &, 8 O 0 Y 0
G=] 0 0 0o 1 0 0 0 1,
0 0 0 0 g8 —8& O
0 0 0 0 —882 &8s 0
0 0 0 O 0 0 gin'
(2.16)
with
811(822833 — 823832) = 1. (2.17)

We take the initial condition for the third solution in the
general form

w(0) = (w,(0),w,(0),...w,(0))7y, ¥#0. (2.18)

The matrix G of (2.16) will leave (2.18) invariant (up
toafactor 4 #0) if the remaining matrix elements g, satisfy
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(A —g)w(0) =0,

(4 —gi Hw,(0) =0,

(822 — A)w,(0) + g,3w5(0) =0,

83,w2(0) + (853 — A)w;(0) =0,

(822811 — A)ws(0) — 8,,823w6(0) =0,

— 81183:Ws(0) + (81,833 — A)we(0) =0.

These conditions will imply that g,, = 6,,i.e.,G= 1,if
and only if the components of w(0) satisfy

w,(0)#0, {w,(0),w,(0)}5{0,0},

w,(0)we(0) + w;(0)ws(0) #0.

The invariants (2.8) and (2.9) for our choice of initial
vectors are

@(0),0(0)) =aB, (u(0),w(0))=ayw,(0),
{v(0),w(0)) = Pyw,(0), S=iafByrw,(0).

Moreover, the isotropy condition w” (0)Jw(0) = 0im-
plies

w,(0)we(0) + w;(0)ws(0)
= —w,(0)w,(0) —} w} ®
= (1/2a°8%*P") (S
— 2(u(0),v(0))(#(0),w(0)}{r(0),w(0))] .

We arrive at the following result.

Theorem 1: A fundamental set of solutions of the system
of nonlinear ordinary differential equations associated with
the action of G,(C) on G,(C)/P,, consists of any three par-
ticular solutions u, v, and w satisfying the following condi-
tions.

(i) At least two of the scalar products (u,v), (1,w), and
(v,w) are nonzero.

(ii) S = T(Ju)vw#0.

(iii) 82 — 2(u,v) (u,w) (v,w) #£0 .

These conditions must be satisfied by the initial dataat = 0

to obtain a local superposition formula and for all ¢ for a
global one. [ ]

(A — Dw,(0) =0,

(2.19)

(2.20)

(2.21a)

(2.21b)

2. The superposition formula

In order to turn (2.7) into a superposition formula we
must now express all the matrix elements g, (¢) in terms of
three particular solutions, say #(2), v(t), and w(t), satisfy-
ing the conditions of Theorem 1.

The construction follows the outline presented in the
Introduction and parallels the scheme used in the proof of
Theorem 1.

Using two solutions, say #(¢) and v(t), orthogonality
and the invariance of the tensor 7, we express all elements
g linearly in terms of g,, and g,, with a,b = 2,3. We also
obtain one nonlinear relation between the remaining five ele-
ments. The third solution w(¢) is then substituted into (2.7).
This provides six more equations: from four of them we ex-
press g,, (a,b =2,3) in terms of g, , still only solving linear
equations. One more equation then provides a quartic equa-
tion for g,,(#). This equation has four different roots, but
only one of them satisfies the obligatory relation g,,(0) = 1.
For all details and the final formulas see Ref. 18.
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B. The G»(C)/P,, equations

The group P, leaves a two-dimensional completely iso-
tropic subspace of C’ invariant. The corresponding homoge-
neous space G,(C)/P,, is a subspace of the Grassmannian
of isotropic two-planes in C’>2. We shall proceed as in the
case of P,,‘I , remembering, however, that, e.g., the homoge-
neous coordinates £ of (2.3) parametrize a matrix in C’*2.

1. A fundamental set of solutions

We shall again need three particular solutions. We
choose the initial conditions for the first two in the form

u(0) = (0,0,1)"a(0), v(0) = (1,0,0)’B(0),
a(0),8(0)eGL(2,0) . (2.22)

The requirement that a G,(C) matrix [as in (2.6)]
should stabilize #(0) and v(0) implies

G;=0, G,,=0, G,, =0, G, =0. (2.23)
Invoking the invariance of the tensor T, we find, element by
element, that

G,=0, G;,=0, (2.24)

and that the general element of the isotropy group of the two
initial condition sets #(0), v(0) of (2.22) is

855866 —88; 0 0 0 0 0
— 855876 8558171 60 0 O 0 0
0 0 g 0 O 0 0
G= 0 0 0O 1 0 0 01,
0 0 0 0 g O 0
0 0 0 0 0 g 8«
0 0 0 0 0 g% &n
(2.25)
with
855866877 — 867876) = 1, 833855 =1.

Let us choose the initial conditions for the third solution to
be
w, 0)
w(0) ={ w,(0)
w3(0)
We shall also denote the two columns in w(0) by w,, (0) and
Wy (0),a=1,..,7.
Using the three initial conditions “bivectors” we can
form the following bilinear G, (C) invariants
u"(0)J,v(0) = a”(0)J,8(0) ,
u"(0)J,w(0) = a”(0)J,w,(0)y(0),
vT(0)J,w(0) = B T(0)Jw,(0)¥(0) . (2.28)
From the stabilization Gw(0) = w(0)H, HeGL(2,C), we

(2.26)

7(0), 7(0)eGL(2,C).

(2.27)

get
G, w,(0) =w,(0)H, (2.292a)
g 0 O
0 1 0 |w(0)=uw,(0)H, (2.29b)
0 0 g
G3;w;5(0) = w5 (0)H . (2.29¢)
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This system of 14 equations will imply that the point
isotropy group of the three initial conditions is G = 1, if and
only if det w,(0) #0 or det w,(0) 720 and

D =w;,(0)w,,(0) — w3, (0)w,,(0)#0,

D,=w;,(0)ws,(0) — w3, (Mws,(0) #0,

Di=w,,(0)ws,(0) — w,;,(0)ws,(0) #0.

In fact, suppose that det w,(0)#0, then H = w; '(0)
X G33w;(0) and
g3 0 0
0 1 0 |w(0)—w,(0)w; '(0)Gy3w;(0) =0,
0 0 g
(2.30)

which is a linear system of six equations for g5, g5, ee> L7
876 877 With the unique solution

8ik =0 - (2.31)

To put all the conditions above in an invariant form that does
not depend on the specific choice of %, v, and w, we note that
we can construct certain invariants (not necessarily all inde-
pendent), such as

Sijk = Topeag U iVpiWei 5 (2.32a)
ik = Taped oo Ui Wy W »

abec=1,.,7, iLjk=12, (2.32b)

ik = Taped oo Vari Wy Wy - (2.32¢)

Let us choose u, v, and w in the simple form
u=(001)7, v=(100)7, and w = (1,w,(0),1)". The justi-
fication of this choice is that the nonvanishing invariants in
(2.32) are given only in terms of w,(0) as

Si21 = i04,(0) ,

S22 = i04,(0) ,

St = —Su + \/—2_im5](0) ’

Sty = —Sin +2iws,(0),
T2 = \/iiw:!l(o) + S,

S = \/iia)n(O) — S
We sum up all the results of this subsection as the following
theorem.

Theorem 2: A fundamental set of solutions of the equa-
tions associated with the action of G,(C) on G,(C)/P,,
consists of three particular solutions %, v, w with initial con-
ditions satisfying the following.

(i) At least two of the determinants det{u(0),w(0)),
det(x(0),v(0)), det(v(0),w(0)) are nonzero.

(il) (St — S8 — (ST, + 812)812,#0,
(ST — 81200 (8512 — Si22)
— (852 +8122) (§ 112 + 81200 #0,
812108512 — S122) — 8122(S {12 + 8121) #0.

(2.33)

2. The superposition formula

The procedure of reconstructing G(¢)eG,(C) is very
similar to the one described for P, . Indeed, using two solu-
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tions #(t) and v(t), orthogonality, and the invariance of the
tensor T, we express all the elements g, of G(¢) linearly in
terms of gs5 and g, with a,b = 6,7. The third solution gives
all the remaining information: the g, (a,b = 6,7) are then
expressed linearly in terms of g55 and g,5(¢) satisfies a cubic
equation which admits only one solution such that
g55(0) = 1. For all details see again Ref. 18.

C. Discussion of real cases G}°(R)/P,, and G}°(R)/P,,,

These cases are completely analogous to the complex
cases above, except that all the entries have to be real. We
also have to consider a tensor 7' = — iT in order to have a
tensor with all real entries. The fact that the field of complex
numbers C is algebraically closed, did not play any role
above, so the transition to R poses no difficulty. The nota-
tions are the same asin I and I1, i.e., GY(R) is the noncom-
pact real form of G,(C).

lil. SUPERPOSITION FORMULAS RELATED TO
MAXIMAL SIMPLE SUBGROUPS

This section is devoted to the ODE’s related to the ac-
tion of G,(C) on the space G,(C)/SL(3,C), GS(R) on
GS(R)/SU(3), GYS(R) on G)“(R)/SL(3,R) and
GYS(R)/SU(2,1). The subgroups are of (complex, or real)
dimension 8. We are hence dealing with six-dimensional ho-
mogeneous spaces and with systems of six equations in each
case. The equations spelled out in Ref. 2 are all special cases
of projective Riccati equations.

We again use a representation of G, (C) as a subgroup of
0(7,C); however, the matrix J in (2.1a) is chosen to be the
identity matrix I, when studying G,(C) or GS(R). When
considering the noncompact real form GY“(R), we choose
J=J,, =diag(1,1,1,1, — 1, — 1, — 1). The invariant ten-
sor T is completely antisymmetric in this realization and in
agreement with (2.12) of I we take

Ty = T|54 = TI63 = T235 = T264 = T374 = T576 =1
3.1

(all components not related to these by permutations, van-
ish).

We can again write the superposition formula in the
form (2.6) or (2.7). However, for G,(C) we shall now have

XI,X:;GCSX l’ XZECI X1 ,
Z,=X/X,, Z,=X/X,,
XX, +XIx,+xIx, =1,
and the six components (Z,,Z,) are all independent.
Each solution of the equation provides six equations for
the 14 independent components of G(¢). Since we have

3X 6> 14, we shall again need at least three solutions to re-
construct G(¢) and again three will be sufficient.

(3.2a)

(3.2b)

A. The G2(C)/SL(3,C) equations
1. Fundamental set of solutions

We choose the first known solution u(¢) to satisfy the
initial condition

#(0) =(0001000)7 (3.3)
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[satisfying (3.2b) for = 0 and hence for all ¢]. The isotropy
group of u(0) is characterized by the condition

Gu(0) = Au(0), AeC, A #0. (3.4)
This implies g, = 0 for i = 1,2,3,5,6,7. Orthogonality of G,
i.e.,, GTG = I further implies g,; =0, i = 1,2,3,5,6,7, and
g2, = 1. Invariance of the tensor T can be used to relate
columns S, 6, and 7 of G to columns 1,2,3, and 4,

8s = — T8 8kas
8 = — Tjjkg,zgu, 87 = — ﬂykgjagm .

Explicitly we find that the general form of an element of
the isotropy group of (3.3) is

(3.5)

G, O — 84463
G=] 0 gu 0 ,
G, O 840G,
gu=T1, G,,,G,,C’3. (3.6)

We choose the second solution to satisfy the initial con-
_dition

J
gy O 0 0 0 0
0 8 —818u48n O 0 — 844862
0 &5 811844822 0 0 — 844872
G=] 0 0 0 aa 0 0
0 0 - 0 0 811844 0
0 & 811844872 0 0 844822
0 &2 —818482 O 0 844832

gf.=l, 3244=1,

(g44—g“)cosa=0.

Thus four elements in the second column, as well as the
signs of g,, and g,,, remain to be pinned down. Notice that if
we choose a# /2, we already have g,, = g,,.

Let us choose a third solution w(z) that satisfies the
general initial condition

w(O) = (wl(O)9w2(0),---’w7(0))r’
w(0)w(0) =1.

We can form four invariants out of the vectors u(0), v(0),
and w(0), namely,

(u(0),0(0)) =cos a, (u(0),w(0))=w,(0),
(v(0),w(0)) = sin a w,(0) + cos a w,(0)
and

(3.10)

(3.11)

S = Ty u,;(0)v;(0)w, (0) =sina ws(0) . (3.12)

The requirement that G of (3.8) should stabilize w(0), i.e.,
Gw(0) = Aw(0) implies

(g —Aw,(0) =0, (g4 —Awy(0) =0,

3.13
(811844 — A)ws(0) =0. ( )
Thus if we require that
ws(0) #0 (3.14)
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v(0) = (sin ,0,0,cos 2,0,0,0)T, O<a <. 3.7)

Clearly we have v(0)2=1, (u(0),0(0))=u(0)"v(0)
= cos a. The requirement that G in (3.6) should belong to
the isotropy group of v(0), as well as of #(0), imposes
further restrictions. Thus Gv(0) = Av(0), AeC, A #0 im-
plies

gnu=A4, (g—A)cosa=0,

81=8:1=81 =81 =8n=0.
Orthogonality of G implies

g=1 g8;=0,

Further relations are obtained from the invariance of the
tensor T

i=235,6,7.

87 = — Tju8&s8ue -

Finally, an element of the simultaneous isotropy group
of #(0) and v(0) has the form

0
— 81872
811862
0 , (3.8)
0
— 811832
81182
(3.9)
|
and that at least two of the relations
w,(0)#0, w,(0)#0, or cosa#0 (3.15)
hold, we obtain
gn=8u=1=4. (3.16)
Furthermore, the condition Gw(0) = w(0) yields
w,(0) w,(0) w,(0) — w,(0)
wy(0) —w3(0) —we(0) —w,(0)
we(0) —w;(0) w,(0) w,(0)
w7(0) w(,(o) hae w3(0) wz(o)
82 — 1
x| ¢ |-=o0 (3.17)
862
872
The determinant of this system is
D = [w,(0)* + ws5(0)* + we(0)* + w,(0)*]%. (3.18)
If w(0) is such that
D #£0, (3.19)

then (3.17) implies 8y = 1, 832 = 8e2 = 8n = 0. The iSO'
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tropy group of u(0), v(0), and w(0) is thus the identity
group.

We arrive at the following theorem.

Theorem 3: A fundamental set of solutions of the non-
linear ODE’s associated with the action of G,(C) on
G,(C)/SL(3,C) consists of three particular solutions (),
v(t), and w(t). When their initial conditions «(0), v(0), and
w(0) are given in homogeneous coordinates, they must, in
addition to the obvious conditions #? = v* = w? = 1, satisfy
the following.

(i) At least two of the scalar product (u,v), (u,w),

(v,w) are nonzero.

(ii) = Tuvw+#0.

(iii) 1 — (u,0)*> — (uw)? — (v,w)?

+ 2(uw) (v,w) (w,u) — S2#0. [ |

Comments: (1) Conditions (i)—(iii) are generic ones
and they must be imposed on the initial conditions at ¢ = 0.

(2) Conditions (i) are an invariant formulation of
(3.15). Condition (ii) in view of (3.12) assures both
sin a#0 and that (3.14) holds [i.e., guarantees that u(0),
v(0), and w(0) are linearly independent]. Condition (iii) is
an invariant rewriting of (3.19).

(3) The equations are written in affine coordinates and
hence so are the solutions, which have six components. The
seventh component in homogeneous coordinates is calculat-
ed, up to an irrelevant sign, from the normalization condi-
tions (e.g., u* = 1).

(4) The invariance of the scalar products and S under
G, (C) implies that these expressions are time independent,
e.g., S(2) = S(0).

2. The superposition formula

In this (and only this) case we present the final superpo-
sition formula explicitly, though we drop most of the deriva-
tion. We choose three particular solutions of the nonlinear
ODE'’s in such a manner as to satisfy the conditions of
Theorem 3. These solutions are given in affine coordinates
and we denote them as
p() = (o), () = (v, o) = (0,0,)7,

i=123 a=5,6,7. (3.20)
We  define their norm squared by, eg,
w>=pi +pud +pk +p? + p? + 42 . In homogeneous co-
ordinates we have

Hi V;
u(®)=11Ja(, ve)=|1 |B),
a Va
(3.21)
w;
wn =1 1 @),
w

a

where a, 3, and y are not known. We make a specific choice
of initial conditions, so as to minimize algebraic complica-
tions, namely,

#(0) =(0001000)7, »(0) = (1/42)(1001000)7,

w(0)=%(1101100)7—, (3.22)
satisfying
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u(0)*=v(0)*=w(0)*=1. (3.23a)
Since relation (3.2a) must hold for all times ¢, we also have

(W+Da’=1, (V+1)B2=1, (o*+1)p*=1.
(3.23b)

The superposition formula can be written in affine co-
ordinates as

£ = 37184 (08(0) + 2] _ 58, ()7,(0) + g4 (1)
L 38y (DE(0) + 2] _ 840 (N7, (0) + gas(D)
=123,
218, (06,(0) + 2] _ 58, (17, (0) +ga4(t)(
o 3185 (DE€(0) + 25 _ 5845 ()75 (0) + g4y (£) ’
a=>5,6,7.

Following the outline presented in the Introduction, we
obtain

3.24)

2
_ +1
iy (EEL,
8a1 22 wev + 1 4
g = W+ DV (0, - ——y,
wo+1 pev + 1
_ 1
+ (p.2 4+ 1)~v2 o TGBYVB#},),
(u’>+1'?
8oz = —Hm— Topo Top, vty

X( L w, — L v)
po+1 7 pv41”
R
(pv+1)

Bas = (W + D",
8as = [1/(P'V+ 1)]Taﬂyﬂﬁv7 ’
1
po+ 1

Ta;w TVBr T, woo VeVolylo
(3.25)

T,

Bas = aBy Vﬁnu 14

T, o, +
pyHp@y pev + 1

1
pev + 1

Ta B

Y

— W+ Touo Tupy Vatb oty 5

p’+1
(v + ) (po+1)
1
po+ 1
1 (p2+1)—l/2
T, vV, ——_—
pv + 1 syHpVy (pv+ 1)

2
pr+1
XTaﬁTTYPG(p'.v_'_l VB —lu'ﬁ)vp:ua .

a7 = — Vﬁw'y

T apyMp®@y

B. The GS(R)/SU(3) equations

The equations, solutions, and superposition formulas
coincide with those given above for G,(C)/SL(3,C), except
that all entries are real [in the superposition formulas
(3.24), etc.].
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C. The GY°(R)/SL(3,R) equations

Instead of the metric given by the identity matrix ,, we
use the metric /,; =diag(1,1,1,1,—1,—1,—1,). We
must hence transform the G, invariant tensor 7. Within
G,(C) the appropriate transformation is

I, =HTLH, T'=H"'THH,

H = diag(1,1,1,1,i,i,i) . (3.26)
Introducing the matrices 7, = — T'7eC™>’, such that
(T)p = Ty, (i, jk=1,...,7), we find that (3.26) implies
T;=iT; forj=1234and T; = —il,,T, (k=5,6,7).
For GY°(R) it is preferable to use a real tensor, so we put
T" = —iT’, and obtain

T_;, =T, j= l,...,4, T;<, = - 14»3 Tk

Fid

(k=5,67).
(3.27)

All the results obtained for G,(C)/SL(3,C) can now be
carried over to GY°(R)/SL(3,R), except that the equations,
solutions, and matrix elements g, are now real. All scalar
products must be interpreted in terms of the appropriate
metric, e.g., (W,V) =V + HaVs + HaVs — UsVs — HeVe

— p4v, and the tensor T'is replaced by 7" asin (3.27). The
three fundamental solutions can be chosen as in (3.20) and
(3.21) [i.e., we have, e.g., u>(2) =1].

D. The G¥°(R)/SU(2,1) equations

The group SU(2,1) leaves a negative length vector in
R invariant, hence GY“(R)/SU(2,1) is realized, in ho-
mogeneous coordinates, in terms of vectors xeR”>', satisfy-
ing,e.g., x> =x"1,; x = — 1. The fundamental set of solu-
tions must be chosen appropriately. Without proof we state
the theorem that is an adaptation of Theorem 3 and is proved
in a similar manner.

Theorem 4: A fundamental set of solutions of the non-
linear ODE’s associated with the action of GY“(R) on
GYC(R)/SU(2,1) consists of three particular solutions
u(t), v(r), and w(r). In homogeneous coordinates we
choose the initial conditions to satisfy #*> = * = uw’ = — 1,
and the following invariant conditions.

(i) At least two of the scalar products (u,v), (4,w),

and (v,w) are nonvanishing.

(ii) S=T"(L4;u)ow#0.

(iii) — 14 (2,0) + (ww)* + (v,w)?

+ 2(w,v) (uw) (v,w) + S2#0. [ ]

An example of a suitable choice replacing (3.22) is

u(0) =(0000001)7,
»(0) = (1/y2) (0000101)7,
w(0) =1 (10001117,

The superposition formula can be derived in exactly the
same manner as in the complex case and will be very similar.
We do not present it here.

(3.28)

IV. SUPERPOSITION FORMULAS RELATED TO
MAXIMAL SEMISIMPLE SUBGROUPS

The spaces to be considered in this section are
G,(C)/[SL(2,0) XSL(2,0)], G7(R)/[SU(2) xSU(2)],
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GYS(R)/{SU((2)xSU(2)], and GYS(R)/[SU(1,1)
XSU(1,1)]. We make use of the metric 7, in the first two
cases, I, , in the last two. The dimension of these spaces is
d = 8 (complex in the first case, real in the other three). We
are hence dealing with eight equations and each solution has
eight independent components. Since we have 2X 8> 14,
two solutions provide more than enough equations for
8ir (t). We shall show that in this case a fundamental set of
solutions consists of just two solutions.

In homogeneous coordinates each solution is written as
a “trivector” ueF > (F=Cor F=R):

X,
u=\Xx/1,
X,
u~i=uH, HeGL(3,F), X X,eF*3, X,eF'>3,
(4.1)

where u and # represent the same point in the homogeneous
space. The redundancy inherent in (4.1) is removed by using
affine coordinates

Wi=XX;', W,=X,X;"'. (4.2)

We can choose the normalization to be such that we
have u"u =1, i.e.,

XX, + XX, +X1X,=1,. (4.3)

A. The G2(C)/[SL(2,C) xSL(2,C)] equations
1. A fundamental set of solutions

With no loss of generality we choose the first known
solution u(¢) to satisfy the initial condition

0
u(0)=|0 (4.4)
I
satisfying (4.3). We write an element of G,(C) in the form
Gl 1 GI2 Gl3
G=|G, Gn Gy,
G}l G32 G}3
G1,G,3,G31,G € €%, G,,G3,,G 1,6 1;€C°,
Gy, =g44€C. (4.5)
We shall also use the notation
G=1{g.}, ik=1,..7, (4.6)

thus, e.g., the matrix elements of G,; are g;, with i=1,2,3,
k=15,6,7.

The isotropy group of u(0) consists of matrices
GeG,(C) satisfying

Gu(0) =u(0)H, HeGL(3,0), 4.7)
which implies

G;=0, Gyy=0, H=G,y;.
Orthogonality G” G = I, further implies
G;, =0, G;,=0, (4.8)
GITIGII+G{IGZI=I3’ G,TZG,2+G2TZG22=1, (4.9)
GlT|G22+G|T2G|2=O, G3T3G33=I3~ .
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The invariance of tensor 7" makes it possible to express
columns 1, 2, and 3 in terms of columns 4, 5, 6, and 7:

8o = — T,f8ualss)

B2 = — TofBus8rer 8us = — Tyef8ea8yr -

Using (3.1) to make (4.10) explicit, we find that the iso-
tropy group of #(0) in (4.4) consists of matrices of the form

(8sl; — R)G3; Gy, 0

(4.10)

G=| -GLG;; gs 0], (4.11a)
0 0 G;
with
0 834  — 8
R={| -8 0 8}
84 —8ua 0
Gl,G,+g,=1 GLG,=1I,. (4.11b)

Thus G depends on six independent parameters: threein G,;,
three in G ,.

We take the initial data for the second solution v(¢) in
the form

X
v(0)=] 0}
Y
vT(0)v(0) =1,, det Y #0,
X, YeC>3, detX #£0. (4.12)

The joint isotropy group of #(0) and v(0) consists of matri-
ces of the form (4.11) satisfying Gv(0) =v(0)H,
HeGL(3,0), i.e., such that

(844l — R)G33 X' = X'Gy3,

X'=XY"', G,G;;X'=0. (4.13)
From (4.13) we find G|, = 0 and thus
G,=0, R=0, g,=1. (4.14)

The as yet unspecified orthogonal matrix G, satisfies
G X'=X'G5;. (4.15)

Let us now decompose X’ into its symmetric and anti-
symmetric parts,

X' =S+4, S=S7, A= —-4T7, (4.16)

where, with no loss of generality, we can assume that S is
diagonal. If all three eigenvalues of S are different and if at
least two of the matrix elements a,,, @, 5, @, of 4 are nonzero,
then (4.15) implies

Gy=AlL, A= +1. (4.17)

By continuity we can impose A = 1, and thus the isotropy
group of the two initial data trivectors #(0) and v(0) is the
identity group.

We thus arrive at the following theorem.

Theorem 5: A fundamental set of solutions of the non-
linear ODE’s associated with the action of G,(C) on
G,(C)/[SL(2,C) ® SL(2,C)] consists of two solutions #(¢)
and v(t), satisfying certain independence conditions. In ho-
mogeneous coordinates the two solutions can be chosen to
correspond to the initial conditions
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0 X

u(0)=10} vO)=]0],
I Y
X,YeC>?, det X #0, det Y #0, (4.18)
Ay a B
XY '=| —-a A, v, X X+YTY=1,,
-8B —v A
where at least two of the numbers @, B, ¥ are nonzero and
AiF# A FE A #E A, n

Comments: (i) The initial conditions (4.18) are not the
most general ones possible for a fundamental set of solutions.
A trivial generalization is obtained by applying an arbitrary
constant G, (C) transformation to #(0) and v(0) as given in
(4.18).

(ii) The conditions on #(0) and v(0) could be formulat-
ed in an invariant manner, e.g., by requiring #"u = vTv = I,
detu"v#0 and imposing conditions on the quantity
Soix = Tpcttpitig (a,be=1,..,7; i,k = 1,2,3), but we shall
not go into this here.

2. The superposition formula

The superposition formula, in terms of affine coordi-
nates, is

W.(t) =[G, W,(0) + G,,W,(0) + G,5]

X [G3,W,(0) + G5, W,(0) + G317,
Wy (1) =[G, W(0) + G, W,(0) + Gs)

X [G3,W,(0) + G5, W,(0) + G331 7',

where the G, are asin (4.5). The constant matrices W, (0),
W,(0) in (4.19) provide the initial conditions of Theorem 5.

The reconstruction of the elements of G, (¢) follows the
outline presented in the Introduction. In fact, using the two
particular solutions W, (t) and W,(¢), orthogonality and in-
variahce of the tensor 7, all the submatrices G, can be ex-
pressed linearly in terms of G,;(#). The equation satisfied by
G,;(1) is of the form

G, W,(0)G ;' =7, (4.20)

where Yis completely known in terms of the particular solu-
tions and can be solved to determine uniquely G,; by using
the condition G;;(0) = I,. For details see again Ref. 18.

(4.19)

B. Discussion of the real cases

The equations related to the compact space
GS$(R)/[SU(2) XSU(2)] coincide with those for the com-
plex case, except that all coefficients and solutions are real.
The same holds for the superposition formulas: they coin-
cide with (4.20).

The GY(R)/[SU(2)xSU(2)] equations require a
very slight modification with the respect to the complex
case: the tensor T'should bereplacedby T " asin (3.27), I, by
I,;.

The GY(R)/[SU(1,1) XSU(1,1)] case is somewhat
different, in that homogeneous coordinates are introduced
as
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X, X5, Y,eR¥,

Y= (Y ') )
Y,
Affine coordinates are
W, =X,Y"!, W,=X,Y~!, detY+0. 4.22)
Again the tensor T is used instead of T, the metric is
1,;. The reconstruction of the group element GeG}“(R)

must take the different subdivision of # into account, but
proceeds along lines analogous to the complex case.

Y,eR"™, wu=1,,, (4.21)

V. CONCLUSIONS

One conclusion to be drawn from this paper is that
methods developed for obtaining nonlinear ODE’s with su-
perposition formulas, as well as the superposition formulas
themselves, can be generalized from the classical Lie groups,
to the exceptional simple Lie groups. In the present series we
have treated the exceptional group G,(C) as well as its two
real forms, GS(R) and GY“(R). The ODE’s correspond to
the action of the group G, on G,/G, where G is some maxi-
mal subgroup of G,. If G is parabolic or simple, the superpo-
sition formulas uses three particular solutions to express the
general one. If G is semisimple, but not simple, two particu-
lar solutions suffice.

In our overall discussion of nonlinear ODE’s with su-
perposition formulas, some results are basis independent,
others depend on a choice of coordinates. If we are given a
system of equations of the type (1.3), we can immediately
read off the vector fields X, of (1.4) and determine whether
they generate a finite dimensional Lie algebra. If they do,
then this algebra L is determined in a nonambiguous man-
ner, as is the subalgebra L, of vector fields vanishing at some
chosen origin. The Lie algebras L and L,, then determine the
Lie groups G and G,C G, which completely specify the
manifold M~ G /G, and the action (1.5) of G and M.

Our approach is a complementary one. We choose a pair
of Lie algebras L and L, such that they determine a transitive
primitive Lie algebra, in order to obtain an indecomposable
system of equations.® Once the choice is made the groups G
and G, as well as the homogeneous space M~ G /G, are
completely determined. This determines the number of
equations n = dim G — dim G,. The number of solutions m
that constitute a fundamental set is also invariantly defined.

The actual form of the considered equations depends on
achoice of coordinates in M, and is highly nonunique. To see
this, let G be SL(2,R) and G, its two-dimensional affine sub-
group. The usual coordinates on G /G, in this case lead to the
vector fields

{_d. 4., i}

dy’y dy’y dy
and hence to the Riccati equation

W) =Z,(1) + Z,()y + Z5(1)y* .
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This equation represents an infinite class of equations, asso-
ciated with the same G/G, and obtained by putting
y = ¢(u), where ¢ is any locally invertible function. For in-
stance, choosing y = tan(u/2), we obtain a “disguised”’ Ric-
cati equation

uty=2Z,+2Z,+ (Z,— Z,)cosu+ Z,sinu .

Similarly, each of the equations treated in this series,
where we put G = G, and G, runs through maximal sub-
groups of G,, represents an infinite class of equations, each
member of which corresponds to a chosen coordinate sys-

tem.
A final comment is that for G,(C) we have discussed

four nonequivalent systems of equations, namely, (2.11),
(2.22), (3.9), and (4.7) of II (with constraints discussed in
II). The equations corresponding to the maximal parabolic
subalgebra P, have quadratic nonlinearities and are a spe-
cial case of equations associated with the space
O(7,C)/SIM(5,C), where SIM(5,C) is a maximal parabolic
subalgebra of O(7,C) (see I and II). However, for the gen-
eral O(7,C) equations we would need six solutions to obtain
a superposition formula, whereas for G, we need only three.

The G,(C)/P,, equations have quartic nonlinearities
whereas the corresponding O(7,C)/OPT(5,C) equations
have quadratic ones. Moreover, the number of equations is
five and seven, respectively.

The G,(C)/SL(3,C) equations have quadratic nonlin-
earities and are a special case of O(7,C)/0(6,C) equations,
which are in turn a special case of projective Riccati equa-
tions for SL(7,C)/Aff(n,C). The number of solutions in a
fundamental set is m = 7, m = 4, and m = 3 for SL(7,C),
0O(7,C), and G,((), respectively.

Finally, for G,(C)/[SL(2,C) ® SL(2,C)] we have
eight equations with nonpolynomial nonlinearities. The em-
bedding into O(7,C) gives 12 equations, associated with the
space O(7,C)/[0(4,C) ® O(3,C)], and the nonlinearities
are quadratic.
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In the paper, first-order partial differential equations are studied on superspace; the key point
is the use of a suitable generalization of the Cartan—Kihler integration theorem on superspace.
By means of this result, it is possible to investigate the characteristic fields and the structure of

the solutions.

I. INTRODUCTION

The aim of this contribution is, first of all, to show how
the Cartan—Kihler integration theorem' can be useful in
studying particular topics in the framework of supermani-
fold theory.

Among these, we mention the problem of partial differ-
ential equations on superspace (we say superspace since the
treatment is essentially local). On the other hand, since the
Cartan—Kihler integration theorem is well suited to study
the extensions of an integral manifold to another one of
greater dimension, we see applications to the so-called
rheonomy problem.? Finally, in this framework we can
study initial data problems, thus proceeding toward the
characterization of an evolution problem in some general-
ized sense.

As a final remark, we wish to point out that the tech-
niques studied here for first-order partial differential equa-
tions can be fruitfully used for a large class of physically
interesting systems of partial differential equations.

The main techniques used to study such superspace
problems are essentially the following.

(a) The superfield expansion in powers of the odd &
coordinates is

£(x8) =3 £.(x)0
M

This technique, by transforming the problem of finding a
superspace function into one of determining a set of func-
tions of even coordinates, is very powerful, but it only par-
tially solves our problem and does not clarify the structure of
the solutions.

(b) There are Banach analysis techniques that are spe-
cialized by taking into account the structure of the sheaf of
supersmooth functions; in this framework we find the gener-
alized version of the Frobenius theorem.? These results are
applicable only in same cases.

(¢) Finally, in this paper we show how a suitable gener-
alization of the Cartan—Kibhler integration theorem* can be
used for this scope.

Let us sum up the main advantages of this last tech-
nique.

(i) The method is of practical use. The solutions are
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explicitly found by using the Cauchy—Kowalewsky theorem;
this technique requires only the existence of algebraic opera-
tions already well defined in view of the Banach algebra
structure of the ground exterior algebra of the superspace.

(ii) There is a deep linkage with the problem of extend-
ing a given integral manifold to another of greater dimen-
sion; this result thus furnishes a generalization of the Cauchy
evolution problem.

(iii) Following this method one can try to extend the
remarkable theory of Guillemin for an overdetermined dif-
ferential system.” Briefly, this author was able to decompose
a system of partial differential equations into (under)deter-
mined operators that satisfy suitable commutation relations;
the so-called Guillemin’s normal form arises.

Further results on this topic were obtained by Gold-
schmidt, Quillen, Spencer, and Sternberg. A very good de-
finition of characteristic vectors for differential systems was
given. Even though in this paper we shall consider only first-
order partial differential equations, this fact is also very use-
ful in supermanifold theory.’

The limits of this analysis are (i) only the local behavior
of the solutions can be studied; (ii) we are not able to exit
from the framework of superanalytic functions [however,
recent developments in this direction seem to give ideas for
solving this problem (Yang’) ]; (iii) it is often difficult to get
an explicit formula for the complete integral; and (iv) there
are cases in which the Cartan—-Kahler theorem cannot be
applied; these, of course, cannot be discussed.

Concerning the definition of superspace, in this paper
we use an infinitely generated exterior algebra, namely a
Banach Grassmann algebra Q,° playing the role of the basic
structure to construct the superspace. This algebra is a real,
Z,-graded commutative Banach algebra Q satisfying the fol-
lowing properties.

(a) Given @ = Q, o @, with 0, = R Q/; denote by o
Q,— R the body map.

(b) For each continuous Q, linear map f: Q, — Q, there
exists a unique element veQ, , ; such that f(u) = vu, for all
ueQ,.

These properties are satisfied by B~ , the inductive limit
for L — oo of the Grassman algebras B- over R-.

Now we construct the vector superspace, vss for short,
as the Banach @, module Q™" = (Q,)™ X (Q,)". Evenif we
are not interested in a complete construction of supermani-
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folds we have to specify the sheaf of functions we shall con-
sider. A function f: @ ™" — Q ™" will be called supersmooth if
itis C* and if its Fréchet differential is Q, linear:

Df, (ph) = pDf, (h),

for each xeQ ™", heQ ™", and peQ,.

A supersmooth function is called superanalytic (sa for
short) if it is analytic, too. A vector xeQ™™ will be denoted
with x=x*=(x,0*), i=1..m a=1,.,n A

= 1,...,m + n. In the literature there are different defini-

tions of superspace’ related to different choices of the alge-
bra Q and of the sheaf of functions used. In my opinion, the
results obtained here would also be true when adopting these
different definitions.

Il. THE MAIN THEOREMS

First of all, analyze the problem in the classical frame-
work of real analysis. Consider the following first-order dif-
ferential equation on a real n-dimensional vector space V:

F(x’,¢, %) = i=1,..,n. 2.1)
ax’
Following Cartan we construct the differentiable ideal I:
F (xi ¢’pi) =
3 8F
— - dp — + dp; =0, (2.2)
8 ¢ a¢
d¢ —dx'p, =0, dx' /\dp,- =0.
We have considered both zero-forms »'?, one-forms &', and

two-forms @ on the vector bundle 7: E - V whose standard

fiber 7~ ! (x’) is isomorphic to RX V*.

Definition 2.1: A solution of the differential ideal 7 is a
section T of E satisfying T*/ = 0.

Let 7 : S— U be a reduced vector subbundle of 7: E—V
with the same standard fiber RX V. Also let ¥ = dim U, and
let i:.S— E and i': U—-V be the related homomorphisms.

Definition 2.2: A u-dimensional integral manifold of the
differentiable ideal 7 is a section o of the vector subbundle S
s.t. o**1 = 0.

Let us sum up the main ideas of Cartan’s technique by
means of the following steps.

Step 1: Choose a point geE such that F(g) =0 and
where the rank s, of the algebraic system »'" is locally con-
stant. Then determine a vector veT,_ E,

V=(a"i.+b d 42 ) ,

ox' ¢ i/,
satisfying the algebraic system v J o'"
resentative matrix 4 is

= 0. The related rep-

" \3F/9x' +p,OF /3¢ O 3F/dp')
Let so(g) be the rank of 4 and s;(g) be the rank of the

incomplete A matrix, that is, the matrix 4 ' obtained by eras-
ing the first n columns:

1 0
A= 1.
(0 c?F/ap‘)
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Now, we can find the vector v with arbitrary components
T,V if 55(q) = 55 (g)<dim E — 1. If, furthermore,
such ranks are locally constant, then there exists a one-di-
mensional integral manifold /,(s) of I's.t. i(0) =g and (d /
ds)i,(s)|;_o = V.
Step 2: Find a vector ueT, E solving the polar system
ule'"=0, ud(vdo®)=0. (2.3)

Let 50(q) + 5,(¢,v) and 55 (g) + 57 (g,v) be the ranks of the
related matrices 4, and A4 |, respectively; then

—p; 1 0
A, =|0F/0x'+p,dF /3¢ 0O JF/dp'],
¢ 0 —a;
1 0
A =|0 OJF/adp'
0 —a;

We find the vector uif s, + 5, = s + 5| <dim E — 2. If, fur-
thermore, the integral element u\v is regular' (see 2.4),
then there exists a two-dimensional integral manifold i, (s,t)
s.t. equations

iz(syo) = il (S),

Definition 2.3: A point geE is called a zero-dimensional
integral element if F(g) =0. A k-dimensional plane
2 =(gu A Awy), geE, weT E, 1<iKk, is called a k-
dimensional integral element if (i) F(g) =0, (ii) v, J &'
=0, (iii) w; Aw; 10® =0, forall i, j = 1,...,k.

Denote by 0 *(q) the set of k-dimensional integral ele-
ments.

Definition 2.4: A k-dimensional integral element X, is
called regular if: (i) for k = 0, g = X, has a neighborhood ¥
s.t. 5, is constant in NNO%N); and (ii) for k>1,
So(x) + 5,(x,v) + -+ + s (x,¥,...,v; ) is locally constant
in a suitable neighborhood of (g,u,,...,u, )NO* (¢) and 3,
contains at least one regular (k£ — 1)-dimensional integral
element.

A k-dimensional integral element X, is called ordinary
if it contains at least one (k — 1)-dimensional regular ele-
ment. )

Denote R* (g) the set of k-dimensional regular integral
elements in gek.

Remark % ° 1t is easy to show that the vectors u,,...,uy
give rise to a regular integral element if s(g,u,,...,u,),
1<rgk, are chosen s.t. 5,(q), 5,(g,u,),...,5,(q,0y,...,u, ) as-
suming the maximum values in 0" (g).

Definition 2.5: A differential system is called involutive
if it admits an ordinary integral element X,, for which
T Zm = TogM.

In other words, the equations yielding the ordinary ele-
ment 2, = (g, A - Au,, ) do not give any constraints
between the u; d dx*, i,k = 1,...,m, components. This is true
if, by denoting with s5(g), s} (q.u,),... the reduced char-
acters, we have s, (gu,,...,1,)=s.(gu,...,u,), for
o<r<n — 1.

In this paper no study will be done to understand if a

d
— i {(s,)|;_0.—0 =1 hold.
ar 2 )l ot=0—1
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given system is involutive or not.'”

The procedure of Steps 1 and 2 can be iterated.

Theorem 2.1 (Cartan-Kihler theorem): Given an ana-
lytic differential system, a k-dimensional analytic integral
manifold N, and a point geN, s.t. the integral element X,
=T,N, is regular, if s,=1s5),.,5 =s; and s50+s5,
+ -+ + 5, <dim E — (k + 1), then there exists, in a neigh-
borhood of ¢, a (k + 1)-dimensional integral manifold
N1 st.NCN, .

The condition on the ranks s,...,s, has the following
meaning: if it is verified, we surely can find an ordinary inte-
gral element 3, , , containing 2, .

In other words, an involutive system admits m-dimen-
sional integral manifolds.

The proof of the Cartan—Kihler theorem can be found
in Refs. 1 and 9: the main idea is to use 5, + ** - + 5, equa-
tions to reorganize the system in a Cauchy Kowalewsky
form; successively, after having found the solutions of these
equations, one can easily check that the remaining equations
are also automatically verified. In supermanifold theory,
there are further difficulties, “residual constraints,” which
will be clarified in the following.

If a given integral element (q,u, A - -+ Au, ) is not regu-
lar, singular solutions can arise; more precisely, we have the
following definition.

Definition 2.6: A section I': V- E is a k-singular solu-
tion if (i) it is a solution, and (ii) every k-dimensional vector
subspace of its tangent space T, I" is, for each peTl’, a nonre-
gular integral element.

Concerning characteristic fields in Ref. 8 we find the
following definition.

Definition 2.7 A vector field XeI' (TE) is called charac-
teristic if X 1 IC I. The importance of characterisic fields is
suggested by the following classical result.

Theorem 2.2"%°; The characteristic fields furnish a p-
dimensional completely integrable differential system;
moreover, if y',....,p? are independent first-order integrals,
then there exists a differential system X, equivalent to the
previous one (that is, with the same solutions), which is
constructed only with the differentials dy',....dy” and with
coefficients that depend only on y',...,y°.

Following this suggestion, also in superspace theory, we
have the following theorem.

Theorem 2.3: The characteristic fields yield a complete-
ly integrable Frobenius system.

Proof: If X, Y are characteristic fields and wel, we have

L yo=Xldo +d(Xdw)el
The formula
(X, Y}do=2,(Xdo) - Ly (Ylw)

completes the proof. O
Theorem 2.4: If N is an integrable manifold of I, we can
generate a higher-dimensional integral manifold V' by draw-
ing N along the integral lines of the characteristic fields.
To generalize the Cartan-Kaéhler theorem to superman-
ifold theory, we have to consider the following theorems.
Theorem 2.5'%: A gl(m,n) matrix, that is, a matrix of the

type
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al a]

4= (a‘? az) ’
where a/,a5€Q,and a/,a’cQ,, is nonsingular if and only if its
body matrix B = o(A4) is also.

In the following the numbers s,,...,s, will denote the
ranks of the related body matrices. In view of this theorem,
the matrix B controls the invertibility of 4 but is not able to
exclude the presence of further constraints in the algebraic
system described by 4, which can happen if the rank is not
maximal. These constraints will be called residual con-
straints of the first type.

Theorem 2.6 (superspace Cauchy-Kowalewsky
theorem): E, W, G denote some vector superspaces and let
(i) x be a coordinate in E, yc W and a€G, and (ii) Fand p be
supersmooth and analytic functions (for short SA, i.e., su-
peranalytic). The system

a—ag-x,;_y)— = F(x’y9a(x!y)’Dya(x’y))’
24
a(0y) = p(y) oo

admits one and only one solution if x is an even coordinate; if
x is an odd one it admits a solution if and only if the “total”
derivative dF /dx = 0, that is, a “residual constraint” of the
second type.

Proof: If x is even the proof can be found in Ref. 4 where
x is assumed to belong to an even vss E. The main idea is to
reconstruct the classical majorant method in the case in
which the variable x is real; subsequently, by a suitable
change of variables one gets the proof.

If x is odd, one directly gets

a(x,y) = p(y) + xF(0,y,p(»),D,p(»)) + 0.
On the other hand, substitution in Eq. (2.4) yields

F(0,5,a(0,y),D,a(0,y)) = F{x,y,a(x,y),D,a(xy)),

which completes the proof.

Theorem 2.7 (the generalized Cartan—-Kaihler integra-
tion theorem): Let N, bean (4 — 1) integral supermanifold
of a closed superanalytical ideal I defined on an analytic
supervector bundle 7: E - V. Suppose that, in geN the space
2,y =T, (N,) isaregular integral element and that there
exists an integral tangent vector vs.t. 2, =3, |, @visan
h-dimensional integral element. Now, if o7, v (the body of
the components of 7, v) independent of 2, _ | and there are
no residual constraints of the first type, there exists a local
neighborhood U of ¢ in E where there is an A-dimensional
integral manifold N, containing NV, _ . On the contrary, if
m, vis odd, N, exists if no residual constaint is found.

In Sec. I1I we shall clarify the matter of residuals in the
case of first-order differential equations. The presence of re-
sidual constraints does not mean that, in general, a given
integration cannot be performed; it only means that the Car-
tan—Kéhler theorem cannot be used.

lll. FIRST-ORDER PARTIAL DIFFERENTIAL
EQUATIONS ON SUPERSPACE

A first-order partial differential equation on a vss is of
the type
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3¢)
Flx4¢,—2—)=0, 3.1
(x ¢ Ix G-D

where 4 = 1,....m + n, x*€Q ™", ¢eQy.
Following Cartan we construct the differentiable ideal I:

F(XA¢,p,4) =
oF JF

dx*—+d ——+d =0, (3.2)
ox axc ¢ el Pa o/

dé¢ —dx*p, =0, dx*Adp,=0.

Forms 0'?,0'",0? are defined on the sv bundle m: E— Q™"

whose standard fiber 7~ ' (x“ ) is isomorphic to @y X Q™"
Step 1: Choose a point geE such that F(g) = 0 and the

rank of the algebraic system »'" is locally constant. Deter-

mine a vector veT  E,

— D —Da 1 0 0
aF aF JF JF oF JF
Al = Do —7 0 R -_—
c?¢ a6“ dé ap' ap”
C; c 0 —agq

1 a !

—da

4 0 a a)
= ————+b——— ,
Y (a o e ),

satisfying the system v J o'"
is

= 0. The representative matrix

—Di —Pa 1 0 0
A=\oF OF OF OF  OF OF
ax' ' dp g8 " ¢ p P

If s, = 5§, = 2 we find a vector v with arbitrary compo-
nents 7, v (e.g., 7, V= d/3dx") and there exists a one-di-
mensional integral manifold i, (s) of I's.t. i(0) = g and (d/
ds)i,(8)|s_o =V.

Step 2: Find a vector ueT, E solving the polar system
[Eq. (2.3)]. Let s, + s, be the rank of the related representa-
tive matrix o(A4,), where

Suppose that s, = s} = 1, and s, + 5,<dim E — 2. We can find u and choose 7, u = 9 /9x. If, furthermore, this integral
element is regular, then there exists a two-dimensional integral manifold 7, (s,?) s.t.

. . d .
i,(5,0) =i,(s), Etz(s,t)|s=o_,=0 =u.

This procedure can be iterated: the step number & allows us to extend a k-dimensional integral manifold i, to a (k+ 1)-

dimensional one i, , , if (i) the rank

So(q) + - + s (gug,..w ) =55(q) + -

+ s (guy,....u;)

is locally constant, (ii) we find an integral vector u, , , (u, €T, E but 7 u, &7, T, i) s.t. extends T,i, toa (kK + 1)-
dimensional regular integral element, and (iii) no residual constraints are present.
Theorem 3.1: Let FeQ, and o(JF /dp;) #0foralli = 1,...,m. The Cartan-Kihler integration procedure can be used to get

an m-dimensional integral manifold.

Proof: The ranks s,,...,s,, _, are 1 and no residual constraints exist; this is clear if one looks at the matrix related to the

iy — i, extension (k<m):

—P1— D2 —Pm _pm+l—pm+2.”

JF oF JaF JF

—+ — 4P —

ax P og ax P34
Ak___ —CIO"'O 0---0
0—c,0---0 0---0
0"'O—Ck0"'0 0...0

where

o - [ 2 en (L)
* ax* " ap \ ap,
k is not summed, and the last term exists since og(JF/

dp,)#0, forall k = 1,...,m.
The structure of the linear system that arises allows us to
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—Pmin

1 0.0 0...0
0 IF IF
ap; ap,
0 10 ........ 0 0 0 ,

formulate the extension problem by means of a Cauchy-
Kowalewsky system. Actually, other equations are present
in the requirement that a (k + 1)-dimensional manifold
i, ., exists; however, these are identically verified in view of
the initial data and of the Cauchy-Kowalewsky system. [J

In this case the problem of residual constraints could
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arise only when performing extensions in the odd sector.
Theorem 3.2: The characteristic fields of Eq. (3.1),
when restricted to a geE, make any regular k-dimensional
integral element into a nonregular (k + 1)-dimensional one.
Proof: An explicit calculation shows that the character-
istic fields obtained by following Definition 2.4 are given by
the expression

a a 7]
X=v'"—+4+b—"n+c,—,
axt s " dp,
where, by introducing a suitable form S,
v E pi—1m,
aPA
arF 8F)
= —|—+ps—
A ( e P4 Y B

hold. On the other hand, the same expression is obtained if
one searches the vectors which make any regular £-dimen-
sional regular element into a nonregular (k + 1)-dimen-
sional one. a

This result clarifies the link between characteristic fields
and nonextendible integral manifolds.

Theorem 3.3: The differential equation (3.1) admits
characteristic tangent fields if and only if Fis a homogeneous
element. In such a case, if FeQ, then BeQ,; if FeQ, then
BeQ,. The motion induced by X satisfies the Hamilton-Ja-

|

—pe 1

A_( — Px '—py —Po
—4p, —4p, —4ps+4a
By setting ¢ = (0,0,0,0,},1,0,,0) and
: A a b 2 B
vy = — + —+
(2w 25

A=1

we have the constraints
b—a'p, —d’p, —a’py, —a'p, =0, 2'p,

Since s, =55 =2, there exist w®mE~ !~ %=
2 = ¢* = ¢* = 0. Moreover, by setting a' =1 we get

a d 7]
Vi=(—+p, —+2
: (8x P a¢ apx)q
and the integral line
(x,0,0,0,x* + x + 1,2x + 1,0,0,0).

—4alpx

6

L(x)=

Now we determine a vector v,€T, E satisfying Eq. (2.3), where v, J o

0 2p,

choices for v,.

cobi equation written here when, e.g., FEQ,;:
dx*

— 1B,
= apA ( )8
dp, JdF dF
ar "(axﬁ"f* 5;7)3'

Theorem 3.4: Equation (3.1) has no singular solutions
of dimension #>2. It has n = 1 ones only if F is homogen-
eous and in this case the singular integral manifolds are the
characteristic lines.

IV. EXAMPLES
Let
F(x9y90!§’¢’px )py ;Pg,Pg )
=p’ —4¢ +py +46a —a =0, (4.1)

where x,yeQ,, 6,6€Q,, ¢€Q,, and « is a fixed element of Q,.
The ideal I is

d¢—dxp, —dyp, —dbp, —dép, =0,
2dp,p, —4dxp, —4dOp, +dp, +4dba=0,

dxAdp, +dyAdp, +dONdpy + dé Ndp, = 0.
(4.2)

The equation v, J »'" = 0 is represented by the matrix

000)
0 1 0o/

—4a’py + S +4da = 0.

Actually, we can freely choose @’ =a®=a* =0,

'=dp, —2dx.

We have s, = s} = 1 and o * choices. By setting v, = (9 /dy), we get

L(xy) = (x,0,0x% + x + 1,2x + 1,0,0,0).
Now determine v, satisfying Eq. (2.3) where
v, o =dp, —2dx, v,dw®=dp,.
The related matrix is
— P« — Py —Po —Pe 1
g=| % —4 —Hpotda —4p. O
g —2 0 0 0 0
0 0 0 0 0
2160 J. Math. Phys., Vol. 29, No. 10, October 1988

2p,

- o QO O
S O = O
o O O <
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We have s, + 553 = 1 and oo? choices for v;. Therefore, we
can solve the following system for ¢(x,y,0) by setting
at=c*=0:

a
5%=pg, $(x,9,0) =x*+x+},
dp, 9,

;9 =Tap—9’ Px(xp,0) =2x + 1,
5 ax (4.3)

py Po
= X, ,0 = 09

a8~ g PP
dpe ( Pe)
—=4p, —4da—2{— x 3 X, ,O =a.

30 o » Px> Pe(%,9,0)

We also have the further equations

(4 -

ax P ="

9 -

dy Py ="

e By _o (4.4)
dy Ix

dpe (3px)

— —d4p, +2|==)p,. =0,

ox + ox P

9pe (3px)

— — 4 2{—}p,. =0

3 y + E® 4

The vanishing of the residual constraints is given by

e dpe 9,

Po_qo, Po%x_ 4 (4.5)
a0 ox 90

Now, Eqgs. (4.4) are identically verified in view of Egs. (4.3).
An explicit integration gives ¢(x,y,6) = x> + x + | + 6a,
which also verifies Eqs. (4.5). The last step is trivial; one gets
the required solution

¢(x’y’0’§) = x2 + x4+ Zli “+ 0(1.
Consider the equation

f(x,8)

=0, f(x,0)=a(x).

70 S (

Use the Cauchy—Kowalewsky theorem directly with

F(x,o, I -ai) ~6.

dx 96

The residual constraints are dF /d6 = 170 and no solution
can be found. Actually, one should have found
f(x,0) =a(x) + 8?=a(x), which does not solve Eq.
(4.6).

(4.6)

2161 J. Math. Phys., Vol. 29, No. 10, October 1988

Finally, consider the system

F(x’0!¢9px’p8) =pi - 4¢ + 49P91
with ¢,FeQ,, ¢ =0, i,(x) = (x,0,x%,2x,0), and therefore

() - on ),
o]

dx ox aé ap./,
We have
—Px —Po 1 O 0
A, =f —4p, 0 0 2p, 46

-2 0 0 O 0

and s, + s, = 3, 55, + 57 = 2. No solutions in the sense of
Definition 2.1 can be found since we cannot freely choose the
components 7, U,.
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Wronskians, geometry, and some general solutions to the nonlinear Liouville-
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The formal properties of n-dimensional Wronskians and their geometric interpretation enable
one to construct explicit analytic solutions to some nonlinear partial differential equations
(PDE’s) that generalize the Liouville equation ¢,, = ¢**. The studied PDE’s are (a) ., F
=const, (b) ., F =G,.,G =F, and (¢) .&,, (., F) = const, where .&,, is the
nonlinear differential operation .2~ F: = det(d ’;a;F ), with k,/ = 0,1,...,m. Some nontrivial
formal properties of the composition of the .£°,,’s are established.

I. INTRODUCTION

The classical nonlinear Liouville partial differential
equation (PDE)"'

¢, =" and €=1, (1.1)
which can be stated in the equivalent form
FF,, — F . F,=¢, where F:.=¢", (1.2)

is presently considered as one of the simplest examples of a
PDE yielding solutions via the Bicklund procedure.?

It has been well-known for about 100 years that the
PDE [(1.1) and (1.2) ] has the remarkable property of pos-
sessing the solution

F=(epq)~"*(1 + pg) & ¢ = €eln[(epq) ~"*(1 + pg) ],
(1.3)

where the single variable functions p = p(x) and ¢ = ¢(y)
are arbitrary, constrained only by the condition €pg > 0, with
the dots denoting the derivatives with respect to the corre-
sponding variables. Thus the most general solution to the
Liouville equation is algebraically constructed from arbi-
trary single variable functions and their derivatives.

Of particular interest are (i) the mechanism that as-
sures us that the general solutions to (1.1) and (1.2) have
the form of (1.3), and (ii) the existence of other PDE’s with
the general solutions of a similar structure, i.e., algebraically
constructed from arbitrary functions of a single variable and
their derivatives. This paper intends to offer at least a partial
answer to these questions.

In earlier work with J. D. Finley on the problem of twist-
ing N-type solutions in complexified general relativity, we
encountered as an intermediate step the PDE’s

FF,, —F,F,=G and GG, —G,G,=F. (14

The structural similarity of these PDE’s with (1.2) suggests
that they be labeled as “double” Liouville equations. In fact,
the general solution to these equations may be constructed in
a fashion quite similar to that for the general solution to
(1.2). More specifically, the solutions can be algebraically
constructed from arbitrary single variable functions p; (x),
q:(»), i = 1,2, and their first and second derivatives.

® On leave of absence from the University of Warsaw, Warsaw, Poland.
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The geometrical interpretation of the solutions to (1.4)
has resulted in the elucidation of the formal properties of the
three-dimensional Wronskians of functions of a single vari-
able. It seems natural to develop* more general n-dimen-
sional theory that contains PDE’s (1.2) and (1.4) as special
cases. Section II is a summary of the formal properties of the
n-dimensional Wronskians and their basic minors, accom-
panied by the corresponding geometric interpretation.
These are essential in Sec. III, which is concerned with the
formal properties of the abstract nonlinear differential oper-
ators £ ,,.

Of course, in terms of .Z,,’s, (1.2) and (1.4) may be
stated as

(a) L' F=¢ €=1and (b) L' F=G, £ G=F
(1.5)

For m>2, ., constitutes the natural generalization of
the concept of the “Liouville operator” . ,. In Sec. IV we
investigate the chains a-b-c of PDE’s by exploiting these gen-
eralized Liouville operators. It is shown that we are able to
determine the most general analytic form of their solution
for the case of an a-chain. In the case of a b-chain, we are able
to determine some special solutions for m > 2, and the most
general solutions for m = 1. Finally, we consider a ¢-chain
for m = 1, which reduces to the biharmonic equation for the
conformal factor of a two-dimensional Riemannian space.
Also, we discuss alternative formulations of the differential
problem under consideration. In Sec. V we discuss some
open problems related to the results of this work. Semitrivial
proofs of a computational nature are abbreviated by their
basic ideas only. The nontrivial proofs are in appendices,
which the interested reader might find useful in further work
along the same lines as that given in the text.

The fact that the most general solution to (1.1) and
(1.2) has the analytic form of (1.3) is quite useful in math-
ematical physics. In particular, within the theory of exact
solutions in general relativity, experience has shown that
whenever a Liouville equation occurs at an intermediate
step, the corresponding problem is integrable up to the very
end. In this respect, we believe that the techniques of this
paper are to some extent manageable when applied to non-
linear Liouville-like PDE’s and thus may find some useful
applications.
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Il. WRONSKIANS AND GEOMETRY

Let F" be the set of ordered n-tuples of the smooth func-
tions of some single variable, say eR. Thus a typical element
JfeF"consists of f2 = { f,(2),i = 1,...,n}, wheref;: R—~R, and
n is a fixed integer. If the f;’s are considered as meaningful
modulo the arbitrary changes of the independent variable
only, then, defining the equivalence class C: f; (1) =f;(¢(t ")),
where ¢ ': R — Ris an arbitrary smooth bijection, the set F"/C
amounts to the set of smooth curves in R".

The set F*/C automatically carries a rich structure in-
duced by the concepts of the Wronskian and its basic mi-
nors.® These concepts are understood as the mappings W:

]

(a) W(AS) =A"Wf,
dt\&®

b) Wf' ={—|" W[,

® wr= (&)

(c) W(Mf)=detM - WY,

(d) W(xf)=(Wf)"~,

(e) *(Af}) =A""'sf,
dt
dt’

In the first line of Egs. (2.2), a smooth A: R—R is arbi-
trary and Af = {A(2)f;(¢)}eF". In the second line, given
f={f()}, a smooth bijection # R-—R induces
S ={f1(t"}: ={f£(t(¢"))} in the left-hand members W.
The * is meant as the nonlinear differential operation with
respect to ¢, while in the right-hand members it refers to the
variable z. Note that (2.2)(b) is valid for n>2, while
(2.2)(f ) applies for n>3. In the third line M; = const is an
arbitrary nonsingular » X n matrix, with Mf = {M; f;(1)}.

The first three lines of (2.2) follow directly from the
definitions of the mappings W and #. The proofs of the iden-
tities given in the fourth line of (2.2) are nontrivial. They
may be outlined in the form of a sequence of lemmas; those of
interest are given in Appendix A.

W-regular curves: According to (2.2)(b), a smooth
curve in R”, represented as = { f; (¢#) }€F", has the charac-
teristic Wf #0, independent of the choice for its parametri-
zation.

Observe that when (5 ) = even, the sgn( Wf') cannot be
affected by the change of the parametrization. This gives rise
to the classification of the curves f£,g,...eF"/C into the two
basic classes

W-regular: Wf#0, W-singular: Wf=0. (2.3)
The origin of this classification is the condition Wf #0 for
fEF", which is known® to constitute a necessary and suffi-
cient condition for the linear independence of # smooth f;’s,
ie, Wf#0& {4, = const, 4, f;(t) =0 = 4, = 0}.° Con-
sequently, a W-regular curve cannot be contained in any of
(n — 1)-hyperplanes through the distinguished origin of R".
Correspondingly, each W-singular curve is contained in
some (n — 1)-hyperplane through the distinguished origin
of R".

Normal parametrization: Given a W-regular curve rep-
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) +(f) = (——)‘";"*f..,

F"-F' and »: F"— F", which are defined explicitly by
WF: = E,'Jz...,'"f;'l ,!2 s ::_ !
*ﬁ: = ( - 1)"_ leiiniz'"'in— rﬁl '!2 )

cofn—2
in_y?

(2.1
where f% = (d/dt)*f,, with k=0,1,... and {=1,2,...,n.
Here ¢,,...; is the totally skew Levi-Civita symbol in n di-
mensions, normalized by ¢,,..., = 1.4

The basic formal properties of the mappings W and #
may be stated in the form of the following theorem.

Theorem 1: The following identities are valid for an arbi-
trary feF™:

s

(2.2)

(8) «(M, f;) =det M - M 'sf,
(h) *f, = (= D" (Wf)""?,.

I
resented by { f; (¢) }eF", Wf #0, we propose to define its nor-
mal parameter xeR via

dx: =sgn(Wf)-| Wfll/(;) dt. (2.4)

~ Heuristically, this idea is somewhat analogous to the idea of

using the Pythagorean length as the natural parameter of the
Frenet formulas and the concept of the relativistic proper
time.

Performing the quadrature in (2.4), the derived func-
tion x = x(t), with dx/dt 50, defines its inverse £ = #(x).
Thus the curve may be considered as given in terms of its
normal parameter as f' = f{(x): = f;(t(x)). Then it follows
from (2.4) that

(5)=o0dd = Wf'=1 and

(3) =even = Wf' = sgn(Wf). 2.5)

The differentiations in the operation W are with respect to
the variable x.

According to (2.2)(d), * maps W-regular curves into
W-regular curves. Given a curve represented as feF”, Wf #0,
we refer to »feF", W(*f ) #0 as the dual curve. Considering
the curve f as represented in terms of its normal parameter,

S =1{f!(x)},according to (2.2) (d) and (2.2) (h), we have

Wf=1= [" =odd: W(ef) =1, eofi =/,
n=even: W(sf') =1, sfi= —f],
(2.6)
and
, n=odd: W(xf')=1, ssf;= —f],
Wfi=-1= {n=even: Wirf)= —1, s»fi= _—fI
2.7

Therefore, * is an involution or anti-involution among the
W-regular curves and their duals. Note that according to
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(2.5), the formulas (2.7) are of interest only when (3)
=even = n=4,5,8,9,... .

The » mapping: The construction of the normal param-
eter x for a W-regular curve via (2.4) involves a quadrature.
There is, however, a simple process that enables us to con-
struct the W-regular curve, as given in terms of its normal
parameter, bypassing the necessity of any integrations.

Consider a W-regular curve represented as f = { f,(£)}
€F", Wf +#£0. Then the mapping P, defined by

Bf = |Wf| =", (2.8)
obviously produces another W-regular curve. The formal
properties of P may be summarized in the form of the fol-
lowing theorem.

Theorem 2: The following identities hold:

(a) W(Pf) =sgn(Wf), (c) Pf,=Pf, (29
(b) P(Af) =sgniPf,, (d) «Bf, =P=xf,. )

Identity (2.9)(a) follows from (2.2)(a). Similarly,
(2.9)(b) with arbitrary 1: R—R, A(2)#0 follows from
(2.2)(a). Equation (2.9)(c) is a trivial consequence of the
definition of P. Equation (2.9)(d) may be established by
using (2.2)(e) and (2.2)(d).

According to (2.4) and (2.9) (a), thecurve g: = Pfpos-
sesses the normal parameter x, where x = sgn(Wf) 1, if we
choose the integration constant for x equal to 0. Consequent-
ly, the curve

g ={g@}:=fl_gnowr = (2.10)
according to (2.5), satisfies
) =odd = Wg’ =1,

2 (2.11)

(3) =even = Wg' =sgn(Wf).

The (n— 1)-dimensional interpretation of »: According
to (2.9)(c), the mapping P> has the nature of a projective
operation. This induces its (# — 1)-dimensional interpreta-
tion. Indeed, Wf #0—f; #0, and in particular f, #0. Thus
we can represent the f;’s as f; = | f, |h;, h;: =f£,/|f,|. Then
h=: (h,€),a=1,.,n—1, €2=1, is an n-dimensional
concept, h = {h,}eF", while h: = {h,}cF"~ ' is considered
as a (n — 1)-dimensional concept. By heF”~ ! we mean A
= {h, ()}, with the dot denoting the derivative. Then one
obtains

Wh=e(—1)"""-Wh, (2.12)

where the Wronskians on the left and the right are #- and
(n — 1)-dimensional constructs, respectively. This being
the case,

Wf=\|f"Wh=e(—1)""'|f,|"Wh [using (2.2)(a)].
2.13

Hence, Wf+£0 = Wh #£0. The last (n — 1)-dimen(siona)l
condition has a simple geometric interpretation. Having
Wh =0 implies that there are nontrivial A, = const,
a=1,.,n— 1, such that A, A, (1) =0 Ak, (1) = const.
It follows that AeF” ~ !, with Wh 0, isa curve in R” ~ ! pro-
hibited to be contained in any (n — 2)-hyperplane in R" !,
and not only those through the origin of R* !,

Using the definition of » and (2.13), one easily sees
that

»f, = |Wh|~"ha, Wf, =e€|Wh|~ " (2.14)
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Therefore the functions (2.10), which automatically fulfill
(2.11), may be considered as algebraically constructed from
h () =d*h,(t),a=1,.,n—1,k=0,.,n - 1, where the
smooth &, (¢)’s are arbitrary, constrained only by the condi-
tion that the curve heF "~ '/C is prohibited to be contained
in any (n — 2)-hyperplane in R" ', equivalently Wh 0.
Inversely, one can also show that given any W-regular curve
in its normal parametrization, g’ = { g/(x)}€F”, so that
(2.11) applies, there is & = {h, (#) }eF" ~ ', which “injects”
it according to (2.10) and (2.14).

Ill. THE BASIC PROPERTIES OF .7 ,, OPERATORS

Let # be the set of smooth functions of the two vari-
ables x and y. Consider then a sequence of nonlinear differen-
tial mappings . ,,,: & =%, m = 1,2,..., defined by

Fe¥ = £,F:=det(3%9,F), klI=0,1,.,m>1,

(3.1)
where 3% and d!, denote iterations of the differential opera-
tors d, and d,. Of course, 3% =99 = 1.

It is convenient to extend the above definition of .Z",,.’s
to all integer m’s, postulating that
m=0= %, F=F m=-1= %, F=1,

mg—-2=%,F=0 (3.2)

Here, we will outline the basic formal properties of

Z .’s. One can easily see that the definition of .¥,,’s implies
the “homogenity property’:

FA(x),B(y)eF = £ ,ABF = (4B)"* 'L F,

m>—1, (3.3)

if AB 50, applies for m< — 2.

Then one can show that under the change of the inde-
pendent variables x = x(x'), y = y(y'), xp#0, meaning by
Ly L1 F: = det(d% 3, F), for m>1, while (3.2) is valid
with .& ,, —» .7, the following identity holds:

FeF = &, F= ()~ """ F. (3.4)

Next, one easily sees that .#, has the “distributive”
property:

FGe¥ = £ FG=G*Y F+ F'%G. (3.5)
(This follows directly from ¥ 3F#0= ¥ ,F
=F?3,0,InF. Also, note that a=const > ¥ F*
=F2(a—l)$lE)

As far as the composition of the .,, mappings is con-
cerned, we claim that the basic identity

LN =2, _ [F L, F (3.6)

is valid for every integer m. The nontrivial proof of (3.6) is
outlined in Appendix B, where we also discuss the general
problem of the composition .%, (., F).

It follows from (3.6) and (3.5) that

fz(fmF) = (fm—lF)zfm+2F
+ ($m+lp')2$m——2E (37)

Indeed, (3.6) for m=1 reduces to .2 (.2 F)
= F.%,F. Operating on both sides of (3.6) with .#| and
then using the result on the left and (3.5) on the right, we
have
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L FLAL,F)
= (fm—1F)zzl($m+|F)2$1(ym—1F)
= (fm_lF')zfmF’fm+2F

+ (L | 2L F- & F [using (3.6)].
(3.8)

Canceling this by .¢ . F (in general .¥ ,, F #0), we obtain
(3.7). Therefore, via the continuity argument, (3.7) is true
for every F and every integer m.

Crucial for our purposes, we state the properties of the
£ ,.’s in the form of two theorems.

Theorem 3: For every f;(x) and g,(y) (smooth),
i=1,2,....,n and m>1, the identities

0, if mpn>1,

n Wrwg, ifn=m+1,
°'ym Zf;gx‘_‘ n )
=t S #fioeg, ifn=m+2,

i=1

3.9)

hold, where W and * are the mappings defined in Sec. L.
Employing the summation convention over the indices
k; = 0,1,...,m = I;, we have, from the definition (3.1),

LoF =[1/(m+ D€, .,

kG LF---3 P+ F,  (3.10)

where the €’s are (m + 1)-dimensional Levi-Civita symbols

X€;,..

41

normalized by ¢&,..,, =1 Consequently, with
F=f(x)g;(y), we have
L fi8 =11/ (m+ D€ i, €101,
Xfikef ::J’g.‘." &)
= (m+ DY S0 8l e,
=(m+ DY, S0, 80 8 ) (3.11)
In the above, f¥: = (d /dx)*f,, g !: = (d /dy)'g;,and [-*]

denotes the antisymmetrization symbol of a set of indices.

When the /’s have the range i = 1,...,n <m + 1, the anti-
symmetrization of m + 1 of the indices of the above type
automatically leads to 0. Thus the first line of (3.9) is true.
On the other hand, if the /s have the range
i=1,..,n =m + 1, then according to (2.1)

f([)"ln ’m+l]_[1/(m+1)]€’ i I-Wf:
Similarly,

& gn,, = [V/im+ Ve, We.

Therefore, making the contraction of two €’s over m + 1
indices, the second line of (3.9) follows from (3.11).

Finally, if the range of ’sis i = 1,...n =m + 2, (3.11)
can be rewritten employing the concept of the generalized
Kronecker &’s in the form

fmf;-gi=5,-. Cimy v Jm+1f0 f':.+lglv”'gj:.+|'

(3.12)

On the other hand, the &’s are equivalent to the contraction
of two €’s over one index. Hence

j fgl _e"I R A 'll Jm+lf0 f’:+lgo ..g.;:+l'
(3.13)
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This, compared with the definition of *in (2.1), and remem-
bering that presently n = m + 2, assures the veracity of the
third line of (3.9).

Corollary 1: Formula (3.12) remains valid for the range
of /’s and J’s over 1,...n>m + 2, and can be equivalently
spelled out in the form

L fi8 = [/ (n—m—1)]
Xesl'n m— |’|',,.+|-fo fr:'"+]
Xty i ims 80 Gy (3:14)
Forn>m + 2, theobjectse, ..., ;.. meO S ar

the generalized minors of the nX n matrix | f¥|, i = 1,...,n,
k =0,1,...,n — 1. Within the objectives of this paper, how-
ever, this generalization of the third line of (3.9) is of little
importance.

Corollary 2: Tterating the third line of (3.9) and using
(2.2) (h), it follows that

m+2

F= Y fi(x)g(y) = £, (&L ,F) = (Wf Wg)"F.
i=1
(3.15)

Therefore, .7, is an involution among the functions of two-
variables of the structure

m+2

F='Y fi(xg (),
i=1
with f;’s and g,’s arbitrary, being constrained only by the
condition (Wf-Wg)™ = 1.
Theorem 4: For m>1,

(a) £, F=0and ., F#0= F= _2 fi(x)g: (),
w316
(b) £, F=const#0 = F= Y fi(x)g: (),

i=1

the implications being understood in the sense of the exis-
tence of the corresponding functions of the one variable, con-
strained in the case of (3.16)(a) by the condition
Wf Wg+#0. Similarly, in the case of (3.16)(b) by Wf-Wg
= const.

The proofof (3.16) (a) is given in Appendix C. Once the
veracity of (3.16) (a) is granted, a simple proof of (3.16) (b)
follows by employing the identity (3.6).

Indeed, with ., F = const#0, (3.6) with m>1 obvi-
ously requires .£°,, _F-.Z,, ., F=0. If this were to hold
with ., _,F =0, then according to (3.16)(a) F would
have the most general form of

m—1

F= % fi(x)gx),

i=1
which then according to the first line of (3.9) leads to ., F
=0, contradicting .7, F =const#0. Therefore,
L 4 1F = 0,sothat according to (3.16) (a) F has the most
general form

m+1

F='3 f£(x)g0).

i=1
But then according to the second line of (3.9) %, F
= Wf Wg = const.
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We conclude this section recognizing the fact that if
0#F, Ge¥ are related by the condition

¥ F=%G, (3.17)

then, parametrizing equivalently these objects according to

F=e¢~"%"?cosh(¢/2), G=e ¥?sinh(4/2), ¢+#0,
(3.18)
condition (3.17) can be stated in the simple form of
ey = 6.9, (3.19)

IV. THE LIOUVILLE-LIKE PDE’s

This section examines some PDE’s constructed by using
the notion of the nonlinear differential operators .¢,,,, m> 1.

We define first as the basic chain of the Liouville-like
PDE'’s for the searched Fe.%

£ F=¢ é=1, (4.1)

These equations together with the associated “degener-
ate” chain

m=12,...

L F=0, m=12,.., (4.2)
include PDE’s of the form
L F=const, m=12,.... 4.3)

If F fulfills (4.3) with const#0, then F'=aF,
a = const, fulfills .¥ , F’ = const-a™* . Therefore, choos-
ing a properly and dropping the prime with const#0, (4.3)
reduces to (4.1). Obviously, the proper Liouville equation
(1.2) constitutes the first member of the chain (4.1) for
m=1.

Now, we propose to consider a chain of PDE’s for
searched F,Ge.%,

£ F=G £,G=F m=12,., (4.4)

which generalize the “double” Liouville equations (1.4),
equivalent to (1.5) (b).

It is also of some interest to comment from the point of
view of this paper on the nature of the differential conditions
for the searched Fe.% :

L (L . F) = const, (4.5)

The first member of these PDE’s for m=1,
Z (&L F) = const will be seen to be equivalent to the bi-
harmonic equation for the conformal factor of a two-dimen-
sional Riemannian space, with the harmonic scalar curva-
ture.

Of course, among the PDE’s proposed above, the case of
Egs. (4.2) is the simplest. According to (3.16) (a), the most
general solution to ., F = 0—with .¢°, _, F #0—has the
form of

F=if.-(x)g.~(y), L F=WfWg#0. (4.6)

i=1

In the terminology of Sec. 11, it induces and is induced by the
two W-regular curves in R™, x and y playing the role of the
arbitrary parameters of these curves prohibited to be con-
tained in any (m — 1)-hyperplanes through the origin of
R™.

Notice that given F in the form of (4.6), the functions
F=1{f,(x)}, g={g: (y)}eF™ are meaningful modulo the
affine transformations only:

m=12,....
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[ =Mf g=M""H"g M =consteGL(m),

the matrices M being otherwise arbitrary.

Next, examining PDE’s (4.1), we observe that accord-
ing to (3.16)(b) the most general solution must have the
form of

(4.7)

m+1

i=1

(4.8)

where f={f,(x)}, g={g (»)}eF"*! [according to the
second line of (3.9)] are constrained by the condition

Wf Wg =g,
and are otherwise arbitrary.

Again, given the solution to (4.1) in the form (4.8) and
(4.9), one easily sees that fand g are meaningful modulo the
transformations (4.7) only, but this time with the
(m+ 1)X (m+ 1) matrix M = consteGL(m + 1). Con-
dition (4.9) obviously requires that both #fand Wg be con-
stants #0. Using then as the special case of the transforma-
tions (4.7), f;—Af,, g —~A ~'g:, A = const#0, one easily
sees that, without losing any generality, we can always ar-
range that (4.9) constraining the general form of F from
(4.8) is fulfilled with

(Wf):=1=(Wg)> (4.10)

But with the above being valid, according to the results
of Sec. II, f,geF™ * ' may be interpreted as the two W-regu-
lar curves in R™ * ! given, respectively, in terms of their nor-
mal parameters x and y. Thus we can interpret fand g from
F™*!in (4.8) as the two arbitrary W-regular curves in
R™* !, which are forbidden to be constrained in any m-hy-
perplanes through the origin of R™*, as given in terms of
their normal parameters. Notice that with this interpreta-
tion, the most general form of the solution to (4.1) as given
by (4.8) constrained by (4.10), with fand g from F"*',
remain arbitrary modulo (4.7) transformations, where the
(m + 1) X (m + 1)matrix M = consteGL(m + 1) is con-
strained by (det M)* = 1.

With the objectives outlined in the Introduction in
mind, the basic point of this section is that, according to the
properties of the mapping » given in Sec. II [i.e., that a W-
regular curve in R™*+! (as given in terms of its normal pa-
rameter) can be always algebraically constructed from m
smooth functions and their derivatives up to m + 1 order],
the most general solution to (4.1) can be equivalently stated
in the form

(4.9)

F= (eWp-Wq)_"""*”(l + i pa(x)qa(y)), m>1.
a=1
(4.11)

Thep = { p,(x)} and g = {g, (y) }¢F™ in the above are
two arbitrary smooth curves in R"™, forbidden to be con-
strained in any (m — 1)-hyperplanes such that
eWp- Wi > 0. The solution is thus algebraically constructed
from the arbitrary smooth functions p,(x), q,(»),
a = 1,...,m, and their derivative d ¥ p, 3%¢, k = 1,...,m. This
most general form of the solution to (4.1) for m = 1 reduces
precisely to (1.3), the classical result for the proper Liouville
equation (1.2), ipso facto providing its proof, and hence
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(4.11) is a natural generalization of (1.3) for the case of
¥ . F=¢€ PDE’s,

Corollary I: The result that the most general solution to
(4.1) has the form (4.11), i.e., that F from (4.11) satisfies
(4.1) and inversely, given F fulfilling (4.1), there are p,geF™
such that (4.11) is true, is easily seen to admit a “complexifi-
cation.”

For simplicity, until now we have constrained in this
text " ta be the set of real valued ordered n-tuples of smooth
functions of the same real variable, and .# to be the set of real
valued smooth functions of the real variables x and y.

A moment of reflection, however, convinces us that if F*
is interpreted as the set of the complex valued ordered n-
tuples of the holomorphic functions of the same complex
variable, and, correspondingly, # is interpreted as the set of
the complex valued holomorphic functions of the complex
variables x and y, then the most general solution to the “‘com-
plexified” PDE (4.1), indeed has the form of (4.11), with
the holomorphic functions {p,(x)},{q,(»)}eF™ con-
strained by eWp- Wg+0, being otherwise arbitrary.

Corollary 2: The result that we are in possession of the
most general solution to the PDE (4.1), either in its real or
complexified version, has some interesting implications
from the point of view of ODE’s.

Suppose that we search the solution to (4.1) in the spe-
cial case of F = F(z), z: = x + y. Then (4.1) reduces to the
nonlinear ODE of 2m differential order,

d d\"
F, Lr(L)F
dz (dz)
e o 6 o * ® o ® o o a ® & o+ s » =6’€2=1
@ @@
dz dz dz
(4.12)

Our general result on the level of PDE (4.1) permits us
to construct easily the explicit general solution to the ODE
(4.12) as endowed with the 2m integration constants.

Indeed, if F from (4.8) depends only on z=x + y,
clearly f; (x) and g, (») must have the form of

f;' = \/—ﬂ—ieaix’ gi = \/E—eaiya
mat 1 (4.13)
F= E B,-ea”,

i=1
wherea;, B;,i = 1,....,m + 1, are constants. With f;’sand g,’s
of this form, one easily sees that

Wf= M(Bl”'ﬂm+ 1 )I/Ze(‘1|+ +am+‘)x1

Wg=M@B, By, ) 2t Fome, (4.14)
where
1 1
a a,,
M:= . 1. " e o o o -:l. (4.15)
a;" az+1

is the Van der Mond determinant, so that the (4.9) condi-
tion amounts to

BB M T 2, (4.16)
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This necessitates for 2(m + 1) constants a; and S, the two
conditions

al+...+am+1=0, Blﬂz"'ﬁm+lM2=6’ (4-17)

the second of these requiring obviously M #0, so that neces-
sarily i#j = a, — a;#0. Modulo conditions (4.17), F
from (4.13) solves (4.12), contains 2(m + 1) — 2 = 2m ar-
bitrary constants, and hence is the most general solution of
the nonlinear ODE (4.12) of the 2»’s differential order.

Perhaps one could guess the general shape of the solu-
tion to (4.12) in the form of (4.13) with the constants con-
strained by (4.17) prima facie, but in establishing this result,
our knowledge of the most general form of the solution to the
PDE (4.1) was certainly useful.

Now the case of the PDE’s (4.4) is much more involved
than the case of PDE’s of the form (4.3), where we have
succeeded in establishing the most general form of their solu-
tions as endowed with a geometric interpretation. Since we
are interested only in the nontrivial solutions to these equa-
tions, F#0#G [because (4.4) necessitates F =0
& G =0], (i) by eliminating G, we arrive at the necessary
condition

LNL F)=F, m>1, (4.18)
and (ii) if we constrain additionally the searched Fand G by
L i F=0 7, ,,G=0,then Egs. (4.4) admit a spe-
cial solution of the form

m+42

m+2
F= % fi(x)g:(), G= z g

i=1 i=1

(4.19)

where f,geF™ * 2 are constrained by

(WF)*=1= (Wp)? (4.20)
and are otherwise arbitrary. This statement applies for m> 1.

Indeed, (4.18) is a trivial consequence of (4.4). On the
other hand, with Fof the form of (4.19) treated as an anzatz,
according to G = .¥°, F and the third line of (3.9), G must
have the form of 4. But then according to (3.15),
F=2%2,G=2,(2,F) = (WfWg)"F is also fulfilled
iff (Wf Wg)™ = 1. This is equivalent to Wf Wg=¢,€ =1,
with m = odd, € constrained to the value € = 1. Rescaling f;
—Af;, 8 —~A ~'g;, A = const#0, we can always arrange that
the last condition be fulfilled with (4.20) being valid.

The special solution to (4.4) described by (4.19) and
(4.20) with Wf- Wg = ¢, €™ = 1, has of course a parallel in-
terpretation to that given before to the solutions to ., F
= €, with m—>m + 1. Thus Fand G are induced by two W-
regular curves in R™*?2 prohibited to be contained in any
(m + 1)-hyperplane through the origin, with x and y serv-
ing as their normal parameters. From (4.19), we observe
that F may also be interpreted as given in the form of (4.11)
with m—-m + 1. Of course, the corresponding G = ., . F
can then be evaluated in terms of { p, (x)}, {q, () }eF™* .
Observe also that Fand G from (4.19), with f,geF™ + 2, have
the relative symmetric structure, compatible with the sym-
metry F— G, G— F of Egs. (4.2), due to the involutory rela-
tions (2.6) and (2.7), which apply because of (4.20).

The question arises, “How general is the solution (4.19)
and (4.20) to (4.4)?” Answering this, we claim that, for
m = 1, the solution constructed above is the most general
solution to (4.4), which arose from a problem in general
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relativity and motivated our interest in the chain of PDE’s
(4.4).

Indeed, in the case of m = 1, (4.4) reduces to (1.5)(b)
and the identity (3.6) reduces to

L L \F)=F%,F. (4.21)
Consequently, (4.18) with F #0 is equivalent to
KLLF=1, (4.22)

which was shown to possess the most general solution

3
F=Y fi(0g0),

i=1
Wf-Wg = 1, equivalently, Wf= e = Wg, € = 1. But with
n = 3, according to (2.5), the normal parameters can be so
selected that the € above is constrained to the value e = 1.
Thus the most general solution to (1.5) (b) has the form of

3 3
F=73 fix)g(y), G=73 »fi+g,

i=1 i=1
Wf=1= Wg.

For the W-regular curves f,gcF> given in terms of their nor-
mal parameters x and p, and with the first line of (2.6) being
in » involution to the dual curves *f,%geF>, *«f=f and
g =g

The above is a rather nice result. Our original problem
from general relativity admits the most explicit general solu-
tion endowed with a simple geometric interpretation. The
solution to (1.5) (b) induces—and is induced by—the two
arbitrary W-regular smooth curves in R® given in terms of
their normal parametrizations; F and G are constructed
from these and their * dual curves. According to (4.7), given
Fand G, fand g from F° are determined, remembering that
Wf= 1= Wg, and, because of (2.2)(c), are arbitrary mod-
ulo (4.7) transformations with 3 X3 constant = MeSL(3).
The geometric interpretation given above is thus meaningful
modulo SL(3) transformations of R®. Of course, F from
(4.23) can be also represented in the form of

2
F=mpwp =21+ 3 p ),

a=1

(4.23)

(4.24)

while G = .# ,Fcan be elaborated in terms of p,geF?, accom-
panied by the corresponding geometric interpretation.

However, the argument considered above for the case of
Eqgs. (4.4) with m = 1 does not work in the case of these
equations with m>2. Consider, e.g., the case of (4.4) with
m = 2. Condition (4.18), employing identity (3.7) special-
ized for m = 2, reduces to

FALF) = (L L F+ (L FF=F. (425)

Thus, when £, , ,F= .7 ,F=0, indeed F #0 con-
strained by .¥,F = + 1is asolution. However, there is noa
priori reason why ¢, F should be equal to zero. Similarly,
there is no a priori reason why .7, . , F has to be equal to
zero for m > 2.

In summary, we have established the most general solu-
tion to (4.4) for m = 1, and a nontrivial solution form>»2.In
the last case, the form of the general solution remains an
open question.

Corollary: With F = : e®, G = : %, (1.5) (b) assume the
equivalent form of
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b, =e"" ¢, =" (4.26)

On the other hand, for m = 2, (4.4) using the identity
(4.21), are equivalent to

FLULF) =FG=%,(%,6), (4.27)

or, with F: = ¢, & \F: = ¢® and G: = e¥, .¥,G: = ¢* they
assume the equivalent form of

0 — —
¢xy =e 2¢’ Qxy = e¢ +Y 2()’
X2 - -2
,/,xy = X lll’ Xy = e¢+ v—2x

Similarly, (4.4) arbitrary m > 1 can be equivalently stat-
ed as a set of differential conditions of the second order, with
the nonlinear terms involving the notion of exponentials.

Concluding this section, we should like to explain why
these PDE’s are of some interest in mathematical physics.
Given a two-dimensional Riemannian space of signature
( +,—) in its conformally flat local representation in a
chart {x, y},

(4.28)

A'eA'g:=2¢0"%(x, y)dx o dy,

the condition that its scalar curvature R is harmonic,
R, =0, is easily seen to be equivalent to the biharmonic
equation for the conformal factor, ¢%,,# ; = 0, amounting
to

€*9,d,(¢%3,9,4) =0. (4.29)

The above PDE is equivalent to the statement that the
searched ¢ fulfills

L e*=e*3,0,46 = A(x) — B(y), (4.30)

where 4 and B are arbitrary smooth functions of one vari-
able, in the general case such that AB #0.

The differential problem (4.30) had emerged as rel-
evant in general relativity in 1962,” and, as is well known,
constitutes the key to the general nontwisting solutions of
the Petrov type III of the empty space-time Einstein equa-
tions. In a somewhat different context one should also see
Brans.®

Up to now, Eq. (4.30) resists all attempts to construct
its most general analytic solution. A special solution to
(4.30) of the form

e*= 3 (4—B)*N4B
is well-known.

From the point of view of this paper, we observe first
that with 4B 0, introducing in (4.30) the new independent
variables x'=A4(x), )'=B(y) and defining F

=exp[d+1n AB] after dropping out primes, the investi-
gated PDE assumes the form of

L F=x—y. (4.32)

It follows that .#,(.Z ,F) = 1, which coincides with (4.5)
for m = 1. This motivates our interest in the PDE's from the
chain (4.5).

Of course, using identity (4.21), (4.32) implies

FL,F=1. (4.33)

Notice that if we define F = :[3F"*/%, then (4.32) as-
sumes the form

F'¥ F =x—3.

(4.31)

(4.34)
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Acting on it with .¢’, and using (3.5) and (4.21), we infer
the necessity of

FPZL,F 4 (L F) =1 (4.35)

This elucidates why F': x — y = .\ F' = 1 is a special so-
lution, i.e., the mechanism of the solution (4.31), as stated in
a slightly more general form.

On the other hand, if, instead of committing the inde-
pendent variables to x = A4, y = B, we just execute in (4.30)
the transformation x = x(x'), y = y(¥'), xp#0, one easily
sees that by dropping out primes and with F: = ¢ (4.30)
assumes the form

2
L \F= Z k. (x).(»),

i=1
while the condition 4B #01is now equivalent to Wk- Wg£0.
It easily follows that the differential problem studied in
its most general branch and in coordinates arbitrary modulo
x=x(x"), y=y(¥'), xp=£0 is equivalent to the conditions

LF#£0 = L FH#0 = F#0,

(4.36)

.37

gz(le)=F2—203F+(ng)2=0~ (4.37)

Notice that because of (4.21), with £ F#0,
Z,(.Z F) = 0 s also equivalent to

L(ZL (&L F)=0. (4.38)

V. CONCLUDING REMARKS

The PDE’s studied in this paper constructed with the
help of .Z,,, nonlinear differential operators are certainly of
interest as they generalize in a natural manner the Liouville
equation.

Using the properties of Wronskians, we were able to find
the general solutions to some of these PDE’s, i.e., Eqgs. (4.3)
and (4.4). The latter one especially is of great importance
because of its role in the problem of type N spaces. We hope
that further analysis of the problems presented here allows
one to find solutions to much more involved cases.

The Liouville equation has been revealed as the impor-
tant one in the study of the Born—Infeld massless scalar field
and in the theory of relativistic strings.®'° Note also that this
equation in three and more dimensions is of interest in con-
nection with the soliton and field theories.''~"?

We hope that our generalizations of the Liouville equa-
tion will find application not only in general relativity but
also in many other domains of mathematical physics.

APPENDIX A: PROOFS OF (2.2)(d) AND (2.2)(h)
IDENTITIES

The basic difficulty in proving (2.2)(d) and (2.2) (h)
for every n>2 is due to the “proliferation” of €'s and the
order of derivatives involved in the concepts of ** and
W(=f). More specifically, there is no obvious way to initiate
the inductive process with respect to n>2, and the usual
combinatorics of €’s and related Kronecker generalized &’s
cannot deal with the mentioned “proliferation” in an effec-
tive manner. Our proof will rely on some facts from the theo-
ry of linear ODE’s, and the formal properties of the minors
of the matrix of the Wronskian || f¥|, i=1,..n,
k =0,1,...,n — 1, where { f, (¢) }eF". Within this proof, some
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“tangential” formal properties of the elements of F”, related
to the mapping *, will emerge as of interest as such.
The minors of the Wronskian are defined for every

{/fi(n}e F" by
M?:=(_l)keiplu'qul'“qn—k—-l'f;lf;z... :I—l--° ;n_—:(—l’
k=0,1,.,n—1, (A1)

where the summation convention over p’s and ¢’ applies.
(Furthermore, the symbols M ;= ' and M 7, where the upper
index exceeds the permitted range k = 0,1,...,n — 1, aretobe
understood as zero.) This definition assures us that

FiM =84 wf
and the parallel

S fiME=5, Wf,

k=0
with the obvious ranges for the free indices.™
Observe that according to (2.1)

M7= =sf,. (A4)
[Formulas (A1) can be interpreted for k =0,1,...,n — 1 as
defining for k = 0,1,...,n — 1 the nonlinear differential map-
pings .#*: F" - F". For our purposes the most important is
the mapping .#" ' = », induced by the “basic minors” of
the Wronskian. |

Observe also that with || M ¥|| being the matrix of the
minors of || £¥|| and det( f¥) = WY, an elementary identity

det(M¥):=¢, ,M2--M;~'=(Wf)"'  (AS)

holds, consistent with equalities (A2) and (A3)."3

After these comments concerned with the definitions
and the basic properties of the minors of the Wronskian, we
will now prove the following.

Lemma 1: Given any f={f (¢£)}eF", there is
A: = {4, (£) }eF" such that

i=1,..,n,

(A2)

(A3)

Of,=0, 0:=37— 3 4,9,

i=1
and, if f;’s are linearly independent ( <> Wf #0), then
A, =3, n(Wf). (A7)

B Suppose that Wf #0. Then h;: = |Wf| ~ V" F, = bf,,
according to (2.2)(a), has the property Wh = const#0.
This differentiated d, amounts explicitly to

€ by hTTRT =0, (A8)

where & ¥ = (d /dt)*h;, k = 0,1,... . From the properties of
€ it follows then that the “vector’ 4 ¥ must be a linear combi-
nation of “vectors” A %, k = 0,1,...,n — 2. Therefore, there is
A'={4';(1)}eF" ' such that
n—1
hi—> AR~ '=0.
i=1
By substituting here h; = |Wf| ~ /" f; and applying the
Leibnitz rule for d ¥ acting on a product of two functions, one
easily verifies that (A9) reduces to (A6), with 4,, having the
form of (A7).
Let Wf = 0, so that the n of f;’s are linearly independent.
Also, let f;, i=1,..,n — 1, be linearly independent, and
hence there are A, = const#0 such that f, = 2'=' 4, f.

i=1

(A6)

(A9)
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Repeating the argument given above, we infer the existence
of 4" = {47 ()}eF"~ ! such that, similar to (A6),

n—1
fimh=
i

S
i=1
But then f, = 27='A, f; must a forteriori satisfy the same
ODE (A10). Then acting on (A10) with d,, we conclude
that there is A€F” such that (A6) is valid. A trivial descend-
ing induction implies that it does not matter how many of
n f;’s are linearly independent. There is always AeF" such
that (A6) is true for any { f; () }eF". an
Lemma 2: We claim that, modulo the existence of
{4, (1)} €F" established in Lemma 1, such that (A6) is valid
for every { f; (¢)}eFF", it is true that

(at —An)Mf= _M:(_l_Ak+1M7_1’
k=0,1,..,n—1,

@ Indeed, differentiating J, using the definition (A1)
and remembering the total skewness of €, we have

i=1.,n—1 (A10)

(All1)

i=1,..,n

a’M (—1) €; dn—k—1
X{f;n :k_zlfpk k+l Zn—_:‘—n

+fgn Pk o :-"_l“. Zn——i-z ;n_k_l}'
(A12)

ipy Py

The term in the first line of the right-hand member of
this equality, according to (Al) amounts simply to
“_M¥%=1” In the term from the second line, by using
(A6) and remembering the total skewness of €, we can re-
place

Zqun k— 1_‘A"f:n——lk 1+Ak+1f‘1n k—1'

j=1
Consequently, the contribution from the second line
amounts to “A,M¥ —A, . ,M?~" and hence (All) is
true. | ]
Let now L:=A, —3d, and g;:=*/,;=M"?~"'. Then
(A11) assumes the form of

IMf=Mi""'4+ 4, 8. (A13)

A trivial induction establishes then that this implies for
every non-negative integer /:
1—1

LIMk Mk—l+(z

s=0

anl

L'='=4, ., _s)g,-. (A14)
Specializing this for k = n — 1, we have

-1
Lg =M1+ (3 LU, e
s=0

The last relation leads to the next lemma.
Lemma 3: There are the smooth functions B’ (¢) such
that

(A15)

l)IMn—-l—I+ Z B_\-g,
s=0
B With (A1l5) valid, remembering L:=4, —3,,
(A16) is obviously true for /=0,...,n — 1.l This estab-
lished, we propose, as the last lemma needed, the following.
Lemma 4: It is true that

gi=(— (A16)
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n—2

gi,gi gl,, '
M} M-

o

*uf, =g = (— 1)”_16ii,-~~i,,_|
=(=1D""le (A17)

#@ Indeed, according to (A16), and remembering the
total skewness of ¢, the last factor in the first line of (A17)
can be replaced by g/ ~2— ( — 1)"~>M |, the contributions
from B "~ % canceling out. By a parallel argument, proceed-
ing from the right to the left, the second factor can be re-
placed by g/ ~>—( —1)""’M?, the contributions from
B3 canceling out. Proceeding inductively this way we end
upwithg, - ( — 1)°M [~ . Therefore, the right-hand mem-
ber of the first line of (A17) amounts to

wf, = (— 1" (-
,Mr_r—let—Z Ml

L

i,y

1)0+1+ +(n—2)e

ll|' [t

(A18)

Permuting now the factors from the last line to the opposite
order, M ..M o |‘ and remembering the total skewness of €,
we conclude that the equality of **f; to the second line of
(A17) is true. [ [ |

With the established veracity of Lemmas (1-4), the
proof of identities (2.2) (d) and (2.2) (h) for any #>2 is now
very simple. B Indeed, by contracting the equality of #f; to
the second line of (A17) with M/, ] arbitrary, we have

Ml **f—(—l)"'l MO M;:—l,alo
=(- 1)"“1det(M,~")'5'°

=(—=1D""Y(Wwf)r—1-8° [via(AS)].

(A19)
Then multiplying this equality by f} and taking the sum
27,
(=DYWY= (Z f’M’) *f;

i=0

= (Wf) »xf, [using (A3)].
(A20)
Therefore, if Wf #0, necessarily
sof, = (= )"~ (Wf)"~*f. (A21)

Via the continuity argument, this also must hold with fsuch
that Wf—0, so that (2.2) (h) is true for every n>2.
Similarly, we now easily prove (2.2) (d). Indeed,

Wxf)=¢€,..8 "8 '
= (= DI DF Dl
XM  [using (A16)]
=€, M) M]"!
= (Wf)*~' [using (AS)]. (A22)

Therefore, (2.2)(d) and (2.2) (h) are identities for every
integer n>2. Also, Theorem 1 is true. [ | |
Corollary: Equality (A15) specialized for / = n yields

n—1
Lngi=(z Ln_l-sAn—s)gi (ELJ——IA )gx
s=0 =1

Therefore, while to an arbitrary { f; (¢)}eF" according to
Lemma 1, there is associated a linear ODE
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0f,=0, 0:=3"—3 4,3, (A23)

i=1
the functions g;: = *f; must fulfill the somewhat conjugated
linear ODE:

O'g;=0 O=L"— Y L'-'4;,
=1
where L:=A4, —Jd,. If Wf=const& 4, =0, one can
show that the operator & is just the adjoint of & in the
standard sense, that, for every f, geF,

g Of—0°gf=3ah,
where

n-—1
h= h, (XL ),
k;o MOTAOTL0)

h,,; independent of fand g.

Perhaps the notion of &~ as “conjugated” to & may
also be of interest when A4,, #0, but we shall not investigate
this point in the present text.

(A24)

(A2S5)

APPENDIX B: PROOF OF (3.6) IDENTITY

Consider a matrix M, with the entries in a commuta-
tive field of numbers of characteristic zero, indexed by
i,j=1,.,m =a positive integer. Understanding ¢;...;
= €[4, 88 the totally skew m-dimensional Levi-Civita
symbol normalized by €,...,, = 1,and by §, .. ,..; ..., as the
generalized Kronecker &%, and assuming the summation
convention, we have the basic identity

6 = [1/(m il k)!]ein“‘iksk+1"'Sm€j|"‘jk5k+1"’-‘k’
k=0,1,..,m. (B1)

Moreover, the notion of the determinant of the matrix M;;
then has the role of a coefficient in the identities:

(a) €. M, M, ;, =det(M,)e..; ,
(b) €,.., M, M, . =det(M,,)e,...; .

imim
The generalized minors of the matrix M;; are then de-
fined as

IR PN TR /"

(B2)

v dm i

mi|"'ik§j|"'jk
= [1/("1 - k)!]ein"'ik’k+l""mefu"'jksk+l"'sm
.Mrk+lsk+|...Mrmsm) k=0,1,...,m. (B3)

Notice that for k = 0, m = det(M,, ), for k = 1, m; ; are the
minors of matrix in the conventional sense, and for Xk = m,
m,'l...,'m;j‘..,jm == [T Sy ATE)

Using this definition, one easily establishes with the help
of (Al) and (A2) that

(a) M, M, m, ;. ; =det(Mp) 8. .. >
(b) M,'IsI b 'Mikskmjf"jk;-‘l"'sk = det(MM)'6,"...,'1‘;‘,-‘...{“,
k=0,1,..,m. (B4)

These general rules imply that, in particular for k = 1,
M;m_; =det(M, )6, =Mm, (BS)

5is?
where 8; = &, ; are the standard Kronecker §’s. For k = 2,
we have
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M,

KNS

M,

szizm = det(MPq )6ili2;jlj2

s T b8y T usis

5183 5y J2
(B6)
By contracting the first line of (B6) with m, ; m,, we
obtain
[det(MPq ) ] kalkz;jljz = det(MPq ) .6i|iz;j| Ja mkri| mk?"z N
(B7)
This, canceled by det(M,, ), in general #0 via the continu-
ity argument, and, remembering that

6i|iz;j|j2 = 6i|j| 5i2j2 - 6i|j25i2j| ’
leads to the identity
det(M,,) m . , = My M, —m; ; m.;, (B8)
which is essential for our purposes.
Now using the traditional notation of | - - - | for the deter-
minant of a matrix, one easily can show that the identity
M; 4
B ol= —m,;A,B; (B9)

J
holds, with / enumerating the entries into the rows and j into
the columns of the determinant of the (m + 1) X (m + 1)
matrix in the left-hand member of the identity above. The
M, A,, and B, are arbitrary with i, j = 1,....m, in the above.

Slightly more difficult to demonstrate using the con-
cepts above is the identity

M, 4, C
BJ 0 0 = miliz;j|j2Ai| Ciszupjz' (Blo)
D 0 O

J
Again, the /’s enumerate the rows of the (m + 2) X (m + 2)
matrix on the left-hand side, whose determinant is to be tak-
en. Correspondingly, the /s enumerate the columns. Of
course, in (B10), M, 4;, C,, B;, D; are arbitrary with
ij=1,..m.
Contracting now (B8) with 4, C, B; D; and using

(B9) and (B10), we arrive at the identit’;l n
M, 4, C
M| B, 0 0
D, 0 0
M; 4. |M; C, M; 4| |M; C,
= |3, o|'D,- ol_D,. ol'B, ol’

(B11)

Now we claim, using the same notation, a more general
identity

M; 4, C,
M, -|B E G
D, H F
My A, |My C| |M, 4| My C,
~ |, E"Dj F‘_ p, H| |B Gl’
(B12)
with M, 4;, C,, B;, D;, E, F, G, and H arbitrary.

Indeed, (B12) is true because one easily sees via an ele-
mentary argument that the coefficients of the arbitrary E, F,
G, and H are the same on both sides of (B12). It follows that
for (B12) to hold it is sufficient to verify its validity with
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E = F= G = H = 0. Of course, this amounts to the already
established (B11).1®

With the identity (B12), we can identify the entries of
the (m + 2) X (m + 2) determinant in the left-hand mem-
ber of (B12) with the entries of the determinant for ,,, , , F
according to the scheme

F--d77'F arF Ir*'F
ay~'F--- 9779y~ 'F dpdy'F dyrlayT'F
AyF---3d7 9y F dpdyF ATty F
gp*'F-- 37 1ayt'F 9Ty TIF dTrIAyTF

M, 4, C
=:|B, E G (B13)
D, H F

Using the definitions above, one easily sees that
LN Fy=%_Fd4,0,%, F-0,7, Fd3.%L,F
M; 4;| |M; C, l

B, E||D, F

M, i Ai M i Ci I
D, H| |B, G|’

By comparing (B13) and (B14) with the identity
(B12), we conclude that for every Fe5 and m = 1,2,... it is
true that

LWL F)y=%,, _FZ, . ,F. (B15)

It is now convenient to formally extend the validity of
this identity for all integers m. Understanding .7, F: = F, it
is natural to define

L_F=1, ¥ JF=%_F=--:=0 (B16)
which consistently assures us that (B15) is indeed valid for

all integer m’s.
For m = 1, (B15) amounts to

(B14)

Substituting the above F— .Z ,, F, we have
LAELNEL ) =L FLALF). (B18)

On the other hand, using the representation of .Z" F in
the form of F2.% .7, In F, one easily finds that the oper-
ation .7, has the property

FGe¥ = & (FG)=G*¥ F+F*¥,G. (B19)

Consequently, acting on both sides of (B15) with .¢,
and employing (B18) and (B19), we have

L F-LAL F) = (L FPL AL 1 P
A+ (L i1 D LA(L P
= (L VL F L o F
+ (L L, _F L F
[using (B15)]. (B20)
Canceling this by ., Fin general #0, via the continu-

ity argument, we arrive at the identity
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LAL W F) = (gm—lmz'jm+2F

+(jm+lf')2.fm——2ﬂ (B21)
which is valid for all integers m. In particular,
LWL \F) =F> L F+ (L,F)? (B22)
and
LNLF) = (L F)2 L F+ (L,F)F. (B23)

Notice that a direct proof of (B21) based only on the
definition of .¥ ,,, operations, without employing (B15) and
the (B19) property of .¥",, would be highly nontrivial. In the
initial stages of this paper, (B22) has been proved in particu-
lar via the direct computation, with the assistance of Dr.
Alberto Garcia-Diaz, whose help is gratefully appreciated.
At this stage of trying to find some formal properties of
K (L, F), with at least one of the indices being an arbi-
trary integer, this question appeared to be an extremely
messy algebraical problem.

The general problem of the result of the iteration of the
% . operations, i.e., .Z, (.£F) = ?, to which we have now
the answer for k = 1,2 and / arbitrary, remains as a rather
nontrivial algebraic problem.

One easily sees from the definition of ., that

LuF=2L,, FITIJF+ -+, (B24)
where ““- - - denotes the terms constructed from the deriva-
tives of F of the differential order <2m ~— 1.

It follows that

fn(ij) =gm—1F.3n—l(zmn

ArrmIyrE 4 -, (B25)
where *“:--” denotes the terms algebraically constructed

from the derivatives of F of the differential order
<2(n+ m) — 1. If we wish to express this statement in
terms of the ¥, operators, multiplying (B25) by
Z  + m—1 F and employing (B24), we arrive at

°'fn+m-~lﬁ"°fn(ongv)
=$m—1F'gn—l(sz').gn+mF+.“ (B26)

The dots denote the terms algebraically constructed from
the derivatives of F of the differential order <2(n + m) — 1.

On the basis of intuitive arguments, we conjecture that
the “- - > terms described above consist of the algebraic con-
structsmadeof ., F,m =0,1,....k<2(m + n) — 1. Webe-
lieve that it would be of interest to determine the explicit
form of the ““: - ->” terms in (B26), determining this way the
“algebra” of the composition of the .¥, operators,
(&L, WF=5, (%, F), which is obviously associ-
ative."’

APPENDIX C: PROOF OF (3.16a)

B Using the traditional explicit notation for the deter-
minants for ., F as defined by (3.1), we have

F, 4,F, ., OIF
F, Foo., x

K"I‘F: = .a’.' L2 ] .ay.ax. * o o L .a;va.xtlr : (Cl)
dyF, IL9.F, .., ILITF

Since the derivative of a determinant equals the sum of
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determinants with initial columns successively differentiat-
ed, we also have

F, d,F adm'F,

3™+ F
sy p | BB &F d877'F 370'F|

dyF, 9yd.F dyayp~'F, 9yay+'F
Now .%,, F =0 implies that the last column of (C1)

must be a linear combination of the first m columns, i.e.,
there are 4; (x,»), j = 1,...,m, such that

LwF=0>03,d7F= Y 4 %3, 'F, k=0,.,m.
i=1
(C2)
Similarly, if 4, .2, F = 0, via the same argument there
are A;(x,y),j = 1,...,m, such that
4.2, F=0

=357+ F= 3 ;3594 'F, k=0...m. (C3)

In particular, (CS lfor k = 0is given by
& F=0= 3"F= f‘,lA, 3)-1F, (C4)

Acting on the ab(j)\—/e with 3% and applying Leibnitz’s
rule,

£ F=0
kgm & (K k- 1aj—1
=>ap0mF= 3 5 ()5 1,0500 R
j= =
k=1,.m. (CS)

However, the term in the right-hand side cancels with the
left-hand member when the summation index / equals k be-
cause of (C2). Hence

m k—1

vurmom 35 (s w o oo

i=17/=0
(C6)

A parallel argument applies to the case of (C3). Special-
izing for k = 0, we have

k=1,..,m.

3, L F=0=a7+'F=3 4,3, 'F, (CT)
=1
and acting on it with 3§,
3. %, F=0
= 3 d7*'F
m k k .
=2 Z( )6§“A;-a;a’;‘F,
=R\
k=1,.,m. (C8)

Similarly, the entry in the summation over /, / = k, because
of (C3) cancels out with the left-hand member, and we are
left with the conditions

4.2, F=0
o A&t k k—14+ 1 9j—1
= _zl IZO ! ay A;d,3 7 'F=0, k=1,.,m,
j= =
(C9)
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which, with 4 ; — 4, formally coincide with (C6).
Lemma: Conditions (C6) imply that, for every
k=1,...m,

hk,I: = 2 a;‘_IAJ
i=1
‘3,3’ 'F=0, forevery I=0,1,.,k—1.
(C10)
We prove the above by induction. For k = 1, (C6) re-
duces to

2 3,4,°d’"'F=0

i=1
and (C10) is true, s, = 0. Assume then (C10) for some
k—ky 1<ko<m, ie., by ; =0, [=0,.,k;, — 1. However,

according to the definition of A ;:  d,h,
=h, .11+ by 11441 Consequently,

e o1+ R, 10401 =0, I=0,1,..,k, — 1. (C11)
It follows that

By vy = (=D 10, 1=0,1,.k, (C12)

On the other hand, (C6) specialized for k—k, + 1 re-
quires

ko (ko + 1
(01 )”’%*"’:0'
I=0

Using (C12), because

(C13)

ko
> (— 1)'(k0+ 1)= (1 =Dt~ (—1k+!
I=0 1
- ( - l)k"y
we see that this condition implies 4, . ;, = 0. So that, ac-
cording to (C12),
I1=0,1,....k,

which completes the inductive proof of (C10).

Now we are sufficiently prepared to demonstrate the
veracity of (3.16)(a). Indeed, with .#,, F = 0, the condi-
tion (C6) according to (C10) implies

he,+1,=0, (C14)

hk,k— 1= 0, k = 1,...,m, i.e.,

S 8,4;-3% '3 'F=0, k=1,.,m. (C15)

j=1
But the matrix ||d}~ '3 'F||, k,j = 1,...,m, has determi-
nant equal to .Z,,_,F. Therefore, if it is assumed that
& . _ 1 F #0, the matrix is invertible. Then (C15) implies
d,4; =0 =>4, =A4;(x). It follows that F must satisfy
(C4), which reduces to a linear ODE:

(3;" — 2 4; (x)d%- l)F= 0.
Jj=1
Understanding by f; (x), i = 1,...,m, the linearly inde-
pendent solutions to this linear ODE, F must have the form
of

(C16)

F=73 fi(x)8:()), (C17)

i=1
where the g;’s are “integration constants.” Therefore
(3.16) (a) is true. [ ]
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An infinite sum of products of Jacobi polynomials
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Starting with a formula by Noble [Proc. Cambridge Philos. Soc. 59, 363 (1963), Eq. (16)] for
a certain sum of products of Jacobi polynomials, another sum of this type is evaluated.

I. INTRODUCTION

In the course of our (as yet unfinished) investigation of
the inviscid, incompressible flow of a rotating fluid shell con-
fined between concentric, spherical, corotating rigid walls,
we encountered a certain sum of products of Jacobi polyno-
mials. We needed to evaluate

= Qk+pu+D
P( ,I,X)=
# PRy

XPE+HE=D (x) P~V (x),

(1a)

where / is a non-negative integer. The P (*? (x) are the Ja-
cobi polynomials’ given by

PP (x) = [(a+1),/n]
X Filn+a+B+1,—ml+a;(1 —x)/2]

(k+m)T(a+b—~1+k+2m)(2k+2m —I+a+b)

(n+a+B+1),(—n),
(1 + a);

=(a+1),, "

>

’l! s=0
1— x)’
X ’
(3
where (2),, = T'(z + n)/T'(z). In this paper it is shown that

P(pdx) = [((1 = x)/2)~#/ulbos  (—1<x<1, n50),
(2)

(1b)

where §,, is the Kronecker delta function.

To evaluate P(u,l,x) for I> 1, it was convenient to evalu-
ate first a more general sum of products of Jacobi polynomi-
als, which can then be related to P by considering a special
case. The evaluation of P(u,0,x) requires a separate treat-
ment.

Il. GENERAL FORMULA
We shall evaluate the sum

Q(a,bl,m;x) = i

—1—1,b ,b— 1 —1
P O (x)PEtmb i m=D(xy,

o Fe+k+m+ Db +k+m+1)
3)
where / and m are non-negative integers.
We start with a formula by Noble,?
= klc+ 1), (2k+c+1)
S(abex,y) = Pt (x)P =2 (p)
Y kgo (@a+ 1) (b+ 1), * *
F(a+1)r(b+1) 1 —b —a a+b—c—1
= 2¢+ (1+x) 1-— X — + A(xs )9 4
Tt DIG@1b—0) A=)~ %(x—y) y 4)
where
1, if —Ig<y<x<l,
Alxy) = [0, if —1<x<y<l.

Setting @ + b — ¢ — 1 = I (a non-negative integer), and differentiating m times with respect to y, we obtain in the limit y—x

R(a,b;l,m;x) = lim g—m S(a,ba+b—1—1x,y)

y—=x gy™
0,
={ a4+ 1D)T'B+DI(a+m-—I)m!

L(a+b—NDT(a)l¥(m—I)!

for — 1 <x < 1. We now use the formula for differentiating the Jacobi polynomials,
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if mgl,
(_1)12a+b—l(1+x)—-b(l_x)—a—m+1’ lf m>I, (5)
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d m
dy
to obtain

— PP () =2""(@+B+k+1),PLHmEm(y),

= kNa+b—Dy, 2k+a+b—1)

R(a,bjlmx) =2—"" Z

k=m

(a+ Db+ 1),

Here we have used the recursion relation satisfied by the P (*# (x),

2n+(n+a+B+1)2n+a+BPA (x)

=Q2n+a+B+2)2n+a+B+1)2n+a+BxP P (x)+ 2n+a+ B+ 1)(a® —BHPP (x)

—2(n+a)(n+B)2n+a+B+2)PA (x),

(6)
P;ca—l—l,b)(x)P;ca_"‘mm’b—l_'—m—l)(x)- (7)
8

to verify that P {*# (x) = 0 when n is a negative integer. Shifting the summation index in Eq. (7) and noting that R is

proportional to @, we obtain finally

Q(a,b;lm;x) = [

where (') = m!/I1!1(m — [)! is the binomial coefficient.

ill. EVALUATION OF P (11, x)
A.Case/>1

Since />1, the function P(u,l,x) can be related to
Q(a,b;lm;x) by settinga=u+1, b=1,and m=1—1.
Then we have

& Qk+p+1)
+ LI - 1;x) =
o Zo k4 Dktath

XPHEHE=D(x)P M) (x) =0,
(10)

because m =1 — 1 <.
We can now express P (%'} (x) in terms of P{*~ " (x)
as follows. Set 8 = 0 in the contiguous relations,’

(@a+B +2m)P*~V(x)

=(a+B+n)PP(x) + (a+n)P*F(x) (lla)
and
}(@+B+2n)(14x)P*+ D (x)

= (B+n)PF) (x) + nP P (x).
Then for n>1,

(11b)

PN (x) + P2 (x) = ((2n + @)/2n)(1 + x)P (%) (x),
(12)

from Eq. (11b), and

PO (x) + P9 (x) = ((a@ + 2n)/(a + m))P{>~V(x),
(13)

from Eq. (11a), so that for n>1,
PN (x)=[2n/(@a+m (1 +x)]1P> "V (x). (14)

Substituting this result in Eq. (10) with n = k + / gives,
for I>1 and u#0,
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(_ 1)12a+b+m—l(;n)(a)m—l(1 +x)—b(1 _x)—a—m+1,

if m<l,

if m>l, %)

|

__ 2 = QRk+p+1)
(I+x) o (k+pu)k+14p)
XPP+E=D(x)PES D (x)

=[2/(14+x)]P(u,lx) =0

(—l<xcl). (15)

B. Case /=0

P(u;0;x) can be evaluated by integrating
S(u + 1,1,u + 1;x,t) with respect to ¢+ from — 1 to x. To
evaluate §* | P#+ 19 ()dt, we use the differentiation for-
mula for Jacobi polynomials, Eq. (6), with m = 1. This
gives

| pesomar=——2

-1 (k+p+1)
since P> 7" ( — 1) =0 from Eq. (14) for k a positive in-
teger or zero. Thus integrating Eq. (4) yields

P#TV(x), (16)

J Sl + 1,Lu + Lx,0)dt
-1

) 2“’: (2k+p+2)
o (k+D(u+k+1)
__4 i (2k +p)
14+ xS (k+p)?
=4/(1 + x) [P(u;0:x) — (1/p) ]
=[2**2/u(1+x)][(1 —x) ~*—27#]

P50 ()P (x)

[P0 T?

(u#0),
an

where we have utilized Eq. (14) and have shifted the sum-
mation index. Finally, Eq. (17) yields the desired result,
P(u,0,x) =2%/p(1 — x)*. (18)

While Eq. (5) requires 1 <x <1, Egs. (15) and (18) hold
also for x= —1 ©because,’> as noted above,
P®=Y(_1)=0 for a positive integer, and
PE—D(—1 =1
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Noether’s theorem in symmetric stochastic calculus of variations
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Quite recently, a symmetric stochastic calculus of variations was proposed to formulate
canonical stochastic dynamics, which is an extension of Nelson’s stochastic mechanics. In this
article a “Noether’s theorem” is formulated within this calculus of variations. Conservation
laws of momentum, angular momentum, and energy are proved, which are related with the

same laws in quantum mechanics.

I. INTRODUCTION

Several years ago, Yasue proposed the notion of stochas-
tic calculus of variations’'™ within Nelson’s stochastic me-
chanics.>” This calculus has been improved recently.? The
new calculus is called “symmetric stochastic calculus of var-
iations” (SSCV). “Symmetric” means that this stochastic
calculus employs the time-symmetric semimartingale. On
the stochastic least-action principle in the SSCV, Nelson’s
stochastic mechanics is reformulated in the Lagrangian for-
malism. We present a certain class of stochastic Lagrangian
systems in the SSCV that are associated with solutions of
Schrodinger equations,® as in Nelson’s mechanics.

The aim of this paper is to set up a theorem similar to
Noether’s theorem within the SSCV on the model of an ordi-
nary calculus of variations,® and to get thereby conservation
laws for the stochastic Lagrangian systems mentioned
above.

Il. 88CV: SUMMARY

Wesstart with a summary of the SSCV.2 Let (Q2, B, P) be
a base probability space and x a stochastic process in R/, i.e.,
a continuous mapping ¢ — x(¢) from a time intetval  into the
Hilbert space H = L *((Q,P) —»R’). We consider two filtra-
tions indexed by I, B, and B,, with B,CB, and B, CB, for
5<t, to which x(?) is adapted. By hypothesis, x(¢) is a time-
symmetric semimartingale.?*'® Moreover, the process x(¢)
has the two mean velocities

Dx(t) = lim h~'E[x(t+h) —x(¢)|B,]
h—0+
and
D, x(t) = lim h ~'E[x(#) —x(t—h)|B,],
h—0+

where E[-|8] denotes the conditional expectation with re-
spect to the o algebra 8. Let us denote the class of stochastic
processes of the above-mentioned type by K. For
LeC?*(R¥ *'-R!"), a Lagrangian, and for each process x ()
in X, we define the action functional J by

b
J[x]= E[f L(x(t),DOx(t),t)dt] s n

where E[ -] is the absolute expectation and a,b€l, a<b. In
the expression (1), Dox(t) denotes the “‘symmetric mean
derivative” defined by

Dox(t)=4(D+ D, )x(1).
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We denote by A the totality of processes z(¢) = z(x(2),t),
where z = z(x,t) is any smooth R*-valued function vanishing
identically for t = a and b. We note that each process z(¢) in
A also belongs to K. The process x(¢) in K is called a station-
ary process of the functional J, given by (1), if 6J[x}(z), the
first variation of the functional J in x on X, is equal to zero
for any processes zin A. The following theorem describes the
stochastic least-action principle in the SSCV.?

Theorem 1: A process x(¢) belonging to K is a stationary
process if and only if, for the process x(z), the following
equation holds:

Do dL oL _ 0.

dDox(t) ox(¢)

We call this equation (2) the stochastic Euler’s equa-
tion. The proof of this theorem consists of computing
6J[x](z) by Taylor’s expansion and using the following
lemma.

Lemma 1 (Zheng-Meyer'®): Let x(¢) and y(¢) be sto-
chastic processes belonging to X. Then

E[x(b)y(b) —x(a)-y(a)]

b
=E U (y(2)-Dx(t) + x(¢) 'D,,y(t))dt]

(2)

b
=EU (x()-Dy(t) +y(t)-D,x(t))dt]. 3)

Ill. A NOETHER'’S THEOREM IN SSCV

Now we proceed to set up a theorem similar to
Noether’s theorem ' in the SSCV. Suppose that one has pro-
cesses x(1) and X(#) belonging to K and satisfying the fol-
lowing conditions.

(i) The process x () is a stationary process of the func-
tional J given by (1).

(ii) The process X (?) is derived from x(¢) by the follow-
ing transformation depending on a parameter &:

X(1) = é(x(2),L¢), (4)

where ¢(x,t;¢) is a smooth function differentiable with re-
spect to £, and for £ = 0 the ¢ becomes the identity transfor-
mation.

Theorem 2: Assume that both of the processes

JL
(m) (x(2),Dox(t),t)

and
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A(x(t),t)s(.‘%) k)

belong to K. If, for arbitrary a and b, AJ=J[X] — J[x] [the
variation of J induced by (4)] satisfies
(£) o %
dg £=0

then

JdL
| (o) xO2ox 01 2st00)

is constant along the stationary process x(?).

Proof: Suppose that ¢ is a small quantity. Using Taylor’s
expansion with respect to £ and the stochastic Euler equation
(2) for x(t), we find that Eq. (5) turns out to be

dL
DoA )dt | =0. 6
[J Dox(t) A+ dDox(t) ° ) ] ®)

Applying Lemma 1 to Eq. (6) we fmally obtain

2| (o ). ~ (o ). =0 @
8D°x(t) t=b DOX(I) t=a

Theorem 2 now follows from the arbitrariness of ¢ and b.

IV. CONSERVATION LAWS IN THE STOCHASTIC
LAGRANGIAN DYNAMICAL SYSTEM

‘We now turn to conservation laws obtainable by apply-
ing Theorem 2 to a stochastic Lagrangian dynamical system
in the SSCV that corresponds to a solution of the Schro-
dinger equation. For this purpose we first touch upon the
reformulation of Nelson’s mechanics on our stochastic least-
action principle.® Let us consider diffusion processes x(¢)
belonging to K that are governed by the stochastic differen-

tial equation and the reversed equation>™’:
dx(t) = b (x(#),t)dt + (F/m)'"* dw(2), (8)
dx(t) = b, (x(2),t)dt + (F/m)"* dw, (), 9

where b and b, are certain vector-valued smooth functions,
#iis Planck’s constant, and m is the mass of a particle. In (8)
and (9), w(?) is a standard R’valued Wiener process, and
w,, (¢) has the same properties as w(#) except that the incre-
ments w, (¢) — w, (s) are independent of x(7) for 7> ¢>s.
We assume that x(¢#) has a probability density function
p(x,t). For this process we have Dx(t) =b{x(z),t) and
D, x(t) = b, (x(1),t). According to Nelson,>”’ these func-
tions b and b, are connected with the probability density p
by the equations

—‘?’—o— +div(vrp) =0, u= {i] grad In p, (10)
at 2m

where v, the “current velocity,” and u, the “osmotic veloc-
ity,” are vector-valued functions defined by v = §(b + b,,)
and u = §(b — b, ), respectively.

Now we assume that the diffusion process x(#) men-
tioned above is an extremal of the functional J with the La-
grangian
L(x,Dox,t) = (m/2)|Dox|* — V(x,t) + (m/2)|u(x,t)|*

+ (Ai/2)div u(x,t), (11)
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where V' is a given potential function and u is the osmotic
velocity given by the second equation of (10). Then
Theorem 1 and the following lemma due to Nelson are put
together to show that

(gt-+ v-V)v(x(t),t)

=1 grad V(x(2),t) + (u"V + A A) u(x(2),t).
m 2m
(12)

Lemma 2 (Nelson>7): Let f(x,t) be a smooth func-
tion on R’ X R! and x(¢) the diffusion process governed by

(8) and (9). Then

Df(x(1),t) = [%-{-b-V—}- [%]A]f(x(t),t), (13)

D, fxon) = [+ b, v~ [ 2l a] fxto. 18y

Equation (12) is just the same consequence as that of
Newton’s equation of motion in Nelson’s mechanics. There-
fore in a manner analogous to Nelson’s mechanics we can
determine v, u, and p (and hence b and b, ) from Eqgs. (10)
and (12), so that the diffusion process x(#) is determined.>~’
Thus Nelson’s mechanics is now reformulated on the sto-
chastic least-action principle. The diffusion process x(¢) to-
gether with the Lagrangian (11) is called the stochastic La-
grangian dynamical system (SLDS).

In the same manner as Nelson’s, one can further show
that the SLDS x(¢) with the Lagrangian (11) corresponds
to a solution of a Schrodinger equation. Indeed, the wave
function defined by W(x,t) ={p(x,t)}"/2exp{iS(x,0)},
where S(x,t) is such that v(x,t) = (#i/m) grad S(x,?), satis-
fies the Schrodinger equation with the potential function
V(x,t)>”; hence p = |¥|* gives the probability density of a
particle in the position space.

We are now in a position to obtain conservation laws in
the SLDS with the Lagrangian (11). These conservation
laws will have their correspondents in quantum mechanics
on account of the correspondence between our SLDS and
the Schrédinger equation. For simplicity we consider a
three-dimensional system and set m =fi= 1.

(i) Conservation of momentum. Let us take up X*
=x'+ £ (i = 1,2,3) for the transformation (4). We assume
that the potential function ¥(x,¢) in the Lagrangian (11) is
invariant under this transformation in R?. Then we can ver-
ify that Eq. (5) holds in this case. Indeed, by a computation
along with Lemma 2 we obtain

daJ Pl 1 )
(@)=l [z g @-pomonla]
(15)

We note that the process #/(x(z),t) belongs to K, since #'is a
smooth function. Then Lemma 1 shows that

b
E U (D — D, )uix(t),t) dt] =

so that Eq. (15) is equal to zero. Moreover, the assumption
of Theorem 2 also holds in this case, since (JL/
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dDox) = Dox = v and A are smooth functions on x and ¢.
Therefore by Theorem 2

3

E|Y vi(x(2),t )]
i=1

proves to be a conserved quantity.

(ii) Conservation of angular momentum. We now as-
sume that the potential function ¥V(x,t) is invariant under
the rotation about, say, the x> axis. In the same manner as in
(i) we obtain

b
(%)...=" U > @ D,)5u' )
de e=0 a 2

———;—(D—D* )x'-uz(x,t)]dt] . (16)

By the definition of #, the right-hand side of Eq. (16) be-
comes equal to zero, and hence Eq. (5) holds also in the case.
Moreover, as in (i) the assumption of Theorem 2 also holds.
Therefore Theorem 2 shows that

E[Dox'(2)-x*(t) — x'(t)-Dox*(t)]

is a conserved quantity.

(iii) Conservation of energy. Let 7eC '(I-R') be a
strictly monotonic function with r(a) =a and r(b_) =b.
The inverse function is denoted by #(r) for a<7<b, and
x(¢(7)) is denoted by X(7). Then we can regard (x(7),t(7))
as a stochastic process on R* X R'. For this process we intro-
duce a new Lagrangian LeC 2(R**+ "~ R!) through the re-
lation

L (()_c,t), (Do:‘c, —‘1’-)) —L (J‘c,Dox (ﬂ) ) ‘,;) : (i) ,
ar dr dr

where L is the Lagrangian (11). We denote by J the func-
tional for the Lagrangian L with the process (X(7),(7)).
We now assume that the potential function ¥(x,¢) in the
original Lagrangian (11) is independent of ¢. Consider the
transformations in R*, X(7) = X(7) and T(1) = t(1) + €.
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Then after a calculation, the left-hand side of Eq. (5) for the
functional J goes over into

dAJ _ (. u 1 . (3u ]
(W)FO—EU‘, “ar 2 dw(at)}d’ (D

By both equations of (10) and Lemma 2, the integrand of the
right-hand side of Eq. (17) becomes

—4D—-D,)(vu)—L{(D—-D,)(divp),

so that Eq. (17) is equal to zero because of Lemma 1. Fur-
thermore, we also see that the assumption of Theorem 2
holds in this case. Therefore from Theorem 2 it follows that
E{{dL /3(dt /du)}] = const. On inserting the relation be-
tween L and L into this equation and setting u = f,

E[}|Dox|? + V(x) — }u(x,0)|> — } div u(x,2) ]

is a conserved quantity.
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The concept of canonoid transformation for a locally Hamiltonian vector field is introduced,
and its relation with the existence of non-Noether constants of the motion is shown from a
geometrical viewpoint. The equations determining generating functions for such canonoid
transformations are obtained and applications to some particular problems given.

I. INTRODUCTION

Canonical transformations are very often used to reduce
Hamilton equations describing the time evolution of a Ham-
iltonian system to a simpler set of Hamilton equations. This
property of preserving the form of such equations, whatever
the Hamiltonian is, characterizes the canonicity of the trans-
formation. However, as remarked by Saletan and Cromer,'
given a concrete Hamiltonian H, the transformations pre-
serving the Hamilton form of the motion described by H,
which are said to be canonoid with respect to H, may also
play an important role in the solution of the problem at hand,
and this fact has motivated recent papers on the properties of
this kind of transformation.?”

The approaches developed up to now, however, are lo-
cal and coordinate dependent—a paper by Marmo* refers
only slightly to the global problem. One of our aims, there-
fore, is to develop a global theory for canonoid transforma-
tions, using the tools of modern differential geometry, that
will be valid for a more general case in which the manifold is
not topologically trivial.

The paper is organized as follows: In Sec. II we give a
geometric definition of canonoid transformation that re-
duces to the well-known one for the simplest case of a topolo-
gically trivial system, or at least when considering only local
expressions for the system. The geometric version of the
Poisson bracket theorem' gives a suggestion for such a defin-
ition, which coincides with the concept of quasicanonical
transformation introduced by Marmo.* The theory of local-
ly Hamiltonian dynamical systems admitting alternative
formulations>® will be used for studying such canonoid
transformations, and we will find some global results gener-
alizing previous contributions by Leubner and Marte? and
Negri et al.,® to which they reduce when only trivial systems
are concerned. It is also well established how to generate
canonical transformations starting from ‘‘generating func-
tions.”"” In contrast, as far as we know, there is no available
method of generating a canonoid transformation for a con-
crete Hamiltonian H; therefore this will be the main goal of
Sec. I1I, where we develop the theory of generating functions
for canonoid transformations. In Sec. IV, some examples
given previously are shown to arise in this way as associated
to some generating functions. Finally, for the sake of com-
pleteness, the local expressions have been collected in an Ap-
pendix.
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Il. CANONOID TRANSFORMATIONS

The concept of canonoid transformations with respect
to a Hamiltonian H was introduced by Saletan and Cromer’
in order to name those transformations preserving the form
of Hamilton’s equations for a fixed Hamiltonian H. The gen-
eralization for the case of a nontrivial phase space is due to
Marmo* under the name of quasicanonical transformations.
The idea of this definition may be demonstrated by consider-
ing that given a symplectic manifold (M,w), the integral
curves of a Hamiltonian vector field 'y, defined by
i(T )@ = dH, are determined in Darboux coordinates for
o, for which = dq’ A\ dp;, by the Hamilton equations

dg' _OH dp_OH

dt  dp, dt 3¢

The same assertion would be true for a locally Hamilto-
nian vector field I, the role of H being played by a local
Hamiltonian for I, but the explicit reference to a concrete
type of coordinate seems, however, to be not quite satisfac-
tory. The relation between locally Hamiltonian vector fields
and mechanical systems whose evolution is described by
Hamilton’s equations may also be based on the fact that such
systems are characterized by the relation of the so-called
Poisson bracket theorem,’

HEG) _(dF ), 5 49,
dt dt dt

that in geometrical terms is given by
I'{F,G} = {rF,G} + {FIrG}. (2.2)

The following theorem asserts that this relation is simply the
equivalent of saying that T is a locally Hamiltonian vector
field.

Theorem: Let (M,w) be a symplectic manifold. A vector
field I'e %’ (M) is locally Hamiltonian if and only if relation
(2.2) holds.

Proof: We recall that the Poisson bracket of any two
functions F and G is defined by {F,G} = o(Xf,X; ), where
X denotes the vector field such that i(Xz)w = dF. Then

fr{F,G}‘—‘ Lr [w(XF’XG)]
= (yrw)(XryXG)
+w([F,XF],XG) +w(XF,[r,XG])s

2.1)

and therefore
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fr{F,G} = (frw)(XF»XG)
+ [T.XgF - [T.X£]G,
from which we get
I'{F,G} = — (ZLw)(XpXs) + {TFG} + {FTG}

Consequently, if T is locally Hamiltonian, ¥ @ = 0,
then relation (2.2) holds, and, conversely, if this relation is
true, then (L) (Xz,Xs) = 0 for any pair of functions.
Since a local basis of Z° (M) can be built up from Hamilto-
nian vector fields, the Lie derivative .¥ . @ must be zero, i.e.,
I" is locally Hamiltonian.

A canonoid transformation ® (w.r.t. H) preserves the
form of Hamilton’s equations, and therefore condition (2.2)
would also be true for the transformed field ®_I';;. This
shows that an appropriate generalization for the concept of
canonoid transformation is that of quasicanonical transfor-
mation according to Marmo’s* terminology.

Definition: Given a locally Hamiltonian vector field
T'e# (M) in a symplectic manifold (M,»), a transforma-
tion ®eDiff(M) is said to be canonoid with respect to I if
the transformed field ¢, I is also locally Hamiltonian.

The two-form B= %, rw is exact, BeB*(M), since
B = dP with P=i(®,I")w. Thus the property B =0 im-
plies, locally, the existence of a function K such that
i(®, MNo=dkK.

The point is that ®_ T is locally Hamiltonian with re-
spect to the symplectic form o if and only if T is locally
Hamiltonian with respect to the symplectic structure ®* o,
because of the relation ®*d[i(®,INw] =d[i(T)P*w].
This means that when ® is a canonoid transformation for T",
then the vector field I" admits a new and different locally
Hamiltonian structure.

The dynamical systems admitting alternative Hamilto-
nian formulations have received much attention in the last
few years. In particular, for Lagrangian systems, it was
proved by Hojman and Harleston® that given two s-equiva-
lent, but not gauge-equivalent, Lagrangians L;, i = 1,2, it is
possible to find some constants of motion that are the traces
of the powers of the product matrix W, 'W,, where W,,
i = 1,2, denotes the Hessian matrix

W 9L,
[ i ]aB EYE UB .
Moreover, Henneaux® proved that this corresponds to the
vanishing of the Lie derivative of a (1,1) tensor field whose
diagonal blocks are W, 'W,. The more general case of
Hamiltonian dynamical systems has been studied in Refs. 5,
6, 10, and 11. Now we will show that the properties of these

bi-Hamiltonian dynamical systems can be used for the study
of canonoid transformations.

A. Particular case: Bidimensional symplectic manifold

If the dynamical system is two dimensional, dim M = 2,
then any two arbitrary nondegenerate two-forms are propor-
tional. Therefore there will exist a function feC> (M) such
that *w = fo.

Now because of the relation

Zr(fo) = Tf)o+f(ZLro),
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we obtain that, if I is a locally Hamiltonian field, then the
transformation ® is canonoid w.r.t. I' if and only if f is a
constant of motion.

Next we prove that this function f relates the Poisson
bracket of the pullbacks ®* (F), ®*(G) of any pair of func-
tions F,GeC* (M) to the primitive Poisson bracket {F,G}.
In fact, we have

i(Xpo )@ = d(Fod) = ®*(dF) = d*[i(X;)0]
=i[®] (Xp) ]P0, (2.3)

and consequently if ®*w = fw, then we obtain X,
= f®, '(X). Since the definition of the Poisson bracket is

{Fod,God} = X o0 (FoP),

and taking into account the value of X., given above, we
find

{Fod,God} = f O (X5 ) (Fod)
=fXg(F)o® =f{F,G}od. (2.4)

This property may be used to get a new proof of the
theorem given by Leubner and Marte? for the case of a “one-
dimensional system,” according to which a mapping
(g,p) — (Q,P) carries a given canonical description (p,q,H)
of a one-dimensional system into another canonical descrip-
tion (P,Q,K) if and only if the Poisson bracket {P,Q} is a
constant of the motion. Actually, in the particular case of
taking as functions Fand G in (2.4) the coordinates g and p,
seeing that they are canonical conjugate variables,
{q,p} = 1, wefind that f is givenby f= {Q,P}. Note, how-
ever, that we have established the theorem in a larger context
without the assumption of M being the phase space of a sys-
tem with a topologically trivial configuration space.

B. The general case

The more general case of a higher-dimensional system
has recently been studied by Negri et al.® in a coordinate-
dependent way, and they have proved that a necessary, but
not sufficient, condition for a transformation 7, = 7, (§) to
be canonoid w.r.t. a Hamiltonian H(q,p) = H(£) is that
YapA.p must be a constant of motion. Here A,z denotes the
Poisson bracket 4,5 = {7,715} and 7,5 the elements of the
canonical symplectic matrix.

The existence, when ® is canonoid, of alternative Ham-
iltonian formulations for the vector field I' indicates the exis-
tence of non-Noether constants of motion. In fact, we can
consider® the pencil of admissible closed two-forms for T’
defined by ®*w and w, i.e., the family ®*w — Aw. If 2nis the
dimension of M, then the two 2n-forms (®*w — Aw) " and
" are volume elements and thus proportional. The func-
tion f; €C* (M) defined by

(®*0 — A) " = fr0™" (2.5)

satisfies % f; = 0. It is a polynomial of degree n in the
indeterminate A, f; = a, + a4 + -+ + a, A", with coeffi-
cients a,, defined by

(—DF [Z] (P*) " P AN = a0, k=0,..,n,
(2.6)
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that are constants of the motion, . ra, =0.

We have obtained n not necessarily independent, asso-
ciated constants of the motion, a,, k =0,....n — 1, and we
will prove that one of them, a, _ ;, reduces in the simplest
case to the constant of motion found by Negri e al.* In fact,
if (¢',p;), i=1,.,n, is a set of Darboux coordinates
for w, then the two-form ®*w can be written using these
coordinates as

d*w = la,; dg' Adg’ + b; dg' Ndp; + \c;dp, Ndp;,
where 4 = [a;] and C = [c;] are skew-symmetric matri-
ces. Therefore Eq. (2.6) for k=n — 1 reads

(P*0) A"~V =nTr Bo™", B=[b,],
thus obtaining that . . (Tr B) = 0. The coefficients b; can
be shown to be identified with the Poisson brackets {Q',P; }
with Q= g'o® and P; = p;o®. In fact, let @ denote the map
@: & (M) - A (M) given by contraction, & (X) = i(X)w,
and let A be the (1,1) tensor field defined'® by
A =@ 'o(®*w)" — or, in an equivalent way,

(P*0) (X,Y) = o(A(X),Y), VX, YeZ(M). (2.7)
Such a tensor is such that .. A =0 and, therefore,
ZLrA* =0, so that the coordinate expressions of these
equations are Lax equations (see, for example, Refs. 10 and
11) giving rise to a set of constants of the motion that are the
traces of the integer powers of the matrix representing Aina

local basis of fields. Using this tensor, the Poisson bracket of
the ® pullback of two functions F and G is

{Fo®,God} = i(X gog )d(Fod)
=i[AMP, 1(XG))]d(F°<I>)
= [A(Xg)oF JoF~, (2.8)
where we have used Xg. = A(®, '(Xg)), which follows
from (2.3), and the definition (2.7) of A. In particular,
i _ d i
{0 ,&}-A(gq—j)q,
and since

a3 a
(o) =2 )~

we obtain {Q P} =b

d
4 (apk ) ’

4» and therefore Tr B reduces to

TrB= ) {@\P.}. 2.9)
i=1

It was also pointed out in Ref. 3 that the condition of
(2.9) being a constant of the motion is a necessary, but not
sufficient, condition for ® to be canonoid. Actually, it is a
rather obvious consequence of the theory developed here;
not only the trace of A but also the traces of the integer
powers of A must be constants of the motion. The point is
whether this last condition is also sufficient for ® to be can-
onoid. The answer is ‘“no” because, assuming
Fr(TrA*)=0, k=1,.,n, we will then obtain
L (P*w — Aw) "™ = 0 for any value of A, and it does not
follow from this that .¥ - (®*w) = 0, the condition for ® to
be canonoid.

The expression ¥ (P*» — Aw) " =0 can also be
written as a system of n equations,

b2l
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Lel(@*) A0 "R =0, k=1,.,n,
or, in an equivalent way,
[Lr(P*0) | A (P*0) " * DA "~ P =0,
k=1,.,n. (2.10b)

Actually, it is possible to find a closed form w, different from
zero such that

o A (P*0) N, VA NP =0, k=1,.,n.
If the (1,1) tensor field N is defined by
0,(X,Y) = 0(N(X),Y) for X,Ye# (M), then
[0, AN (@*) ", VA "~ P1(X,Y e X0, Yy)
=0 (N(X,),Y,,A(X,), ...,
AXL) Y Xe o 15 Yor ).

This proves that it is sufficient to take a (1,1) tensor field ¥
such that

() ()

for the value of the left-hand side of (3/d¢'.3/
ap,,...,0 /3¢",d /dp, ) to be zero. Thus even if w, %0, the vol-
ume form o, A ($*0)**~ P Aw” "~ * can be null.
This fact proves that the stronger condition .Z - (P*w)
= 0 cannot be replaced by “the traces of the different pow-
ers of A are constants of the motion.”

(2.10a)

li. GENERATING FUNCTIONS

The canonicity of a transformation is related to the exis-
tence of an associated generating function. This function is
defined on the graph of the map, and when expressed in local
coordinates it clearly displays the relationship between the
*“‘old” and the “‘new” positions and momenta. Following this
idea we will reformulate the definition of canonoid transfoi-
mation.

Proposition: Let (M,,w,) and (M,,w,) be symplectic
manifolds, m;: M,XM,—M; the projections onto M,,
i=1,2, and Qe A%(M, X M,) the symplectic two-form de-
fined by Q = 7rfw, — 7¥w,. Then a diffeomorphism &:
M, — M, is canonoid with respect to the locally &,-Hamilto-
nian field e £’ (M,) if and only if i% (.£ , Q) =0, where
VeZ (M, X M,) denotes the field ¥ =T X P, T, G, is the
graph of ®, and iy, : Gy, —» M| X M, is the inclusion map.

Proof: First, we notice that

Ly =L y(rmto, — miw,)
= '”'l"(jﬂ—,.vwl) - ‘”';(-?rz.vwz)-

On the other hand, ® induces a diffeomorphism of M, onto
G4, SO we can write

T w(my Go = {(v,®,0) |veT,, M.},
and therefore
[io* (&, ) (v, ®,0)),(v,,®@,0,)}
= (L 0@ (V0;) — (L, y0,) (P, v, P, v,)
= (L1 0,) (V,0,) — P* (L o,r ;) (v),0,)
= [Lr (@) — ®*0)) | (v,02),
and the proposition is proved.
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If we write Q = — dO we obtain d [} (£ ,0)] =0;
that is, 7% (., ®) being closed is equivalent to ¥ being can-
onoid with respect to I". Locally, by Poincaré’s lemma, there
exists a function SeC* (G,, ) such that i3, (.£ , @) = dS. We
call the function S a generating function for the canonoid
diffeomorphism &. If we take ® = 710, — 7%6,, we obtain

B[ L6)] — % [73(L o 6;)] =dS. 3.1

Recall that for a canonical transformation, the associat-
ed generating function measures the change of the action
induced by it. Now note that we have found that, for canon-
oid transformations, S measures the Lie derivative of this
change with respect to the field I'.

Let &: M, — M, be canonoid, and denote the Darboux
coordinates by (¢',p; ) and (Q*,P;) as usual. Then, regarding
S as a function of (¢',p;), the relation (3.1) reads

2 k k
OH  HQH)p OH_(p py90
oq’ dp, oq’ oq oq’
c7S
= (3.2a)
8q 2
2 k
OCH _HQVHY p (p ;905 _ 95 (33
dp; 9p ap; ap; ap,

These equations are obviously more complicated than those
found for the canonical transformations (i.e., p; = S /dq’,
P, = — 3S/3Q' ), but this fact is due to the presencein (3.1)
of the Lie derivative consequence of the I" dependence. If we
restrict ourselves to the so-called fouling transforma-
tions'>'>—that is to say, fiber-preserving diffeomophisms
inducing the identity in the base space, @' = ¢"—the expres-
sions (3.2) reduce to

J3°H as
- —P)————{ HY = —, (3.3a)
dq’ dp, i = 5 dq’
3°H as
: —P)=2. (3.3b)
%7 b, (P & a,
IV. EXAMPLES

(1) Saletan and Cromer proposed’ as a pattern for can-
onoid transformations the following example in one degree
of freedom. The equations giving the transformation are

O=gq, (4.1a)
P=p'2_ ¢, (4.1b)

and it is proved to be canonoid for the Hamiltonian H = p*/
2 of a unit-mass free particle.

Infact, using (3.3) this mapis obtained as the particular
one associated to the function

S=gp+p/2-3p", (4.2)
and the new Hamiltonian K such that 4K
= — i([)d[®*(8,)] is found to be given by dK
= — {P,H}dQ + {Q,H}dP, which when integrated gives
K=4P+ 0%

Moreover, using (3.3) we can now obtain not only a
particular one, but the set of all the fouling transformations
for this Hamiltonian. Indeed Egs. (3.3) particularized for
H = p*/2 reduce to
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as oP

2= 4.3
3 % p (4.3a)
s _ ., _p (4.3b)
dp

asystem that can be integrated and solved for Pasa function
of (¢,p) if and only if S verifies the following compatibility
condition:

2
» a’s a5 _ (4.4)
dqdp g
The general solution of this equation is given by
S=flg)p+8(p), (4.5)

with f (¢) and g(p) being arbitrary differentiable functions.
Thus any function S in the form (4.5) generates a canonoid
transformation for H = p?/2, given by

Q=g (4.6a)
P=p—flg)—¢(p). (4.6b)
As the system is one dimensional, the new Hamiltonian X is
related to H by dK = {Q,P}dH, which for (4.6) becomes
dK = {1 — g"(p)}p dp, and then we obtain for the function

K, when expressed in terms of the set of old coordinates
(¢,p), the following expression:

K(gp) =1p*+g) — g (p)p. (4.7)

Note that K can never be reduced to K = const, since

g" (p) #0is precisely the condition imposed by the im-
plicit function theorem for solving (4.6) for p. Furthermore,
note that when the function g(p) is a homogeneous function
of degree 1, then K = H and (4.6) reduces to a canonical
transformation.

(2) As a second example we will consider the two-di-
mensional isotropic harmonic oscillator

H=(g)+ (:)*+ (@)* + (p,)*}. (4.8)

Given any differentiable function S = S(g,,¢,,P1,0,), every
solution (P,,P,) of the system

as

={HP}—q, (4.9a)
aql
95 _ {H.P,} —q,, (4.9b)
oq,
as
—— =D “Pl’ (4.9¢c)
ap,
as
_"=p2'—P2, (4.9d)
ap,

represents a fouling canonoid transformation. The only con-

straint for .S is that it must satisfy the compatibility condi-

tions

B5_ (53], B__(y95)

g, ap,) dg, p;
Recently,® two different fouling transformations have

been found for (4.8). They are

P =2p, —p, + 919> (4.10a)
Py=p, —pi+ 443, (4.10b)

and
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P =igip,+ D%, (4.11a)

P, =1igp, + 13- (4.11b)
It is not a hard task to show that they are just two particular
solutions of (4.9). In fact their associated generating func-
tions are easily found to be

S§= %q% — 49, — iP% +P1P2— 419201 — M%Pza
and

S =4} +0} — 4 — @) —i(gipt + &pd)
+3(qt + 43) — A1 + 13,
respectively.
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APPENDIX: COORDINATE EXPRESSIONS

In this appendix we give the expressions in local coordi-
nates for different formulas used throughout the paper.

We denote by &,, @ = 1,...,2n, a set of Darboux vari-
ables for o,

o= A gdé, Ndég,

where
0 I, ]
Ayl = .
We will also use y,5 = A, — A,p such that
yaBYap = 6Bp

If Ce 4’ (M) is a locally w-Hamiltonian field, then there ex-
ists a locally defined function H = H(£,, ) such that I takes
the form

() 5o

9, 96;
Let F,, be the local components of the field ¢, T,
o, I'=F, ( J ) .
9u

Then the two-form Be A*(M) defined by B= ., is
given by

B= Bﬂvdé'# AdE,,
where

dF, dF,
Byv =Yav ? - 7’a,, ? .
" v

In this way, we obtain that the necessary and sufficient con-
dition for the map P being canonoid with respect to I is that

¥, (3F,, ) ¥, (aF“ ) 0 1,...,2n
av — Va — =Y, unv=1,..,zn.
9, "\ %,

The meaning of this system of equations is the existence of a
function X = K (£, ) such that
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()

Thus {£, ()} is an integral curve of ®,T if and only if
Hamilton’s equations with respect to X hold:

dé, _ K

T (a@ ):
In an equivalent way, we can use the two-form

T= .7+ ($*w), which will be given by

dn, 9,

9, g

where 77, denotes 77, = ®*(£,).

The one-form P* = P* df, suchthatdP* = T'is given
by

oH
P: = yaBLau (?) ’
B

where the coefficients L, are given by

d ad
L, = (®* 9
o =1 “”(aga afﬁ)

7/,uv ( aé_a a §ﬂ ’

and correspond to the Lagrange brackets of the variables &

T=®*(B,,)

dé, Ndég,

with respect to the 7’s.
In the particular case of M being an exact symplectic
manifold, @ is given by @ = — d#é, and then we can reflect

the canonoid character of ¢ using the one-form ge A ' (M)
defined by g = — ®*6. In this case the condition T=0
means d(.£ -g) =0, and if g is given by g = g, d&; , we ob-
tain

ZLrg= (& +R,)d§,,

with
. _ 9% v ( JH )
gﬂ. a é_“ pHa a §a
and
oH?
&mee ()

In this way we obtain finally that & is canonoid if the 2
functions g; , A = 1,...,2n, satisfy the equations

g _ 9, _J{_aR,1 _6R,, —0

06, 06, 95, 95
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Symmetries for the super modified KdV equation
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Higher-order or generalized symmetries for the super modified KdV equation are constructed.
Moreover, by the introduction of graded potentials nonlocal symmetries are obtained, one of
them leading to the recursion operator for symmetries in a straightforward way.

I. INTRODUCTION

In the study of complete integrability of classical evolu-
tion equations such as KdV, mKdV, Boussinesq, massive
Thirring, and other well-known equations there was a great
emphasis on Wahlquist—-Estabrook prolongation and high-
er-order or generalized symmetry calculations.'~> We con-
structed computer-algebra programs to handle the enor-
mous computations arising from these concepts. As a step
towards supersymmetric equations we recently constructed
a graded differential geometry package in REDUCE.* The no-
tions of graded differential geometry are taken from Kos-
tant,’ while the graded jet bundle formulation is due to Her-
nandez Ruiperez and Mufioz Masqué.® The present paper
deals with the construction of generalized symmetries of the
super modified KdV equation by the developed software.
The super modified KdV equation’ (mKdV) is given by the
following system of graded partial differential equations:

v, = 6v2vx — Uyxx + 3¢x ll’xx + %¢¢xxx + %Ux Wx + %vax s

¥, = (60" — 60, )¢, + (600, — 30, )¢ — 4¥r
(L.1)

where subscripts denote partial derivatives; ¢ is the time and
x is the space variable; and v,x,t are even (commuting),
while ¢ is odd (anticommuting).

In Sec. IT higher-order symmetries are constructed sat-
isfying a similar condition as in the classical case,® i.e.,

L,(D=I) C D~I,

where D ~1 is the infinite prolongation of the graded ideal 1.
Following Ref. 9, nonlocal variables are introduced in the
graded case, and nonlocal x,z-dependent higher-order sym-
metries of the super mKdV equation are obtained in Sec. II1.
Finally, in Sec. IV we derive the recursion operator'®'! for
higher-order symmetries of the super mKdV equation.

Il. HIGHER-ORDER SYMMETRIES OF THE SUPER mKdV
EQUATION

In a previous paper'? concerning the super KdV equa-
tion we constructed ordinary symmetries before concentrat-
ing on higher-order symmetries. Now we shall investigate
higher-order symmetries only, because ordinary symmetries
can be obtained from them. Classical higher-order symme-
tries are defined on the infinite jet bundle J = (x,t,0,1) (see
Ref. 8) and satisfy the symmetry condition

L,D=IC DI, 2.1)
where D “1 is the infinite prolongation of the exterior differ-
ential system / describing the partial differential equations
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by means of the action of the total partial derivative vector
fields D, ,D, defined by

Dx =ax +vx av +¢x ax +vxx aux+ T

D,=4d,+v,9, +¢ta¢+vxtav,+ .
Due to the fact that Egs. (2.2) satisfy (2.1) in an obvious
way, the search for higher-order or generalized symmetries
can be restricted to vertical vector fields; i.e., the compo-
nents of d,,d, are taken to be zero.

The vertical vector fields are proved® to have the repre-
sentation

(2.2)

V=f03,+8d,+ (D, f)d, + (D, 8, + -, (23)
so we are only interested in the defining functions f,g of the
vector field. The functions f,g are assumed to depend on a
finite number of independent variables of the infinite jet bun-
dle.

In the graded case at hand we proceed in a similar way,
keeping in mind the left module structure of the vector fields.
We restrict our search for higher-order symmetries to even
vector fields; moreover, our search is for vector fields V
whose defining functions fg (2.3) depend on
X0, W) Vsrex s Wiernxx » the Other components being obtained
by prolongation (2.3). The vector field ¥ has to satisfy the
symmetry condition (2.1), which is equivalent to

LV(Ut - 61)211,‘ + Vixx — i!ﬁx'pu - EWxxx

— Yy, — %UWxx )=0, 2.4)

LV(¢: - 6vz¢x + 6vx'px - 6UUX¢ + 3vxx¢+ 4¢xxx)EO H

where L, stands for the Lie derivative with respect to the
vector field ¥, and “=0" should be read as equal to zero on
the submanifold in the infinite jet bundle J = (x,tv,¥) de-
fined by (1.1) and its differential consequences. Condition
(2.4) leads to an overdetermined system of partial differen-
tial equations for the functions f,g including the exterior

a]gebra deﬁned on ¢’ ¢X ’¢Xx "ﬁxxx ’¢XXXX ’¢m -
From now on we shall write

Vi =Ve.xs Yy=Vr. .. (2.5)
N

\_v—/

i times
Using the developed integration package we obtained the
following result: There are four ever vector fields satisfying

(2.4) under the above-mentioned assumptions, i.e.,

J times
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‘i}l_—‘vlav +¢lavj;+ Tt
Vo= (— vy + 6070, + 0,00, + o, + 3ths + 3¢,1,)9,
+ (— 415 + 600, + 6%, — 6v,9, — 3u,9)d,, ,

Vi= —209, — ¢ 3, — 2xV, — 6tV,,
(2.6a)

and the vector field
V,=V39,+Vi{d,,
whereas in (2.6b) V3,V Y are given by
VS = vs — 10v,0* — 40v,0,0 — 100} + 30v,0*
— Wihs — B ¥y — 3t — Yo, — Svihyihs
— 150,905 + $0*Yt; — Svhd, + B9,
— 150,00, + 150,009, + 150,
+ 450, Y9, — Busih,,

(2.6b)

V=165 + (40v, — 400°) ¢, (27
+ (60v, — 120v,v) 4,
+ (500, — 100v,v — 60v,0* — 700}
+ 300", + (150, — 30050 — 300,07
— 60v,0, — 60V v + 60v,0°) ¢
Note that the vector fields T/I,...,TG are equivalent® to
Vi=4d,, V,=4,, (2.8)

V,=6t9,+2xd, —2vd, —¢d, .

lll. NONLOCAL SYMMETRIES OF THE SUPER mKdV
EQUATION

In order to construct the recursion operator for higher-
order symmetries we introduce nonlocal variables. They can
be introduced by prolongation of the exterior differential
system J or D =1 by means of potential forms or equivalent-
ly, by prolongation of the total partial derivatives D, ,D,. For
details the reader is referred to Refs. 3 and 9.

We first construct the potential forms P, and P,,

P, =dp, —dx(v) — dt(20’ — v, + 3y, + oy¥)) ,
P, =dp, —dx(p,,) —dt(p,,) ,

(3.1a)
where
Pax = v+ i, ,
Py = 30" — 200 + 0] — s + 20,9, (3.1b)

+ v, — v, Yy, + gvzlbd’l .

The nonlocal variables p,,p, are just

p,=J vdx, p2=J- (v2+%¢¢,)dx, (3.2)

whereas the integrals in (3.2) are to be considered as formal
ones. Motivated by the results obtained for the classical (un-
graded) KdV equation and super KdV equation,'? our
search is for a nonlocal vector field V of the form

V=atV,+ axV,+ap,V,+ V*, (3.3)
where Z,T/Z,T/, are defined by (2.6) and (2.7), a,,a,,a, are
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constants, and ¥ * is a vector field yet to be determined.
The prolongation of the vector field ¥ (3.4) towards the
variables d, ,d,, ... is obtained by the action of the prolonged
total partial derivative vector fields D, ,D,, where
D, =D +vd, + (W + )4, ,
D, =D, + (20’ — v, 4 3, + 0¥9,)3,, + P2, 9, -
(3.4)

We now apply the symmetry condition including the nonlo-
cal variables p,,p,, i.e.,

Ly (v, — 6%, + v3 — 3919, — 3¢,
— 3¢, — viy,) =0,
Ly, — 6U2'/’1 + vy, — 600, ¥ + 3v,¢ + 4¢5) =0,

where now by “=0"" we mean vanishing of the Lie derivative
on the submanifold of

Jx,t0,9.p,02) = {(X,60,8,p1,02 0¥
defined by (1.1) and its differential consequences, together
with

Dix =V, P = 20’ — v, + Y, ,

P2x = U2 + };¢¢l y

Py = 3t — 200 4+ Uf — s + 249,

+ vy, — vy, + %v2¢¢n .

Conditions (3.5) lead to an overdetermined system of par-
tial differential equations for the defining functions of V'*,

whose dependency on the jet variables v,,%,,... is induced by
the standard grading of the super mKdV equation, i.c.,

(3.5)

(3.6)

deg(x) = — 1, deg(?) = —3,
deg(v) =1, deg(y) =1,
deg(p,) =0, deg(p,)=1.

So we are searching for a vector field ¥, whose d, and d,,
components are of degree <3 and <2}, respectively.
Solving the overdetermined system of partial differen-
tial equations leads to the following result.
Theorem: The vector field V' defined by

V= — 4V, — WV, +p,V, + V*, (3.7a)
where
V* = (— 3,4+ 20° + o, + Wi,)9,
+ (= 5¢, — v¥, + WY — 4o h)d,  (3.7b)

is a nonlocal (higher-order) symmetry of the super mKdV
equation.

Remark 1: Due to the fact that v,1,p, satisfy the super
mKdV equation (2.1), including differential consequences
and (3.6), which do not depend on x,,p, explicitly, the coef-
ficients of x,,p, in (3.3) can be proved to be symmetries.

Remark 2: The solution of (3.5) does admit an addi-
tional nonlocal symmetry, i.e.,

V=e"*d,. (3.8)

In order to compute the Lie bracket of the vector fields
T/,,...,Af{, and V, we would have to extend the results of Sec.
I11 towards the nonlocal variables. This leads to results simi-
lar to the results in the ungraded case, obtained for the mas-
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sive Thirring model.? This is not the direction we shall pur-
sue in the next section; instead we shall construct the
recursion operator for higher-order symmetries leading to
the commuting flows, starting from the nonlocal higher-or-
der symmetry (3.7).

IV. THE RECURSION OPERATOR FOR SYMMETRIES OF
sKdV EQUATIONS

In the case of the classical KdV equation, i.e., the un-
graded case, the Lenard recursion operator is obtained by a
construction based on a nonlocal vector field, i.e., the un-
graded analog of the vector field ¥ of Sec. IV, and the Hamil-
tonian structure of the mKdV equation.'®!! The construc-
tion of the recursion operator for symmetries of the super
mKdV equation can be obtained in a similar way and is given
below. A formal proof of its properties and the fact that the
higher-order symmetries commute is beyond the scope of
the paper.

The super mKdV equation (1.1) can be written in the
following Hamiltonian form:

u, a 0:5/5,,
()= Do Grta
'ﬁz 0 4 6/8, 2 2
+ L g+ oy, +iv¢¢“), @4.1)
2 4 4

where all variational derivatives are taken to be left ones. In

(4.1),
D' 0 S
(o ) =L )

-5 )
“\o 4/’
(4.2)

are analogous to the simplectic operator and its inverse. We
now proceed in a way similar to the ungraded case and calcu-
late the variational derivative of Qv, i.e., (F)’ and its ad-
joint (QL¥)'*. Then we are led to the recursion operator for
symmetries by (cf. Refs. 10 and 11)

T=0'{(QV) — (QV)'*}. (4.3)

A simple and straightforward computation starting
from ¥ (3.7) and (4.2) results in the following equation:

il
r—(” 0) —D+40(D ") WD + i+ Jh —v(D ') )
~\o 4 _3¢D+%U¢—%¢l+¢l(D—lv) -D2—01+U2_1§6W1—i¢1(D_1'/'1)

—D? 4 4v,(D o) + 47

— 3yD + 6o — 24, + 4, (D ~ ')

A straightforward but tedious computation shows that

()

_ ( — v+ 600’ + W, + s + vy, + %v¢¢2)
(6% — 6v,) 9, + (6vv;, — 30,)¢) — deby ’

ie.,

(V) =V, (4.5a)
and

TV, =V,. (4.5b)
V. CONCLUSION

The use of computer programs to handle graded differ-
ential geometry calculations, together with the notion of
nonlocal graded symmetries, leads in a constructive way to
the recursion operator for higher-order symmetries of the
super mKdV equation.
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D+ YD + o + oy, + YD
= + 19, + 3D — v — 0, (D ')
—4D2 — 4, + 47 — 3y, — ¥, (D ~'¢y)

(4.4)
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Classical solutions of the two-dimensional Grassmannian o models of, respectively, Euclidean
and Minkowskian type are compared with each other. Some explicit solutions of both types are

constructed and some of their graphs are presented.

1. INTRODUCTION

Classical two-dimensional nonlinear ¢ models have
been studied intensively since Pohlmeyer' discovered that
the S'" model possesses the so-called dual symmetry. Their
popularity is mainly due to their property>™ as integrable
systems with infinitely many conservation laws with corre-
sponding generators,” and to their striking resemblance to
four-dimensional Yang-Mills systems. Moreover, some of
those models have a direct application in gauge and string
theories,>* as well as in the theory of gravitation'®'! and in
solid-state physics.'>'?

A Grassmannian ¢ model is a (classical) field theory
defined on the two-dimensional Euclidean or Minkowskian
space and taking its values in a complex Grassmannian
manifold G,, (C) (see Ref. 14). One can explicitly describe
the classical field either by an idempotent unitary matrix g or
a projector P of rank p:

(N
P?=P, P*=P, TrP=p. (2)

g xtogxt), geUp+¢q), &£=1,
P: x,t=>P(x,1),

These two descriptions are completely equivalent,'*'?

and related by the transformation g = (1 — 2P). When for-
mulated in light-cone coordinates £ =x 4+ ¢, 7=x—1, or
complex coordinates £ = x -+ it, § = x — it, respectively,
Minkowskian and Euclidean o models are indistinguishable,
with the same action and the same equation of motion,
namely,

S= f d*xTr(g7'9,8)(g ' 3,8) (3)

= f d*x Tr(3,P3,P), (4)
3,(83,'g) +3,(gd;'g) =0, (5
[0:,PP]=0. (6)

The only difference is the nature of the variables. Thus the
question arises naturally whether a solution of one type of
model will give a solution of the corresponding model of the
other type after the substitution (analytic continuation)

(7

Clearly the matrix g (or the projector P) will satisfy (1) after
the substitution, but in general the matrix g will no longer be

t—it.

) Chercheur Institut Interuniversitaire des Sciences Nucléaires, Belgium.
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unitary (P will not be Hermitian). Indeed, the substitution
(7) need not commute with the antilinear constraint
g7g=1. So if one has, for real x, ¢, g* (x,1) =g~ '(x,1),
then in general g% (x,it) #g~ ' (x,it). [From the general de-
finition of the nonlinear o models given in Ref. 16 one can see
that the substitution (7) will transform a solution of the
Euclidean model into a solution of the Minkowskian one and
vice versa only for the SL(n,C) and GL(n,C) models.] So if
one wants to construct classical solutions of these models, it
has to be done separately for both types of model.

The explicit methods for constructing solutions are of
two types. The first class is the “holomorphic” method in-
troduced by Borchers and Garber'” and developed by Din
and Zakrzewski (see Ref. 18 for a review of their work ). This
method works only for Euclidean models; translating it to
the Minkowskian case would yield solutions depending on
either £ or 7 alone, thus with vanishing action. In the special
case of CP" [in the notations above: G,, (C) ], it gives all the
finite action solutions.

The second type of method is the Biacklund transforma-
tion described for any kind of Minkowskian o model in Ref.
16. We have shown with Antoine'> that this method can be
adapted to work in the Euclidean case as well. We are now
going to summarize those methods, and use them to con-
struct explicit solutions, displaying some of their graphs.
Then we will compare the classical solutions of the two types
of models, as well as the methods used to construct them.

Il. SOLUTIONS OF THE MINKOWSKIAN MODEL

Solving nonlinear differential equations is known to be a
difficult task. There are no algorithms to do it, but all the
well-known nonlinear equations are solved in similar ways,
called generically Biacklund transformations or inverse scat-
tering methods. In our case those equations depend on two
variables x and ¢, and when one tries to construct a simple
nontrivial solution, one gets a function that looks like a soli-
tary wave propagating at a constant speed. The shape of the
bump sometimes depends on time, but is always related to
the speed of propagation. Such solutions are called one-soli-
ton solutions. For linear differential equations, it is well-
known that given two different solutions, their sum is a third
solution. Can something similar be done for a nonlinear
equation? The answer is yes (at least sometimes). One per-
forms what is called a Bicklund transformation.'® Take for
example two one-soliton solutions propagating in opposite
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directions. The transformation will yield a two-soliton solu-
tion, which looks like two solitary waves crossing each other.
When the two bumps are far from each other, those new
solutions look like the simple superposition of the two pre-
vious ones. Once they are close to each other, the two bumps
start to interact, giving rise to a complicated shape. After the
interaction they continue on their way as if nothing hap-
pened. Usually a short delay occurs during the crossing, so
that looking at the solution in the (x,#) plane from the top
will give a graph similar to the lowest-order Feynman dia-
gram of the electron—positron scattering, rather than a sim-
ple X shape.

This problem has been completely solved for the two-
dimensional Minkowskian o model by Saint-Aubin et al.'®
They showed how to construct directly z#-soliton solutions.
The method is very powerful, but tedious, to apply. One first
has to construct a very simple solution called a vacuum solu-
tion (whose action is zero), and multiply it by the so-called
dressing matrix to get the new solution. The construction of
the dressing matrix is the tedious part of the construction. A
one-soliton solution can be constructed explicitly, but from
the complexity of the result obtained (10), it is clear that the
explicit construction of any multisoliton solution is hopeless.
Fortunately, once the vacuum solution has been computed,
the rest of the construction is purely algebraic and pointwise,
£ and 7 playing the role of mere parameters. So all the te-
dious part can be performed numerically on a computer so as
to produce graphs of those solutions.

We have constructed one-, two-, and three-soliton solu-
tions of the Minkowskian o model on CP . In all three cases
our starting point (vacuum solution) is the matrix

— sin x)
—cosx/’

COos x

g(x,t) = ( (8)

—sinx

which represents a static, “wavy” background.

A. One-soliton solution

A k-soliton solution is parametrized by k complex
numbers (also called poles—see Ref. 16), A, =A; + il
(|Ax|#1), from which the speed and the shape of each soli-
ton will be fixed. Introduce the following notation:

1 & _ L)
v 2(1+I+1—71’ ©
u=2Re(w), v=2Im(w).

Then the one-soliton solution we have constructed takes the
form

- - 11 . .
= — = c08$ X — ——1—[A ' sin x sinh 2v
gll gZZ Az{ill[

+ A " cos x cosh 2v]

1
—+ W—_I[COS(zu — 3X)

- |/1|zoos(2u—x)]}, (10a)
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[A ' cos x sinh 2v

. - . 1 { 1
=8, = —sinx ——
812 =82 rare

— A " sin x cosh 2v]

+ W:_—]-[Sin(zu - 3X)

+ |A |?sin(2u — x)]
+ z[% sin(u — x)cosh v

_lAPr+t

A =1 cos(u — x)sinh v” ,  (10b)

where we have put

A=A 4 cos?(u — x) coshzv]

(1"|'1|2)2 /1::2 (11)
The solution (10), with A = 1.1 + 1.1/, is displayed in Fig. 1
in the form of a computer-generated plot similar to those
given by Saint-Aubin in the real case.® As an independent
check we have recalculated the same solution numerically.
The resulting graph is indistinguishable from the one ob-
tained by plotting the analytical solution.

The solution plotted in Fig. 1 clearly deserves its name
of ‘““one-soliton”; it describes a single irregularity (bump)

{b)

FIG. 1. The one-soliton solution ( 10) of the Minkowskian CP? model with
poled=11+4+11&:(a) g, = — & (b) Img,, = — Im 3,,.

B. Piette 2191



propagating with constantspeed ¥ = (1 4+ |4 |?)/24’'> lon
top of the background given by the vacuum solution g of (8)
(the background is flat for the imaginary part and wavy for
the real part). Note that the soliton is not simply superposed
to the “wavy vacuum,” it also induces a shift in it. It is clear
from the conformal invariance that the model also has solu-
tions with ¥V < 1. Because of this invariance, the absolute
scale of the graphs is irrelevant and is therefore not indicated
on Fig. 1. Because of the unitarity the size of the bump is
normalized, but its shape depends on A.

B. Multisoliton solution

For the two-soliton solution of our example shown in
Fig. 2, we have chosen for the two poles A, = 1.1 + 1.1/ as
before and A, = — 1.1 + 1.1i. This solution describes the
collision of two solitons with the same asymptotic behavior
but opposite speeds. One sees clearly that the main effect of
the collision is a phase shift, showing that the two-soliton
solution is a nonlinear superposition of two one-soliton solu-
tions.

Exactly the same behavior is observed for the three-soli-
ton solution plotted in Fig. 3 (the third pole here is

3 = 1 + 4i). Thus the situation is entirely similar to the one
found for other familiar nonlinear equations, such as KdV or
sine-Gordon, and also for the ¢ models on real Grassmann
manifolds.'®

{b)

FIG. 2. The corresponding two-soliton solution, with poles 4, = 1.1 + 1.1,
A, = — L1+ L1i: (a) g, (b) Im3y,.
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FIG. 3. The matrix element g,, of the three-soliton solution with poles
Av=11+4 L1, A, = — L1 4+ 1.1j, 4, = 1 + 4. The three solitons incom-
ing from the left are indicated by arrows.

lll. SOLUTIONS OF THE EUCLIDEAN MODEL

A peculiarity of the Euclidean models is that if a projec-
tor P satisfies

(1-P)3,P=0 or (1-P)3,P=0, (12)

then it automatically satisfies Eq. (6) and is called a self-dual
(anti-self-dual) solution. If its action is finite, then it is also
called an instanton (anti-instanton) solution. To construct
the most general self-dual solutions'? one starts from a holo-
morphic # X p matrix F of maximal rank,

3,F=0, (13)
and constructs the projector
P=F(F*F)~'F~*. (14)

As Fis of maximal rank, Pis well defined and satisfies (12a).
If the entries of F are rational functions of £, then P is an
instanton solution. Similarly, antiholomorphic functions
will give the most general anti-self-dual solutions.

To construct other solutions of the Grassmannian mod-
el, one introduces the operator

P,(F)=d,F—F(F*F)"'F* 4,F, (15)
and defines its powers by
Pi(F) =P,/(P;~(F)), (16)

where we have assumed that all the powers of P, (F) are of
maximal rank. It can be shown'® that

PL(F)*PL(F) =0, Vr#s, (17)

which implies that P} (F) = 0 for some s. It is then easy to
show'®%° that

P, =P{(FP)[P{F)TPLF]'PEPT (18)
is a solution of the Grassmannian model of rank p for all %,
and that if F is a rational function of £, then the action is
finite. Moreover, the last one, P, _ ,, is an anti-instanton so-
lution. In the CP " case, it gives all the finite action solutions.
In the general Grassmannian case, many other solutions can
be constructed in a similar way (see Refs. 15, 18, 20, and 21
for a detailed description), but we are not going to describe
them here. The action of the above solutions reads
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k
S(Py) =fd2x S Tr[(Pet'(F)*YP(F))
i=0

X(PLR*YPLP) '], (19)
which can easily be shown to be an integer in units of 2. Let
us consider an example. Take

Fi & =0 +E+E%E4+E67862+8Y, (20)
from which we can construct the orthonormal vector

Z=F/(F*F)™'? (21)
or, equivalently, the projector

P=ZZ*. (22)

We have shown in Fig. 4 some of the matrix elements of Z.

{c)

FIG. 4. The five-instanton solution [(20), (21)] of the CP? model: (a)
Re Z,, (b) Im Z,, (c) Re Z,.
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One sees that the last two components of Z vanish at infinity,
where the first one, being of the larger degree, looks like a
starfish with five branches. It is a general feature of the in-
stanton solutions that the highest degree in £ of the function
F from which Z is built corresponds to the topological
charge of the solution, which is also called the winding num-
ber at infinity; it is also equal to the action of the solution. It
is interesting to see that this number can be read directly off
the graph of the solution. In our example F is of degree 5;
thus the solution has an action equal to 5 (in units of 277). It
is usually called a five-instanton solution. If one takes a non-
polynomial function such as

Fi(&) = (sin&, cos &,sin & +cos &), (23)

the vector Z will have an infinity of branches (Fig. 5) and an
infinite action. The problem when plotting the entries of Z
(Por g) is that there are many of them, and, moreover, they
are only defined up to a gauge transformation. The Euclid-
ean model being seen as a static model, it appears natural to
plot the Lagrangian density of the solutions rather than their
entries. This is a real, gauge-invariant function, and it will
show where the physical things happen. Consider, for exam-
ple, the instanton solutions corresponding to the following
functions:

§—2 §+2
=&-2+i2) FE=|£+2-i/2],
—i/2 +2+41i/2
24
E—2D(E+2) (24
F=(E=24i/2)(E+2—i/2)
(E—-2—-i/2)(E+2+1i/2)

The first two solutions are one-instanton solutions, the third
one being a two-instanton solution. One sees from their La-
grangian density plots (Fig. 6) where those names come
from. In general the Lagrangian density of an instanton solu-
tion of topological charge (or action) equal to r has » bumps
(instantons, possibly on top of each other) localized by the
zeros of the entries of F. One sees from the graphs that the
first instanton is localized around 3, the second one being
near — 3. The two instantons of the third solution are local-
ized at the same place. In general, the instantons will be
around the point where the different entries of the holomor-

\\«%\
%\\ N\
\\i\\ \ §\\V\—\h

FIG. 5. The trigonometric solution { (21), (23) ] of the same model: Im Z,.
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(c}

FIG. 6. The Lagrangian density [the first of Egs. (26) ] of instanton solu-
tions (24) of the CP? model: (a) L for F,, (b) L for F,, (c) L for F,.
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phic vector F will have nearby zeros, and the farther apart
those zeros will be from each other, the more spread out the
instanton will be. When varying the coefficient, one can
force a zero of each entry to converge to the same value.
Doing that, the corresponding instanton will become more
and more localized (very thin but huge), ending like a &
peak. This limit corresponds to the elimination of an instan-
ton. Note that this limit does not commute with the compu-
tation of the action. In fact if we perform such a variation on
the second instanton of our third example, doing it on the
solution itself we will end up with our first one-soliton solu-
tion. If we do it in the computation of the action, the result
will always be 2, even in the limit.

One can see also from our graph that our third solution
can be seen as a kind of linear superposition of the two first
ones. All this is true also for the anti-instanton solution, the
only difference being that the topological charge is negative,
and the action of those solutions is equal to the absolute
value of the topological charge. Noninstanton solutions can
be seen as a mixture (nonlinear superposition) of instanton
and anti-instanton (see Ref. 11 for a detailed description).

Starting with F; in (24) one can construct the following
instanton, noninstanton, and anti-instanton solutions:

p _FF* , _PFPF' PIFPIF*
° F*F ' PF*PF "’ PiF*PIF’
(25)

for which the corresponding Lagrangian densities are, re-
spectively,
_IPFIP |PF|
SRR T FP

|PEF P
|PF|*°

_IP3FP
|PF|?
(26)
[see Figs. 6(c) and 7]. In our example, the two solitons are
located on the real line around 2 and - 2, the two anti-
instantons being on the imaginary line around 2/ and — 2i.
The noninstanton solution P, is clearly a superposition (lin-
ear for L but not for the solution itself) of the instanton and
anti-instanton solutions. For the other CP” and Grassman-
nian models, noninstanton solutions are somewhat more so-
phisticated superpositions of instanton and anti-instanton
solutions.

2

V. COMPARISON BETWEEN EUCLIDEAN AND
MINKOWSKIAN MODELS

We have seen that the solutions of the Euclidean and
Minkowskian o models can be constructed in a very differ-
ent way. So it is natural to ask if the two methods described
above can be adapted to the other case. Can the holomorphic
method used to construct Euclidean solutions be trans-
formed so as to give Minkowskian ones? It is clear from the
construction that one of the important points in the con-
struction is that £ and 7 are complex conjugates of each
other. So, as is easy to check, when applied to construct Min-
kowskian solutions this method will give solutions that de-
pend only on £ or 7, and so will be trivial. Rather than using
the light-cone coordinates, one can use the hyperbolic com-
plex variables & =1t + xe, 7 =1t — xe, where £ =1 and
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€ = — ¢&. This will yield nontrivial vacuum solutions of a On the other hand, the multi-Bicklund transformation
Minkowskian o model valued in a hyperbolic complex method can be modified to act on Euclidean solutions. 42!

Grassmannian manifold (see Ref. 22 for more details). For example, starting from the vacuum solution
|
cos 2x d, sin 2x d, sin 2x
g=\d sin2x (|d,|*>— |dy|*)cos2x  dyd,(1 —cos2x) |, (27
d,sin2x  d,d,(1 — cos 2x) (|d>|* — |d,|*)cos 2x,
¥

where d, and d, are two complex numbers such that where

|d,\]>+|d,* =1, (28)

y=£/0-D)+9/(1+ ),
one can construct the following one-soliton solution:

u=y—j;’
1] cosu ;5
A)=g,—— AVOOYV(w) T + AV(w)V(p) ™t 30
g(d) =g " 2Re/1{ MV () +AV(@w)V(») *} b2y, (30)
AT +AFY) v, w=2x~y,
(29) 2 2
A=/lz[(cosu)_( cos v )],
41 2ReA AP +1 (D)
V(z) = [cos z,d, sin z, d, sin z}*. (32)

-
A

’ As can be seen from the graph (Fig. 8), this solution is quite
, : different from the Euclidean solutions we have constructed

previously. Its nonpolynomial dependence indicates that
this solution has infinite action, and it is not obvious to see if
one can obtain it by the holomorphic method. So rather than
starting from our vacuum solution, one can try to apply the
Bicklund transformation on an instanton solution con-
structed before. This work has been done by Sasaki,*’ who
showed that applying the multi-Biicklund transformation on
a CP" instanton solution constructed from a holomorphic
vector F gives another instanton solution, which can be con-
structed from another holomorphic vector F' = aF, wherea

(b}

F1G. 7. The Lagrangian density (26) of (a) noninstanton and (b) anti- FIG. 8. The matrix element g,, of (29) with pole A = 2 — i of the Euclidean
instanton solutions of the CP? models constructed from F, (24). CP? model.
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is some specified invertible matrix independent on &. The
same applies to the noninstanton solution for which all the
P, F will be transformed into P, F"’. This means that in gen-
eral an r-instanton solution will be transformed into another
r-instanton solution. The only effect of the Backlund trans-
formation would be to move the position of the solitons and
modify their shape. So we may say that in the CP " case this
transformation acts nearly trivially on finite action solu-
tions. We suspect it is also true for Grassmannian solutions.
It is quite surprising to see that this transformation is very
similar to the one obtained by Arsenault ef al. in Ref. 23,
where by exponentiating the infinite-dimensional Lie alge-
bra described in Ref. 5 on the Grassmannian solutions they
showed that it reduces to a finite-dimensional S1(N,C) ac-
tion. More explicitly, the solution P, F will become a new
solution P, F’, where F' = SF, SeSI(N,C). It is not easy to
see if o has a unit determinant or not, but if not, it cancels out
when one computes the projector P. It is also not clear
whether any matrix S belonging to S1(NV,C) can be obtained
from a product of different a’s (up to the determinant fac-
torization). Thus the Bicklund transformation can be con-
sidered at least as a subcase of the transformation found by

Arsenault ef al.?
So we have seen that Minkowskian and Euclidean

Grassmann o models are strikingly different. Each one pos-
sesses its own method for constructing classical solutions.
Those methods can be adapted to the other type of model,
but then one sees that it gives rather trivial results.
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The system of ordinary differential equations describing the multiple three-wave interactions
with a common pump (daughter) wave is proved to be completely integrable by obtaining the
necessary 2N + 1 independent first integrals in involution for the case when the coupling
constants and the frequency mismatches have ratio 1 and/or 2. This case was deemed
integrable on the basis of a Painlevé analysis, but a direct proof has been lacking for some time.
The first integrals are the N + 1 quadratic Manley—Rowe relations, the cubic Hamiltonian,

N — 1 quartic integrals (analogous to the ones needed for complete integrability in the case of
equal coupling constants and detunings in all wave triads), and a new sixth-order integral
involving all wave quantities. The form of this last invariant was deduced from the recent
result for the analogous interaction between five waves (N = 2), and essentially made possible
by the proper use of irreducible forms, elementary building blocks for polynomial first integrals

in involution with the Manley-Rowe invariants.

i. INTRODUCTION

The last decade has seen a rather extensive study of non-
linear wave interactions among a great number of wave tri-
ads coupled through one common wave. This is because of
their many applications in different physical circumstances,
such as the modeling of ocean waves or plasma turbu-
lence.'™® Where the emphasis was on the integrability of the
Hamiltonian system of coupled ordinary differential equa-

tions (ODE’s) describing such phenomena, a real impetus -

has been given by Menyuk ez al.,** who carried out the Pain-
levé analysis and deemed the system integrable in only two
different cases (at arbitrary initial conditions).*

First, all ¥V triads have equal coupling constants, but the
frequency mismatches or detunings are arbitrary, though
small in view of the physical applicability. In the other case,
the coupling constants for some triads have to be twice as
large as for the other triads, with similar ratios for the detun-
ings.

Several authors proved the integrability of the first case
by constructing or obtaining enough (here 2N + 1) inde-
pendent first integrals in involution. Menyuk et al.’ did it
already via Lax operators, but with a degenerate matrix
yielding less than 2N + 1 independent first integrals, so that
ad hoc methods were needed to construct the remaining
ones. Wojciechowski et al.® obtained another Lax represen-
tation giving directly all the necessary integrals. We our-
selves introduced the concept of irreducible forms’ and
showed how these led to first integrals in a rather systematic
way.® Irreducible forms can be defined in different but equiv-
alent ways. Originally they were thought of as the simplest
possible polynomial combinations of wave quantities re-
maining constant on the fast oscillation time scale. Thus they
could serve as building blocks for polynomial first integrals
on the interaction time scale.” Later it became clear that the
same irreducible forms are obtained by looking for the sim-
plest polynomials in the wave amplitudes that are in involu-
tion with the Manley—Rowe relations (the quadratic first
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integrals immediately related to the energy exchanges inside
or between the wave triads).?

The direct proof of integrability for the case of coupling
constants and detunings having ratio 1 or 2 has until very
recently eluded all efforts, apparently by whatever method.
We succeeded, however, in proving the integrability of the
reduced system of ODE’s describing two interacting triads
in the absence of detunings,’ by a proper combination of the
Yoshida—Kovalevskaya approach (giving insight into the
degree of possible first integrals'®'") and the use of irreduci-
ble forms (allowing then a direct search as advocated by
Roekaerts and Schwarz,'? but in a much simpler way). It is
the aim of the present paper to generalize this recent result
for arbitrary N, and to include the appropriate detunings.

Il. BASIC FORMALISM FOR N TRIADS COUPLED
THROUGH A COMMON PUMP WAVE

As in Ref. 8, we start from selection rules for different
triads interacting through a common pump wave

wy=w;+Q+8 (j=1.,N). (N
The complex amplitudes of the waves with frequency w,, w;,
and (), aredenoted by ¢, g;, and b; (j = 1,...,N). Their slow-
time evolution obeys

a; = id;eh; + (i/2)8,a;,
by = iA;ca; + (i/2)8;b; (2)

N
¢=i Y Aagb (j=1...N),
j=1
plus the complex conjugate equations. The frequency mis-
matches or detunings §; were put into (2) in a symmetric
way, in contrast to Ref. 8, so as to get simpler expressions
later on. The dot refers to the slow-time derivative and the
bar to complex conjugation.
The system (2) can be derived from the Hamiltonian
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N
H= z Aj(a;bic +a;bic) + %Sj(ajaj +bb), (3)

Jj=1
when one considers the pairs (g;,a;), (bj,Bj), and (¢,c) as
pairs of canonically conjugated variables and writes Hamil-
ton’s equations in an appropriate way.'?

As was said already, a direct proof of the integrability of
Hamiltonian systems such as (2) requires the existence of as
many independent first integrals in involution as there are
degrees of freedom'* (here 2N + 1). Two first integrals 4
and B are in involution when their Poisson bracket vanishes,
defined here as

N
Up-§(AL_AB 438 _ 345
<\ da; da; da; da; db; db; ab; db;
dA JB 34 OB
2oz Lo 4
t dc dc ac dc @

Without restrictions on A; and §;, one finds already N + 1
independent quadratic first integrals in involution, the Man-
ley—Rowe relations:
N
Ey= 3 (a;a; + bb;) + 2,
j=1 _ (5)

E, =aa, —b;b, (j=1,.,N).
In addition, H itself is a cubic first integral, giving together
N + 2 integrals out of the 2N + 1 needed for integrability.

Defining now the irreducible-forms as the simplest poly-
nomials in the wave amplitudes, in involution with the Man-
ley—Rowe relations (5), we see that they are

a,a;, bb;, cc, abc+abic,

fhad 14
a;bab, +ab,ab, (i,j=1,.,N).

777 L' )

(6)

Since the Manley-Rowe relations plus the Hamiltonian
amount already to N + 2 independent first integrals in invo-
lution, one can try to extend them to a full set of 2NV + 1
integrals. If this can be done (via polynomials), the remain-
ing first integrals have to be in involution with, among oth-
ers, the Manley—Rowe relations, implying that they must be
combinations of the irreducible forms® —hence the search
for additional integrals as polynomials in the irreducible
forms, rather than in the original variables themselves. This
is basically very much simpler, as we shall see.

Turning to the Painlevé analysis of (2) as carried out by
Menyuk et al.,* one has a first integrable case when all cou-
pling constants A, have the same value (4; = 1 after a suit-
able rescaling of the amplitudes). Then there are no further
restrictions on the detunings §;. The full proof of integrabi-
lity by getting all the necessary first integrals by one method
or the other was given by different authors.>8

The second case that was deemed integrable for arbi-
trary initial conditions is when

A==y =2y, =" =2y,

S,="=6y=204,1="""=26y.
For this case there has been no direct proof of integrability so
far. Recently we succeeded in determining the missing first
integral for the special case of N = 2 and in the absence of
detunings® (A, =24, =2, 8§, =26, =0). The necessary
five integrals in involution are E,, E,, E,, H, and

)]
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I = 4(a,b,a,b, + @,b,a,b,) (a8, + b,b,)
— 2(ca,b, + ta,b,)?
— [(813, + byb,)* + 4a,3,b,b,1 (a,@, + b,B,) . (8)

One easily recognizes its structure as a combination of irre-
ducible forms of total degree 6. We now set out to generalize
this result for arbitrary N and for detunings obeying (7). We
will rescale the amplitudes in such a way that A; are either 1
or 2 for simplicity.

ill. FIRST INTEGRALS OF DEGREE 4

For the remainder of this paper we take the subscripts
m, nin the range {1,...,M}, where A,, = 2and §,, = 28, and
p, gintherange {M + 1,..,N}, with A, = 1 and §, = 8. Be-
cause of what we learned from the five-wave coupling, we
replace the set of irreducible forms (6) by the equivalent set
of building blocks:

K; =43, +bb;, E;, E,

IIj =/1j(ajbj5 -+ ajl_)jC) + %61-(0]-(—1]» + bjzj) ’ (9)
Lij = a,-b,-(_ljgj + afziajbj (la,]= lny) .

The form of H; is inspired by the structure of the Hamilto-
nian, so that

N
H= EHJ . (10)
i=1
A full direct search is rather difficult at arbitrary N, so that
we take the structure of (8) and of the derivatives of the

building blocks (9) as our guides. Using (2) we find that
K, = 2iA;(a,b;c — a;b7) ,

. N
H; =i _ZliiVi;, (11)

Ly = (A/22)K.K; + (4,/24,)K,K, +i(8;, — 8,)V}
(i’j= 19"',N) ’

if we denote for brevity
Vi= a,-b.E-I—)- —a@.b.ab,

:4;0; :b,a;b; (,j=1,..,N). (12)
We thus immediately see that if in the last line of (11) fand j
both refer to subscripts of the same range {1,..,M} or
{M+1,.,N}, then 4,=A4;, and §, =6, imply that
L;— {KK;(i,j= 1,...Mori,j=M + 1,...,N) are first in-

tegrals. These are symmetric in 7 and j; furthermore,

L;— 3}K}=—4E; (j=1,..,N). (13)
There are thus | M(M — 1) + }(N—M)(N—M — 1) ad-
ditional independent first integrals. However, not all are in
involution. In a way that is reminiscent of what was doneina

previous paper, when all 4, = 1 and §; = § (see Ref. 8); we
rearrange the new first integrals into

M 1
L= 3 (La— S KuK,) (m=l..M-1),
n=m+1

(14)
1
(Lw- TEK) @=M+1.N-1),

N
Ip= z

g=p+1
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or something equivalent, as the choice (14) is not unique. As
the subscripts on L; or X; refer to pairs of canonically conju-
gate variables (a;,a;) and (b;,b;), one sees that L; and L,
have no common pair of canonically conjugate variables,
unless there is at least a common subscript. If we let /, j,k
refer to mutually different indices, we see that the only rel-
evant Poisson brackets involving L; and/or K| are

{L Lik} =K,~ ij ’ {L,',',L,'j} = 2K, V},- ’
{L;,K}Y=2V, (jik=1,.N). (15)

The ones not written vanish. Using (15) we can compute
that

if»

M M
Uply= 3 3 (Luekud = SALouK KD
k=m I=n+1

+1
1
- ?{Kka’Lnl})
M
= . 2 ) ({Lmn ’Lnk} + {Lmk’Lnk}
=n+1
1
— L K YK, = ALK K,

1
- ?{Kn’Lnk}Km - %{Kernk}Km)

=0 (m<n, mn=1,..M—1). (16)
Similar results hold for {7,,/,} (p.g=M+1,..,N—1),
and of course {1,.1,} m=1,..M-1,

p =M+ 1,..,N — 1) vanish straightaway as /,, and I, have
no common pairs of canonical variables.

There are thus (M — 1) + (N—M —1) =N -2 ad-
ditional  first integrals 1.1, m=1,.M-1;
p=M+ 1,.,N — 1), mutually in involution. Because they
are constructed from the irreducible forms, they are auto-
matically in involution with the Manley—-Rowe relations
and, as first integrals, with H. The total of independent first
integrals in involution is now already 2N, namely, E,
E,.Ey,H I, Dy |,Ii;, ,..Jy_,.Only one is miss-
ing, and for reasons of symmetry it will involve quantities
related to all wave triads.

IV. FINAL INVARIANT OF DEGREE 6

Looking at the structure of (8), the last first integral
required to prove integrability in the case N = 2, we see that
it can be written (with §, = 28, =0) as

I=4L,K, —2H? —2K2K,+ EXK,. (17

This involves a quartic irreducible form L,,, with quantities
of atriad in the range where 4, = 2 and another with 4, = 1,
multiplied by a quadratic building block K, from the latter
range. The term H, belong also to this range. It thus seems
logical to expect the missing first integral in the general case
to include in a similar vein all possible pairings of triads from
both ranges. First, however, we get from (11) that

. N M
H,=i _; Vo +2i 2_ Vo (P=M+1,.,N),

+1
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L,,=K.K,+ KK, +iV,, (m=1..M), (18)
and hence
N M N
H=2Y Y V,,
p=M+1 m=1p=M+1
M N
2 2 Lu
m=1p=M+1
M K N & 1 M i N X
= m + — m
mz=l p=;+l i 4 mz=1 p=;+l i
M N
+i6yY Y ¥, (19)
m=1p=M+1
. , M N
—H Ky AT H 485 S Vo,
m=1p=M+1
if we call
M M -
j!”,: 2 K, = z (a,a, +b,b,,),
m=1 m=1 (20)
N N _
WB= Z Kp= z (ap?ip+bpbp).
p=M+1 p=M+1

Keeping (17) in mind we set out to compute
d M N N N 2
a4y 3 i, > k- 3 8
dt m=1lp=M+1 g=M+1 p=M+1

=4‘YAWB‘%‘B+‘%2‘%A

M N
+4ibH 5 Y Y WV,
m=1p=M+1
. M N
+47 5 Z 2 Lo
m=1lp=M41
N M N
-8 Y H, Y S V., 1)

p=M+1 m=1g=M+1

and try to rewrite the rhs as a total derivative. Using the
c_ietailed expressions of all quantities as functions of a 3, by
b;, ¢, and ¢, we luckily find that
M N
4i8 z z Voo
m=1p=M+1
M N

+ 4‘%.3 mz-—-l p=;l:+ 1 me
M N

N
— 8i z H, 2 z Vg
p=M+1 m=1g=M+1
N
=2 Y3 L,

pg=M+1

d W :
=22 3F L X, |—2H,HpHs.

dt |, 24,

(22)

We are now home, as
d M N
— |4

dt m=1p=M+1

Ly ¥ 5 — 2(

N 2
> )]
p=M+1
d N 2
=212 S L X +X37,

dt pg=M+1

(23)

Thus the final invariant is
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M N N 2 N
Ia=43 S mezf,,_z( s H,,) 2SS L, H - IAK,
m=1lp=M+1 P =M+ 1 pg=M+1
M N _ _ - _ — —
=3 X3 I[4a,b,d,b, +3,b,a,b,)(a,3, +b,b,) —2(a,b,a,b, +3,b,a,b,)(a,a, +b,b,)
m=1pg=M+1

_ _ - N

—(ana, +b,b,)(a,d, +b,b,)(a,d, +b,6,)] -2 >
p=M+1
This first integral is automatically in involution with the Manley-Rowe relations and the Hamiltonian, so that one needs to
check whether {1,,,,1,5} (m=1,..M — 1) and{[,,I 5} (p = M + 1,..,N — 1) vanish as well. Because I, is not symmetric
in the quantities of all triads [as Eq. (2) themselves are also not], both sets of Poisson brackets are not analogous. So we first

- _ 2
(appr+¢'z,,bpc+ %(apﬁp +bpbp))] . (24)

see that

M M 1
U lsy=4%5 S 3

+1j=1p=

M N

—47, 1

n=m+1lp=M+1

}" 2 ENE LM""‘%/%’ ﬁ

N
2 [Lm,, — 7KMK"’LJP
M1

[Lmn _—TKpranp +L,,p] =0 (m = 1,...,M— l) .

{Lmn !‘z/‘A }

pg=M+1 n=m+1

(25)

The intervening Poisson brackets are easily shown to vanish with the help of (15). Because {L,,,.% ,} vanishes, so will

{L,., ¥ 5}, and we have that

N M N
{Ip,IAB}=4-z/‘B z

g=p+1m=1r=M+1

_ 1

P g

3

N N 1
-2, ¥ I3 {qu— ?KPKq,L,s]

=P+ ps=M+1

KK L,,,,}—4
2

N N 1
3 {LM ~ 5 KK H,]Hs

P g
g=p+1 rs=M41

N M 1 N N 1
=4%; ¥y Y [qu - —K,K,,L,, +L,,,q} -4 3 Y [qu — —K,K H, +H,,}H,
g=p+1m=1 2 gq=p+1r=M+1 2
N N 1 N 1
~4%0 S 3 Ly = KK+ L4270 S Ly S KLy + 2Ly + L,

g=p+1lr=M+1 2 g=p+1 2

=0 (p=M+1.,N—1). (26)

|
Thus we have the 2NV + 1 necessary first integrals in involu- Wo=,+Q,+6, L=w,+w,+9,. (28)

tion needed to prove complete integrability: Ey,E,,....Ey, H,
Iy I 1seesdw— 1 I,p. That these are indeed inde-
pendent can be proved via complete induction from the case
N =2, but this is too lengthy to be included here.

V. CONCLUSIONS

The above treatment was for multiple three-wave cou-
plings, where the one common wave is a pump wave in each
triad.

If the common wave is a daughter wave in each triad, the
selection rules are

Q=w+w;,+6 (j=1,.,N). 27

This case is completely analogous and will not be detailed
here.

As mentioned already elsewhere,® the mixed case where
the common wave is a pump wave in some triads and a
daughter wave in others is qualitatively quite different, but
was overlooked in other studies.>® For N = 2 the se]ection
rules are
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It was surmised that this case would not be integrable, and
this is borne out by the Painlevé analysis that we carried out
on the system of amplitude equations derived from

H =A,(a,bc +a,b,c) + (6,/2)(a,a, + b,b,)

+ Ay (ayhyc + @,b,C) + (8,/2) (0,8, — byb,) .
(29)

Because of its negative results, the analysis will not be given
here. Suffice it to say that it flounders already at the first
stage, where one has to determine the weights in trying to
balance the most singular terms in the amplitude equations.

Multiple triads are thus integrable only if they are all
coupled through a common pump or a common daughter
wave.

We have now covered both cases proposed by Menyuk
et al.* (equal coupling constants in Ref. 8 and ratios 1 and 2
at present), essentially by exploiting the structure of invar-
iants as polynomials in the irreducible forms. This should
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amply demonstrate the power of this method in providing a
fairly systematic procedure for uncovering missing first inte-
grals, especially when combined with a proper Painlevé
analysis and the Yoshida-Kovalevskaya approach.
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Resonant interval action transfer between coupled harmonic oscillators
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A formula is obtained for the action transferred between two weakly coupled harmonic
oscillators, where the time-dependent frequency of one oscillator passes through resonance
with the fixed frequency of the other. The analysis employs an action-angle Hamiltonian that is
the classical analog of an earlier wave-mechanical description of linear mode conversion. It
represents a link between generalized Hamiltonian approaches to linear mode conversion, and

those based on wave dispersion relations.

I. INTRODUCTION

There is at present considerable interest in the process of
linear mode conversion.'~' In both plasma physics and geo-
physical fluid dynamics, the following question arises. What
is the flow of energy between the linear normal modes, when
at some point x, the inhomogeneity of the system causes the
frequencies of two initially distinct normal modes with wave
number k, to become degenerate, before again diverging?
This question has previously been answered from two points
of view, which the present paper is intended to link. Grim-
shaw and Allen,® who were concerned with applications in
geophysical fluid dynamics, considered a Hamiltonian sys-
tem. Their multiple-time-scale analysis of the canonical evo-
lution equations generated equations that were solved using
parabolic cylinder functions. Cairns and Lashmore-Da-
vies,*® who were concerned with applications in plasma
physics, considered the wave dispersion relations that arise
from the dielectric properties of magnetized plasmas. They
carried out a generalized analysis of the local dispersion rela-
tion in which wave numbers map to the operator — i d /dx.
The resulting coupled first-order differential equations gave
rise to a second-order system which was solved in terms of
Weber’s equation, '® again using parabolic cylinder functions
and reproducing where appropriate the results of earlier
fourth-order calculations.> Recently, a third line of ap-
proach to linear mode conversion has been developed, using
Hermitian operators.'*>~!* In particular, in Ref. 15, a wave-
mechanical interpretation of the class of dispersion relation
considered by Cairns and Lashmore-Davies®® was intro-
duced. Using standard techniques of first-order perturbation
theory, differential equations for the wave amplitudes were
obtained that led in turn to Weber’s equation. Once again,
the standard result for energy transfer was obtained, using
the asymptotic properties of parabolic cylinder functions.
The success of wave-mechanical techniques represents the
first of two steps that link the two basic approaches to linear
mode conversion, namely, those based on wave dispersion
relations and those based on Hamiltonian systems. The pres-
ent paper is intended to provide the second step. We con-
struct the classical Hamiltonian analog of the Hermitian sys-
tem considered in Ref. 15, which is itself an extension of the
dispersion relation approach. At the same time, the action-
angle Hamiltonian that we construct and its method of solu-
tion necessarily have many features in common with the gen-
eralized Hamiltonian approach of Grimshaw and Allen.? In
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discussing these features further, we hope to show how the
Hamiltonian and wave dispersion relation approaches to lin-
ear mode conversion reflect the same physical phenomenon.

1l. ACTION TRANSFER IN THE HAMILTONIAN SYSTEM

Let us now construct the classical mechanical analog of
the wave-mechanical system considered in Ref. 15. It con-
sists of two weakly coupled one-dimensional harmonic oscil-
lators: the fundamental frequency w, of the first oscillator
remains constant; that of the second oscillator is initially less
than w,, but increases slowly with time. At a particular time
t., we have

0, =w,(1,), (N
so that for a finite interval of time the fundamental frequen-
cies are degenerate or close to degenerate. We shall calculate
the action transferred between the oscillators during the res-
onant interval at t~¢, when the fundamental frequencies
remain nearly degenerate. This oscillator system can be rep-
resented by the explicitly time-dependent Hamiltonian

2 wz 2 wz t
A AAGL

I 4
H g 15P2592,8) =— - .
(P191:P292:1) 5 + 5 5 3 19:92

(2)

It is convenient to carry out a canonical transformation of H
into action and angle variables using the generating func-
tion"’

g cot 8, N w,(1)q cot 6,

F(q.,60,,q,,0,,t) = 3
(41,61,4,02,1) 3 > (3)
This gives
oF IF _ o
=—=wqco0tf, J=——=—H—, (4
b= g, — %, 2520, )
and the transformed Hamiltonian K = H + JF /Jt becomes
K=wJ,+ ()], + 2‘"2 J, sin 26,
2
172
— 217(_1,]_2) sin 6, sin 6,. (5)
(4120)

Here @, denotes dw,/dt. We shall assume that o, is small in
the sense that @,/w, €®,,0,, and that the coupling between
the oscillators is weak in the sense that % €w?,05. The ca-
nonical evolution equations for the actions J, = — 93K /36,
can be written in the form
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d /2 _ __ 7”’;/2
dr ' 2(w,0,)"?
X [Sin(el _ 02) _ Sin(al + 02)]! (6)
a o W
L= -2 ircos20, +
dt™? 2w, 2T 2ww)'?
X [sin(8, — 6,) + sin(8, + 6,) ], o))

using standard trigonometric identities. The canonical evo-
lution equations for the angles 8, = dK /dJ; become

de FAYCE R
Ttlzwl—(_w,a%_)—”_z(-f_j) sin @, sin 6,, (8)
deé Dy .
T:: a)z(t) + 2(2)22 sin 202
172
_W({%) sin 8, sin 6,. 9
%2 2

The long-time-scale consequences of the terms involving &,/
@,1in Egs. (7) and (9) have been investigated, for the case of
a single harmonic oscillator (7 =0), by Vandervoort.'3
Here we shall concentrate on the two-oscillator resonant in-
terval, defined to be the interval of time when the relative
phase 8, — 0, varies slowly compared to 8, and 8, them-
selves. By Eqs. (8) and (9), we have to leading order

d

— (0, — 6,) = o, — w,(2). 10

o 6, 2) 1 2(2) (10)
Referring to Eq. (1), let us define a new independent vari-
able

r=t—t, (11)
and for future convenience we define
n= [(2)2/2]‘=,c- (12)

Combining Eq. (1) and Egs. (10)-(12), it follows that to
leading order during the resonant interval,

0,—6,= —FTZ"‘¢0’ (13)
where ¢, is a constant. This is equivalent to the wave-me-
chanical result given by Eq. (30) of Ref. 15. In contrast to
6, — 0,, the other angular variables 26, and 6, + &, that
appear in Eqgs. (6) and (7) oscillate rapidly during the reso-
nant interval. On the time scale of interest, namely, the dura-
tion of the resonant interval, we assume that the changes in
the actions J; arising from these rapidly oscillating terms are
negligible, since they integrate almost to zero. Let us denote
the slowly varying amplitudes of the actions J, by J;. Then
using Eq. (13), Egs. (6) and (7) give

d - N S12..

—J V= LT sin(ur? , 14
o 20, n(u7 + ¢o) (14)
d 512 _ M i 2

—J = ——LJ " sin(um + ¢g). (15)
dr 20,

Here we have simplified the coupling coeflicients using the
fact that @, ~®, during the resonant interval. We note that
the total averaged action J, + J, is conserved by Egs. (14)
and (15). This is the discrete system analog of the wave-
mechanical result Eq. (22) of Ref. 15. Because we shall dif-
ferentiate Egs. (14) and (15) again with respect to 7, it is
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convenient to consider the complex system of which Egs.

(14) and (15) are the real part:
%7}/2 = i-ﬁl—exp( —igy) TV exp( —iur®),  (16)
4 312 i T exp(idy) TV explip). a7

dr 2w,
Then, defining complex variables

a, =J 1 expli(ur® + 6,)/2]
and

a, =T y? exp[ — i(ur* + ¢0)/2],

and differentiating Eqs. (16) and (17) again with respect to
7, we obtain two uncoupled second-order differential equa-
tions:

Tt (L) e —i]a-

rE 20, + 47 —iu|a, =0, (18)
Gl o eaame o
=T o, +pT +ipa,=0. (19)

Equations (18) and (19) are formally identical to Egs. (35)
and (36) of Ref. 15. A sequence of transformations,'* some
previously noted by Budden, '® leads from these equations to
Weber’s equation.'® The asymptotic properties of the roots
of Weber’s equation have been employed by Cairns and
Lashmore-Davies®® to calculate the energy transfer during
linear mode conversion. It follows that the formula that de-
scribes the action transfer for coupled harmonic oscillators
with a resonant interval can be obtained by relating the pa-
rameters arising in Egs. (18) and (19) to those of Ref. 8. The
fraction of the action initially possessed by the first oscillator
that is transferred to the second during the resonant interval
is

a=1—exp( — m*/4wlp), (20)

where u is defined by Eq. (12). The combination of param-
eters that occurs in the exponential in Eq. (20) is physically
reasonable. It is proportional to the product of two dimen-
sionless quantities, one large and one small: (%/
w?)*(w}/p). Here n/w} €1 is a measure of the strength of
the coupling between the oscillators, and w? /4> 1 is a mea-
sure of the number of rapid oscillation periods for which the
oscillators remain in approximate resonance.

Thus far we have employed an action-angle Hamiito-
nian because it provides the closest classical analog of the
wave-mechanical system considered in Ref. 15. Let us now
examine the close similarities between this action-angle de-
scription and the generalized Hamiltonian approach of Ref.
3. First, we note that the components of Egs. (6) and (7)
that are significant during the resonant interval, namely,
those with argument 8, — 8,, resemble Eq. (4.3) of Ref. 3,
where, however, 8, and €, are not canonical coordinates.
Next, we note that during the resonant interval, the depen-
dence of 8, — 8, on the independent variable is quadratic in
Eq. (13). In Ref. 3, the corresponding dependence is more
complex, but we note from Eq. (4.10) of Ref. 3 that it in-
cludes a dominant quadratic term asymptotically. Equa-
tions (14) and (15) also differ from Eq. (4.8) of Ref. 3,
insofar as the coupling coefficients are themselves functions
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of the independent variable. Nevertheless, it is clear from the
similarity of Egs. (18) and (19) to Eq. (4.14) of Ref. 3 that
these differences are essentially minor. Both approaches lead
to equations that can be solved in terms of parabolic cylinder
functions, the eigenfunctions of Weber’s equation.

lil. CONCLUSIONS

A simple formula has been obtained for the action trans-
ferred between two weakly coupled one-dimensional har-
monic oscillators, where the time-dependent frequency @, of
one oscillator passes through resonance with the fixed fre-
quency o, of the other. During the resonant interval, the
coupled canonical evolution equations yield uncoupled sec-
ond-order equations of a form that has been shown'® to
transform to Weber’s equation.'® The analysis of Weber’s
equation by Cairns and Lashmore-Davies,*® developed dur-
ing studies of energy transfer during linear mode conversion
in inhomogeneous plasmas, is adapted to give the action
transfer between the harmonic oscillators. The present result
was obtained using an action-angle Hamiltonian system that
is the classical analog of the wave-mechanical system consid-
ered in Ref. 15. The latter is itself an extension of the wave
dispersion relation approach to linear mode conversion. The
theory presented here has, in addition, many points in com-
mon with the generalized Hamiltonian approach to linear
mode conversion developed by Grimshaw and Allen.® It

2204 J. Math. Phys., Vol. 29, No. 10, October 1988

thus represents a link between the two basic classes of de-
scription of this phenomenon.
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A decomposition of the solution of the dissipative wave equation into incoming and outgoing
components across a smooth surface in a homogeneous region is presented. (The proof of the
decomposition is given only for the plane surface.) This is then applied to the factorization of
the dissipative wave equation into incoming and outgoing components in a planar-stratified
medium. The Ricatti integral-differential equation for the reflection operator that relates the
two components is obtained. It is shown how the zeroth and second moments (with respect to
the transverse variable in a planar-stratified medium) of the reflection kernel can be used in the
inverse problem to recover the velocity and dissipation coefficient from knowledge of the

scattered field.

I. INTRODUCTION

A common technique'? for the formulation of the time-
dependent inverse problem, associated with the one-dimen-
sional wave equation as well as related equations,’ is based
upon the concept of wave splitting. In one-dimensional
problems this entails decomposing the wave into up- and
down-going wave components. Invariant imbedding tech-
niques*> and their variations are used to get an equation for
the reflection operator (the operator relating the up-going
wave component to the down-going wave component). The
equation for the reflection operator contains a quadratic
nonlinearity and is commonly known in the terminology of
inverse scattering as being a Ricatti-type equation, the rea-
son for this being the fact that in the one-dimensional prob-
lem in the frequency domain the equation is an ordinary
differential equation with the quadratic term (Ricatti equa-
tion). However, the equation for the reflection operator in
the time-dependent case takes the form of an integral—differ-
ential equation with the quadratic term involving a convolu-
tion. The initial condition associated with the kernel of the
reflection operator is related to the unknown coefficient of
the wave equation. The importance of the whole approach is
that the Ricatti equation for the reflection operator’s kernel
has been used successfully in numerical schemes for solving
the inverse problem.>¢%

Recently this approach has been generalized to the wave
equation in three dimensions, first to the case where the me-
dium is planar stratified,® then for the more general case of
nonplanar stratifications.'® Here the concept of up- and
down-going waves is replaced by the concept of outgoing
and incoming wave across a smooth surface S. The key to the
analysis is the development of an incoming and outgoing
wave condition on the surface S, which is expressed in terms
of a linear operator relationship between the wave function u
and its normal derivative du/dn on S. This is used to factor
the wave equation into incoming and outgoing components.
From this the form of the reflection operator and its Ricatti
equation are obtained for the special case of a planar-strati-
fied medium. At present the reflection operator and its equa-
tion are being examined for cylindrical geometry, and nu-
merical work is applied to the associated inverse problem.'!
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Here in this paper the wave-splitting process that was
developed previously®'? for the wave equation in R*is gener-
alized to apply to the dissipative wave equation (or telegraph
equation) '?

Ou+5%% ~0, (1)
at
where
D=ia_2__ 62 _ 32 _ 32
ot ax:  ax:  oxd

(2)

with the coefficient 5>0. The corresponding incoming and
outgoing wave condition expressed as a linear operator rela-
tionship between u and du/dn on a smooth surface S is ob-
tained, for the case where the coefficients b and ¢ are con-
stant (with the proof of the decomposition given only for the
plane surface). This is then generalized to the case where the
medium is stratified, with emphasis on plane stratification
where b and c are functions of x, only. The reflection opera-
tor and its Ricatti equation are obtained for the special case
of a planar-stratified medium. The associated inverse prob-
lem for a stratified half-space is treated where reflection data
on the surface are used to get the coefficients b,¢ in the upper,
or penetrable, layer of the medium. Since the waves are at-
tenuated due to absorption, it is not practical to get the coef-
ficients b and ¢ deep inside the medium from reflection data
on the surface.

Except for the work of Buzdin'® or Blagoveshchenskii, '
the time-dependent inverse problem treated here for the dis-
sipative wave equation differs from previous work®”-!*!¢ in
which the geometry that is taken is a one-dimensional slab
and where reflection data on both sides are employed. A
Gelfand-Levitan-type system was developed by Weston'>
and the results generalized by Krueger.'® More recently
Kristensson and Krueger®’ have applied the wave-splitting
technique to obtain the Ricatti equation formulation for the
reflection kernels.

Buzdin’s'? approach to the inverse problem for a plane-
stratified medium involves directly taking two moments of
the dissipative wave equation (telegraph equation) and re-
ducing it to a system of two partial differential equations in
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two independent variables (time ¢ and depth parameter z).
Cauchy data (reflection data) at z = 0 are used to transfer
the system into a system of integrodifferential equations, by
integrating over a triangle formed by the characteristics. The
resulting nonlinear system can be solved up to a certain
depth of penetration.

The emphasis in this paper is on the development of the
wave splitting into outgoing and incoming waves in a strati-
fied medium, and the determination of the equation that
must be satisfied by the associated reflection operator for a
plane-stratified medium. This approach has the potential (as
ongoing research indicates) to be applied to the more gen-
eral inverse problem associated with a nonhomogeneous me-
dium. The moment approach (applied to the reflection oper-
ator) is employed in the latter part of this paper to
demonstrate the existence of the solution to the inverse prob-
lem.

1l. INCOMING AND OUTGOING WAVE CONDITION FOR
A HOMOGENEOUS MEDIUM

Let Sbe asmooth (C?) surface enclosing an open region
D, in R? that may or may not be bounded. Let the corre-
sponding open exterior region be denoted by D, . In this sec-
tion, conditions will be derived to indicate whether or not a
solution u of the dissipative wave equation (1) represents an
outgoing or incoming wave across S. This condition will take
the form of a linear relation between u and du/dn on S. From
the physical standpoint an outgoing wave across S is pro-
duced by sources in D; and is represented mathematically by
the solution of exterior initial-value and boundary-value
problems, with the initial values of ¥, du/dt being zero in

D,. A corresponding formulation holds for incoming
waves.

To develop the outgoing wave condition on S, the
Kirchhoff formula for the exterior problem

Ou+bu, =0, t>0, xeD,,

_ 3
t=0, xeD,, S

u=u, =0,
where b and ¢ are constants and b0, is needed. If & (x,¢) is
the fundamental solution of the system

0% + b%, =56(x)8(t), & =0, <O, 4)
then it follows in the usual manner that for #> 0, x,€D,,

uU(xpt) = —f f [Eo’”‘(x Xt — 5) ﬂ
o Js on

—u—g(x xo,t—-s)}da ds, (5)
on

where do, is an element of surface area on S'and d /dn is the
normal derivative on § taken in the direction of the normal
pointing into region D, . The precise form of & (x,¢) is given
by12

242
% (xt) = [cH(ct):S(c t

2

+ bAH(ct — |x|) I, (beyc®t T — [x[72) ]e"’"’”z
8m/c’t T — |x|?

— IxI*)

(6)
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where 7, is the modified Bessel function of order 1, and H(¢)
is the Heaviside step function.

With the variable of integration x replaced by y, and
expression (6) inserted for & (x — x,,¢ — 5), relation (5) re-
duces to the explicit form

u(xgt) = ——J [Eu [xowt ]

9 9 (Bulxppt] )}H(r L) s,
C

dn, dr
where r=|xy—yl, (7)

and the operator E acting on a function f(y,t), yeS, is defined
as follows:

Eflxopt]= %f W — —c-)exp( — _b_c_r)

2
b2 t-—r/cexp[bcz(s-—t)][ll(g)]
4 Jo 2
Xf(.s) ds, (8)

where ¢ = be*[ (1 — 5)% — (r/c)?]?/2.

The outgoing wave condition is obtained by letting
x,€D, approach x on §. In taking the limit one must note
that the second term in the integral on the right-hand side of
Eq. (7) has the property of a double-layer potential,'” and
hence has a jump discontinuity across S. Taking this into
account and using the same approach that was employed for
the wave equation,'® one subsequently obtains the result

(I+M)u +Ku, =0, xeS, 9
which is the sought-for outgoing wave condition on S. Here I

is the identity operator, and the operators M and K are de-
fined as follows:

Kwx,t] = —f (Ew[xy,t1)H (t — —) do,, (10)
Muwx,t] = ——L or t])H(t——-)da
s on,
(11)

for xS, teR. The Heaviside step function is introduced in
these operators to take care of the initial condition that
u =u, =0 for 1<0, x€S.

For the special case where there is no dissipation, b = 0,
K reduces to the operator

_1_ w(y,t —r/c) H(t——’:)da
y’

27 Js r c

Kw =

given in the previous paper.'®

The corresponding incoming wave condition is obtained
by treating the interior initial-value problem in a similar
manner. The resulting incoming wave condition is given by

(I-M)u —Ku,, =0, xeS. (12)

For the special case when S'is a plane surface, dr/dn = 0
for x,yeS; hence the operator M is identically zero. The out-

going and incoming wave conditions reduce to
u+ Ku, =0, xeS (aplane surface). (13)
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Using the two lemmas that are proved in Appendix C, it
will be shown next that the operators K and M are compact.
The time interval T may have to be restricted depending
upon the complexity of the surface S, due to condition (C2)
of Appendix C. Hélder continuity in the time variable will be
needed (see Appendix C for appropriate definitions).

Theorem 1: If S'is a Lyapunov closed surface,” then (i)
K is a compact operator mapping C(S) X C ®*[0,T] into
C(S) X Co[0,7T7, and (ii) M is a compact operator mapping
C(S) X C 1 [0,T] into C(S) X Cp[0,T], where 4,0 < A<,
is the Holder index, and C,[0,T] is the space of continuous
functions of ¢ on {0,7] that vanish at = 0.

Proof: From Eq. (10) it is seen that the operator K can
be decomposed in the following manner:

Ku = Gu + Hu,

where G corresponds to the operator in Lemma 1 of Appen-
dix C with kernel

1 ber
glxy)=—exp| ——), r=[x—-y,
2mr 2

and H corresponds to the operator in Lemma 2 of Appendix
C with kernel

2
h(x,p,t) = L b2 exp[ - -tﬂ] L) ,
87 2 4

with & = bc?(t2 — P/c?)'/?/2. Because these kernels satisfy
the conditions in the lemmas, the compactness of K follows
from the compactness of G and H.

From Eq. (11) it follows that the operator M can be
decomposed as follows:

Mu=Gu+Hu+ G,u,,

with G,,G, corresponding to the operator in Lemma 1 with
respective kernels

[ ()
27 an ,2 8 2/

1 o ( bcr)
exp| ——}),
2mre mre dn, 2

and H, corresponding to the operator in Lemma 2 with ker-
nel

gl (xyy)

g (x,y) =

bic’r or [Iz(g)] exp(_ici’-),
327 on, ¢ 2
with ¢ = bc*(t? — r*/c*)"/?/2 and I, the modified Bessel
function of order 2. Since S is a Lyapunov surface (with
Holder smoothness in unit normal, |n, — n,|<x|x — y|°
0 <ax<), it follows from Vladimirov'’ that

hy(xpy) =

<alx —y|%

pd
hence g,,g,.h, satisfy the requirements of the lemmas. Com-
pactness of M thus follows.

Il. WAVE SPLITTING IN A HOMOGENEOUS MEDIUM

With the incoming and outgoing wave conditions now
established, the splitting of the solution of the dissipative
equation into incoming and outgoing waves can be obtained.
However, before considering this, some results on the exis-
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tence and structure of the inverse operator K~ have to be
established.
Theorem 2: The null space of K is empty, and K~ exists.
Proof: The proof depends upon the fact that the interior
and exterior Dirichlet initial-value problem associated with
Eq. (1) has a unique solution. This follows from the energy
integral'® associated with Eq. (1),

—_ 2 2 .
”[2 az[ “+‘V"|]+b(u) V(uVu)]
dedt: X

which indicates the importance of b being non-negative.
Let v(x,t)eC(S) X C[0,T] be a solution of Kv = 0, x€S.
Then set

() = - f Ev[x,y,t]H(t_f) do,, (14)
27 Js c

where xeR3. It thus follows from the Kirchhoff formula (7)
(withu, = — 2v,u =0, 0nS) that u is a solution of Eq. (1)
in D, and D;. Because of the presence of the Heaviside step
function, it follows that ¥ = u, = 0 for = 0 and xeD, or
xeD,. Furthermore, since Kv = 0, it follows that # = 0, xS.
Hence from uniqueness of the solution of the Dirichlet ini-
tial-value problem it follows that u(x,¢) =0, for xeD, or D,,
t>0. From the jump condition associated with the single-
layer potential term!®!” in expression (14),

[5] -

it follows that v=0, #>0. Thus the null space of K is empty,
and K~ ! exists.
The precise form of K ! will now be established for the
case of a plane surface. The following will be defined.
Definition: If S is the plane surface x; = const, then the
transverse d’Alembertian O associated with this surface is
given by

—2v(x,t), XxeS§,

Op=—sX -2 __ .
Tt o oxd (13)

Theorem 3: If S'is a plane surface, then
- =(Dr+bi)K. (16)
ot

Proof: Let S be the surface x; =0, and D, the region
x,>0. Let u be a solution of Eq. (1) in the open region
x> — & (where 6> 0) containing the surface .S, and let it
satisfy theinitial condition # = u, = Othere at t = 0. Use the
fact that if 4 is a solution of Eq. (1) in a homogeneous medi-
um, then du/dx, is also a solution, and apply the Kirchhoff
formula (7) with u replaced by du/dx;. As before let
xq,eD, —xeS and, using the result du/dn = Ju/dx, on S, ob-
tain (for the outgoing wave)

MK u _

x, ox;3
which corresponds to Eq. (13) (upper sign) with « replaced
by du/dx;. Since u satisfies Eq. (1) forxeSand u = u, =0
for t = 0, it follows that
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du ( a)
94 k{0, +b —0,
S+ K(Or+ b2
or
-g‘i+(ur+bg)xu—o xeS.

Comparing this last equation with Eq. (13) for the outgoing
wave (upper sign), it is seen that

d J
K~ O b )K K( b——) . 16’
( r+ £y r+ £y (16")

The problem of splitting a solution of the dissipative
wave equation into two wave components crossing the sur-
face S can now be considered.

From the identity

u=4{u—Mu—Ku,] +i[u+Mu+Ku,],

it is seen that # can be decomposed as follows:

u=u++“—, (17)
where
ur =i[HFM)uFKu,]. (18a)

For the case of a plane surface (since M =0) the two compo-
nents are given by

(18b)

For the latter case of a plane surface (say x; = 0), if u
satisfies the dissipative wave equation in a region in the
neighborhood of x; = 0, then since d /dn = 3 /dx,, and 3/
dx, commutes with the operator K (its kernel does not con-
tain x;), it follows that

u* =A[uTFKu,], S a plane.

(ut _—l;l(u,}t)=(I;§;K;’—)ui

X3
1 c?)( c?)
K K—
Z(i Ix, + ox,
2
g
Ox?

J
Lo (o, +02)|u=o
2[ 7+ at "

the last result following from Eq. (16’). This implies that u ™
and 1~ satisfy, respectively, the conditions for an outgoing
and incoming wave on a plane surface. Hence we have the
following theorem.

Theorem 4: If u satisfies the dissipative wave equation (b
and ¢ constant) in an open region D containing a plane sur-
face S, u = u, = 0 for <0, then u can be split up into two
components #* and u~ given by Eq. (18b), which satisfy
the outgoing and incoming wave condition across S.

What about the case of a general smooth surface S ? Do
u* and u~ satisfy the outgoing and incoming wave condi-
tions on S ? For the case of the nondissipative wave equation
where b = 0, the answer is yes. The proof, which is very long
and tricky, is given in the previous paper.'? Since the major
part of the analysis in the remainder of this paper pertains to
the planar case, the proof of the corresponding theorem on
wave splitting on a smooth surface S for the dissipative wave

2208 J. Math. Phys,, Vol. 29, No. 10, October 1988

equation will be left to later work. However, for the remain-
der of this section and in the initial part of the next section we
will work with the decomposition given by Eq. (18a) for a
general surface, before specializing to a plane surface.

It is convenient to express the decomposition in vector
form as

+
R

where the matrix operator T is given by

1[/0I-M) -—-K
—2—[(I+M) K]' (20)
The inverse of T'is given by
L)@
—K'd+M) K 'd-M)}"

IV. FACTORIZATION OF THE DISSIPATIVE WAVE
EQUATION IN A PLANAR-STRATIFIED MEDIUM

The splitting developed in the previous section (and
proved only for the planar case) can be used to factor the
dissipative wave equation in a stratified medium in a similar
manner as was done for the nondissipative case in paper.'°
The stratified medium is composed of a one-parameter fam-
ily of smooth (nonintersecting) nested surfaces. With « be-
ing the parameter, the surfaces are characterized by
a = const, and for such a stratified medium the variables in
Eq. (1) representing material properties will be a function of
aonly,i.e,c=c(a)and b = b(a). Ingeneralizing the wave
splitting to a stratified medium, the same operators K and M
developed in the previous section for a homogeneous medi-
um will be used with the surface S given by @ = const. How-
ever, these operators will be modified by replacing the mate-
rial constants ¢ and b by functions of a, namely, ¢(a) and
b(a), respectively. Any identities involving these operators
acting as a mapping from the surface .S (@ = const) to the
same surface will still hold. This includes the inverse relation
(16) for a plane-stratified medium. With these modifica-
tions to the operators K and M, the wave splitting for a strati-
fied medium will take the same form as for the homogeneous
medium, i.e., the appropriate splittings are still given by the
system (20).

In order to apply the wave splitting to the factorization
of Eq. (1) for a stratified medium, additional identities or
relations involving the operators M,K have to be developed.
As in the previous paper'® the normal derivatives d K/dn,
d M/3n of the operators have to be defined and their proper-
ties established.

However, instead of analyzing the general stratified me-
dium, the remainder of this paper will concentrate on the
special case of a plane-stratified medium with the purpose of
establishing the usefulness of such factorization in the in-
verse problem.

Great simplification results for the plane-stratified me-
dium, since the operator M =0, and the operator d K/dn is
easy to define and obtain.

Let the plane-stratified surfaces be given as x, = const;
hence ¢ = c(x3), b = b(x;). Asin Refs. 1, 2, 9, and 10, the
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factorization of the dissipative wave equation is achieved by
combining the identity

du Ju

dx, Jn
together with the dispersive wave equation written in the
form

3%u ou
=0, u+b—
ax: 0%
to obtain the vector formulation
P 0 1 u
ax u,.]= (B +22) o [u] (22)

where O is given by Eq. (15).
Substitute the relation into Eq. (22)

o=

and premultiply the resulting system by the matrix operator
T to give

+ +
i [“_] _ W[“_], (23)
Ox; Lu u
where
0 1 P
W=T ( 8) T -T .
O,+b=} O
T+ at ax:;
Using the relation
-1
T oar— _ —-ET—‘
x4 ox,
and
or_100 10K
ox, 210 1 lox,’

together with expression (20) for T (with M=0) as well as
relation (16) for the inverse operator K~', expression (23)
can be reduced to the following:

d [ut —K ' 0 ]f[u"
6_)53[u’—]=[ 0 K“‘][u“]
1J1 17, fJu*
+3 0 T eefi] e
where
_dK
_Ec;'

This is the sought-for factorization of the dissipative
wave equation.

K’ (25)

V. REFLECTION OPERATOR FOR A PLANE-
STRATIFIED MEDIUM

In a homogeneous region exterior to a scattering body
(characterized in this paper by a stratified medium) u™*
would correspond to the scattered wave produced by the
wave u—, which is incident upon the scattering body. A lin-
ear relationship between the two waves exists in the form
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u* = Ru™. In this section the equation that must be satis-
fied by the reflection (or scattering) operator R will be
sought for the case of a plane-stratified medium. This equa-
tion plays a key role in both the direct and inverse scattering
problems.

The formal equation satisfied by the operator R is ob-
tained in the usual manner*>%'° from the factorized system
(24). First, u™* is replaced by Ru~ in this system. Then,
since the operator R contains x; as a parameter, the term
d(Ru~)/dx; appearing on the left-hand side of the first
equation of the system is replaced by (dR/
dx3)u~ + R du~ /dx,. Finally, the second equation of sys-
tem (24) is used to eliminate du~ /dx;. The resulting system
is a single equation involving #~ only. It takes the form

IR u” + (RK'"+ K 'R)u—
Ix,
+3 (RK'K™'— KK 'R)u"
=1JRK'K 'Ry~ —1K'K 'u~, (26)
which is the Ricatti integral—differential equation.

Noting that ¥~ is an arbitrary function vanishing at
t =0, the formal equation for the reflection operator [just
Eq. (25) with the term ¥~ omitted] is easily obtained. How-
ever, for a complete analysis one needs the precise form of
the operator R. For one-dimensional cases, it can be shown
from studying the initial-value problem that the reflection
operator is the form of a convolution in the time variable
with the spatial variable remaining a parameter. In the pre-
vious paper® for the nondissipative wave equation in a plane-
stratified medium, it takes the form of an operator acting on
a convolution (in time and transverse spatial variables),
with the variable that changes in the direction of the stratifi-
cations remaining a parameter.

The precise form of R will not be given here. This will be
done elsewhere. As will be shown in the remaining sections
(following the work of Buzdin'?) one does not need to know
the precise form of the reflection operator to solve the in-
verse problem for a planar-stratified medium; one only needs
to know the precise form of two of its moments (with regard
to the transverse variables). However, the form of the reflec-
tion operator relating the outgoing wave to the incoming
wave across a plane surface will be needed in the generaliza-
tion of the wave-splitting concept from the case of a planar-
stratified medium to that of a general nonhomogeneous me-
dium. In fact, ongoing research has shown that for the case
b=0 (no dissipation), Eq. (26) may be generalized to hold
for a nonhomogeneous medium by suitably modifying the
operator K. Hence Eq. (26) will be important for future
research in inverse scattering in a nonhomogeneous medi-
um.

VL. EQUATIONS FOR THE MOMENTS OF THE
REFLECTION OPERATOR

The moments of interest will be the zeroth and second
moments. The first moment will not be used, since it will
yield the same equation as the zeroth moment.

The zeroth moment of u(x,t) will be defined as follows:
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ug(x;,t) = Jf u(x,t)dx, dx,. (27)
RZ

The corresponding zeroth moments of the operator K~ ' and
K'’K~! (obtained in Appendix A) are given by

(K_lu)o = (_a“ + E) ug(x4,t) + i(o(xyt)*uo(xa,t);
cdt 2
(28)
oy — 1 1 Jde
(KK u)0= +‘—_u0(x39t) + ho(x39t)‘uo(x3’t)’
¢ Ox,
(29)

where the star indicates convolution in the time variable
(with x, remaining as a parameter), and

ko(x,t) = — (b2c3/4)e~"I,(77) /7, (30)
2
ho(pt) = — 98D 2 (31)
Ox,
with
n = bc*t /2. (32)

Here I,(7) is the modified Bessel function of order 1.

The equation for the zeroth moment of the reflection
operator can be obtained in two ways. However, to get its
form, the approach that must be taken is to take the zeroth
moment of system (24). Using the results of Egs. (28) and
(29) for the zeroth moments of the operators involved in the
system, it follows that the resulting system is a one-dimen-
sional system involving #gt and u; only. Hence the zeroth
moment of the reflection operator takes the form of a convo-

lution in the time variable
(Ru7 )y =Ry = Ro(x3,0) *up(x5,1). (33)

The equation for the zeroth moment can be obtained
directly by taking the zeroth moment of Eq. (26) and em-
ploying operator relations of the type

(RK'’K~'u), = Rot(hotuo +L :—C uo),
c

X3
- 1 du, b 7
(RK 'u)y = Ro*(—c—a—t" + ?C Uy + kotuo) ,
(K™ 'Ru)o = (l 9 + E) Rorug + kg Rovu,,
cad 2

In addition, if interchange of order of integration (in the
convolution) and differentiation given by

':;—t (Ro"‘uo) = aak;o *U, + Ro(x3,0)u0(x3,t),
R,* %%9 = a—aRtQ *uq + Ro(x3,0)up(x5,2)

is employed, the resulting system reduces to one of the form

Peus + |2 Ro(xs0) + 525 Jug (xst) =0,

c 2¢ dx,
where I' is given by the left-hand side of Eq. (35). Since 1 is
an arbitrary function vanishing at ¢ = O, the differential~-in-
tegral equation can be obtained for R, by setting I" = 0, giv-

ing

(34)
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a 2 3) 7
— 4+ —=——=— Ry + bcR, + 2k,*R
(8x3 c ot o+ o+ 2orHo
1 dc 1 1
— — —Ry*Ry; — — Ry*hy*Ry + — hy =0, 35
2 o, o* g 5 “o*fo 0+2 o (35)

and the initial condition for R, can be obtained by setting the
coefficient of uy (x5,¢) in Eq. (34) to zero, giving
1 dc

Ro(x3,0) = ———

. 36
4 9x, (36)

The system made up of the two equations (35) and (36)
is the sought-for system for determining R,. It can be used in
the direct scattering problem (as in the initial-value problem
with coefficients b and ¢ known) to determine R, or in the
inverse problem (more to be said of this in the next section).

Note that if b = 0, then 7(0 = h, =0, and system (35)
and (36) reduces to the previously developed one-dimen-
sional system for the nondissipative wave equation.’

The second moment, defined as

Uy (X3,t) =ff (x} + x2)u(x,t)dx, dx,, 37
RZ

will be considered next. It is shown in Appendix A that the
second moments of the operators K~ ,K'’K~! are given by

(K“u)z = (%%4‘%) u, + ko*uz + kz*uoa (38)

1 1 de
(KK u)2=h2*u0+h0*u2+__'u29 (39)

¢ dx,

where
I_cz(x3,t) = — 2ce " "I (1), (40)
d (l—e~

Byt =z_(—), a1
2(X3,8) o, b (41)

with 7 given by Eq. (32), and [, the modified Bessel function
of order zero.

From this the form of the second moment of R can be
easily ascertained. Take the second moment of each equation
in system (24) and employ relations (38) and (39). This
will result in a one-dimensional linear system involving u,",
u; , ugt,and ug . Since ug" = Rgyug , this implies that u;" is
a linear combination of #; and ;. When the arbitrary
function #~ is chosen so that u, is zero, the system corre-
sponds to the exact system for the zeroth moments but with
the pair #4", u5 replaced by u;", u; . Hence it follows that

u;t = (Ru™), =Roug + Rou;

= Ry*ug + Ro*u, . (42)

The equation for the second moment R, of the reflection
operator can be easily obtained by taking the second moment
of Eq. (26) with the arbitrary function »; set equal to zero.
The second moments of the particular terms in Eq. (26) are
given as follows (with u; = 0):
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1 dug  be
T =R (_— 2 _)
(RK™'u 2*c81+2u°
+ (Ry*ky + Roxky)sug
o — 13 be -
(KR, = (- 2+ 5 Rov

+ (]}o"Rz + kz*Ro)*uo— ,
(RK'K~ '~ — KK 'Ry~ ),=0,
(RK’K 'Ru~),= ( + 2 g‘c—Ro*Rz
[

X3
+ 2Ry*hy*R, + RothztRo)*uo‘ )

(KK~ 'u), = hysug .

On integrating by parts the following term is reduced as fol-
lows:

10u; 143 -
Rl — — (R, *u
e o +cat( o)
_ 2 3R, suy + 2 Ry (x3,0)ug (x3,1).
c oJt 4

Finally, employing all these relations, the second moment of
Eq. (26), with u; = 0, has the form

Ty*ug + (2/¢)Ry(x3,0)ug (x3t) =0, (43)

where I', is given by the left-hand side of Eq. (44). Since uy

is an arbitrary function vanishing at ¢ = 0, the equation for

R, can be obtained by setting I'; = 0, yielding

(i 429, bc) R, + (2/’&0 _ 19 R, — ho*Ro)*Rz
x, ¢ ot ¢ 0x,

+ 2k, %Ry — % h,*R*R, + % hy=0. (44)
The initial condition is obtained by setting the coefficient of
ug (x5,t) in Eq. (43) to zero, giving

R,(x,,0) =0. (45)

VIl. INVERSE SCATTERING

The results of the previous section will now be applied to
the inverse problem of determining the coefficients c(x;),
b(x,) in the portion — L <x, <0 of the planar-stratified
half-space x; <0, from data on the reflected field at x, = 0.
Due to the absorption of the wave as it moves into the medi-
um, it is clear that only the leading portion of the refiected
wave that is produced will be useful in the inverse problem;
hence only the properties of the outer portion, or skin, of
thickness L of the medium can be meaningfully determined.
The depth of penetration L is the order of the e-fold distance
of a wave traveling into the medium. For a homogeneous
dissipative medium, L is the order of (bc) ~'. The physics of
this is clearly illustrated by the exact solution (produced by a
source at time #;)

2
u(zt) = — (%)exp[ - E“%ﬂ‘] Io(g)H(I —lp— E)
(46)
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(where & = bc?[(t — t,)2 — (2/¢)*]"/%/2) of the one-dimen-
sional initial-value half-space problem

1 3% bau d%u

—t+b———=0, >0, z>0,
¢t ar? dt 97 >
u=—‘—9—u—=0, for t=0, z>0,

at
ﬂ=¢S(t—-to), for z=0, t>0.
az

[ The solution can be obtained directly from expression (7)
by integrating out the x,, x, variables, substituting in the
boundary conditions, and setting x;, = z.] It is easily seen
that the head of the pulse at time ¢ = 7, — z/c + 0 has the
value

o) (Sl ).

Thus the amplitude of the leading edge of the pulse is re-
duced by a factor e~ ! in a distance of 2/(bc).

The inverse problem is comprised of two parts. The first,
or preliminary, part is a deconvolution process, which is to
determine the reflection operator on x; = 0 from the mea-
surements of the scattered field. The measurements may be
made either on the surface x; = 0 or elsewhere in the homo-
geneous region x; > 0. In particular, for the analysis here the
deconvolution process would involve the recovery of
R,(0,¢) and R,(0,¢), for a finite time interval 0<¢ < 7, from
measurements of the moments of the scattered field
ug” (0,¢), u;t (0,2) produced by an arbitrary incident wave
u~. It should be noted that the process of taking moments of
the scattered field would tend to smooth out the data. Also, if
the incident field is produced by a point source (or source
with compact support), then because of the initial-value na-
ture of the time-dependent problem, measurements of the
scattered field need only be made over a finite portion of the
surface x, = 0.

The deconvolution process will not be addressed here.
Instead the main problem of determining the coefficients
¢(x;), b(x;) from knowledge of R,(0,2) and R,(0,),
0<t < T will be analyzed. To formulate the inverse problem,
a change of the dependent variable,

(47)

= _J‘ J—l—dy, for x,<0, (48)
0

c(»
will be employed. Note that £>0, and the inverse transfor-
mation is given by

(3
x3=—f Cdé‘. (49)
(V]
In addition, it is convenient to set
bc* = B(£) . (50)

Equations (35) and (44) for R, the zeroth moment and
for R, the second moment take the form

J 3 1 4B
L _ 22 _BI)R,=0,(R;)*R, + — 2= ¢~ 27,
(ag a3t ) 0o=Qi(Ro)*Ro + 7 % ° .
(51)
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d a

(a—g—25;—3)R2—Q2(Ro)*R2+S(R0), (52)
where, for m = 1,2,

—a Li(n)
. (Ry) = —B%e 7L 12
Q 0 e 2n)

_’Zl_i _m 9B —274R 53

2 ¢9§ 0 4 Ee *Kg, ( )

S(R,) = (— 4c’e ~"Iy(5) + P*R,)*R, — (54)
—27

P @) = ﬁl__fe_l] 55

& ag[ (55)

with I,,, I, being modified Bessel functions and 7 = Bt /2.
The initial conditions are given by

0 _
Ro(£0+) = +a_2 (4c)~", (56)
R{(&0+)=0. (57)

The inverse problem can now be stated as follows.

Inverse Problem: Given the values of R,(0,¢) and
R,(0,t) for 0<t < T, and the values of ¢ and B at £ =0 de-
noted by ¢, and B,, respectively, solve the nonlinear system
(51), (52), (56), and (57) for Ry(&,t), R,(&,t) in the trian-
gular region 0<t< T, 0<2£<T — ¢, and recover Band cas a
function of &.

Equation (49) may then be used to obtain Band cas a
function of x,.

Unfortunately initial conditions (56) and (57) do not
contain the quantity B explicitly. To obtain the initial condi-
tions that contain B let -0 + in Eq. (51), yielding

d 1 B
0 = (—— —B )R - 58)
Ry(£0+) 2\ %€ o(§:0+) 8 3¢’ (
where the dot indicates the differentiation with respect to ¢.
Combined with Eq. (56), initial condition (58) reduces to

a d 1 dB
R,(£,0 =— —-—B)—l — . (59
o E0+) (ag e 9
Equation (52), in the limit as -0 4, yields
R, (£0+)=0. (60)

To get a nonzero initial condition for R,, differentiate Eq.
(52) with respect to ¢ and let 1—0 + to give

. 3 de

R2(§,0+ ) 2 4 aé‘ .
Now there may be a difficulty in using Eq. (59) due to the
term (d2/3&?)In ¢, which may lead to an instability in the
solution of the problem, since it involves the derivative of one
of the unknown functions (d /d&)1n c. To alleviate this, Eqgs.
(59) and (61) will be combined in an appropriate manner.
However, before obtaining the appropriate initial condition,
the corresponding equations for R, and R, must be sought.

The equation for R, is obtamed by differentiating Eq.
(51), giving

(Z-22-5)k,

9 at
. 1 B JB
=Q1(Ro)"'Ro+—4——§Q1( 0) — r 9 — e,

(61)

(62)
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Noting that

Ry(&1) -li+f Ro(&m)dr, (63)

Eq. (62) has the general form

(i—zi—B)Ro_G (Ro, L g BB), (62')

3 ot c 5§ )3

where G, is an integrable function involving quadratures (no
derivatives) of the variables R,, 3 /9¢ In ¢, B /JE.

Using the fact that R, = R, = 0 at ¢ = 0, the equation
for R, can be obtained by differentiating Eq. (52) twice to
yield

K] ] a2
(a_g_za..y)kz_gz(k R+ 25 SRy, (64)
where

3°s

=57 (Ry)

2 .
- - 4c2[?—3 (e~ ”Io(n))]*Ro + 2¢°BR, — 4R,

— = (czBe -2 ] *R,*R, + g Ry*R,
5§ 9
+—— (c’Be ™ ™"
3 § ( ).
The equation for R, has the general form
7] d ) ( - 1 de OB ) )

— 2= _B|R,=G,|R, R,, — —_— (64')
(ag e S U AP T
where G, is an integrable function involving quadratures (no
derivatives) of the variables R,, R,, (1/¢)(dc/3&), B /IE.
This will be made use of in subsequent analysis.

The remaining initial condition can now be obtained.
Let -0 + in Eq. (64), giving

WR(EQ+) = {(i - 13)R2 — 2BR, + 4c2Ro]
ag o
2
-9 (8
ag (c°B) .

Combining this with Eqs. (56), (59), and (61) yields the
resulting initial condition,

g(%iéz(g,o +) —BR(E0+)
_3(1 ac) SB dc , 1 JB
=2 2o 195 (65)
2\c 3E) " ac 3 4 3

An alternative mathematical statement of the inverse prob-
lem can now be given.

Inverse Problem (Alternative Form): Given the values of
RO(O t) and RZ(O t) for 0<t < T, and the values of c and B at
& = 0 denoted by ¢, and B,, respectively, solve the nonlinear
system (62), (64), (61), and (65) for Ry(£&,1) and R, (&)
in the triangular region 0<t < 7T, 0<2£<T — ¢, and to re-
cover B and c as a function of £.

In a numerical treatment of the alternative form of the
inverse problem, one difficulty may arise due to the fact that
the condition (65) requires a derivative of R2( &,t) to be
computed at t = 0. This may lead to an instability. However,
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itis shown in Appendix B that the derivative Rz (£,0) canbe
computed by quadratures from R,(£,t) and Ry(&,¢1).

A possible numerical approach to solving the nonlinear
system could be modeled after the approach taken by Cor-
ones and Krueger et al.>" This approach needs to be looked
into in more detail, and will be left to future analysis and
computation.

However, to complete the analysis of the inverse prob-
lem in this paper, a sketch of a proof indicating that the
inverse problem has a unique solution for T sufficiently
small will be presented.

Essentially what has to be shown is that the system of
integral—differential equations (61), (62), (64), and (65)
can be transformed into a system of integral equations of the
form

X, =X+ F(X,X;,X;, X,), i=1,..4, (66)
where the unknown quantities are given by
X(&D =Ry(&0), (67)
X (&0 =R, (&), (68)
1 de
X (&) =——, 69
(€ T (69)
JB
X (&) =— (70)
o’
with the quantities X9, F,, i = 1,...,4, to be determined.

Here X,, X, are continuous functions over the domain
D, where

D ={(&1)]0<2£<T —t, 0<t<T},
with norms

||XI”oo = sup IX,(g,t)l ’

and X;, X, are continuous functions over the interval
0<£< T /2 with norms
X, = su X, .
1]l = sup 1%,

To transform the differential equations (62'), (64') into
a strictly integral formulation, the following solution

SIED) = PO (1 + 28)

&
+f PO -BE(E 28 2" 4 dET,  (T1)
0
where
¢
B(E) = f B(E"dE, (12)
0
of the system
a J
——2-——B = ,t), 73
(ag 2 —B) =g (73)
SO,8) = fo(8) (74)
will be employed.

Let the values of Ry(£,2) and R,(&,2) at £ = 0 be given
by

Ro(0,1) =Ry (1), R,(0,8) = Ryo(2) .
Then Eqgs. (62') and (64") can be put in the form

(75)
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Ry(&,8) = O Ry (1 + 2£)

¢
+f PO —BENG (£'26 — 26" + 1)dE"
0
(76)
Rz(gst) = PRy (1 + 28)

3
+J PO —BENG(£',26 — 28 + 1)dE ',

(]
(n

where G, and G, are given by the right-hand sides of Egs.
(62) and (64), respectively.
Note that, from Egs. (69), (70), and (72),

&
B(§)=Bo+j X,(£)dE", (78)
0
§ &’
ﬂ(§>=Bo§+ff X, dE" e, (79)
0 (¢
'3
(&) =co expf X,(ENdE", (80)
0

where B, and C, were defined previously as the values of
these quantities at £ = 0. Thus it can be seen that if one sets

X§ =Ry (14 28)e%, X9 = Ryo(t + 2£)eP%, (81)
Fy= (89 — eBE)R, (1 + 26)
'3
+ f PO -PEIG (126 — 2" +DdE,  (82)
0

with F, given by expression (82) with Ry, G, replaced by
R,,, G,, respectively, and employs the forms of G|, G, as
indicated by Eqgs. (62') and (64’), then as functions of the
variables X, / = 1,...,4 (noting, however, that F, is indepen-
dent of X;),

Fi=FX,X,X,), Fb=FX,X,X5X,).

Thus Egs. (62) and (64) can be placed in the form of Eq.
(66) for i = 1,2, where F,,F, contain no derivatives of the
variables X; = 1,....4. Also, as T—-0+4, the domain D
shrinks to zero. Since 0<£<T/2, it is easily seen that
F,-0(T), F,-0(T).

The third equation of the set given by Eq. (66) is ob-
tained by dividing both sides of Eq. (77) by ¢*(£) and letting
t—0, and substituting it into condition (61). Condition (61)
can then be placed in the form

X;=X$ + F(X, X, X5),

where

X3(&) =2/(3c5 )Ry (28)e™*, (83)
F,= [e“‘@Rzo(zg)
+f eﬁ(é“) — B’ )62(5 2§- 2§ )d§ } 2(§)
_ Ry(28) . (84)
s

To transform the remaining equation [namely Eq.
(65)] into the form of Eq. (66), the result in Appendix B
that R,(£,0) has the form
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R,(£,0) = PO R,(28)

¢ » 9G.
+J eﬂ(é')—B(E y Y2 (§I’2§_ 2§l)d§l ,
o or
(85)
where the integral term is shown to be a function of R, R,,
(1/¢)dc/ 3, and 3B /d¢, is employed. On substituting this

and expression (76) with =0, into Eq. (65), Eq. (65)
takes the form

X, =X?+F,(X,, X,, X5, X,) ,
where

X§ =5BXS — 6(X3)°

+ 464 [ R,0(2£) /3 — 8Ryo (26) ] - (86)

Having shown that Egs. (61), (62), (64), and (65) can
be placed in the form of Eq. (66), the inverse problem re-
duces to solving the system

X=X°+ F(X) (87)

for the vector valued function X = (X, X,, X3, X,;) in the
domain D, where F = (Fy, F,, F;, F}).

The form of Eq. (87) lends itself naturally to solution by
successive approximations

X"=X°+FX" "), (88)

starting with the initial approximation X °. Introducing the
norm

IX|| = max |IX].,
i=1,..,4

the iteration process (88) will converge to a unique solu-

tion'® in the ball U(X%r): | X — X°|| <r if, for every

X,YeU(X°,r), there is a 0<8 < 1 such that
|IF(X) — F(D)||<8]|X - Y|,
IF(X)|<(1—)r.

(89)
(90)

The basic problem, then, is to show that a nonzero value
of T'can be chosen so that an rand 6 < 1 can be picked so that
inequalities (89) and (90) hold. The fact that this can be
done for T sufficiently small follows from the result that
F, - O(T) as T-0 + , which has been pointed out. This im-
plies (leaving out the details) that

IF(X) — F(D|<Tp(nD) | X - Y|,

where p(7,T) is a bounded function for finite values of 7 and
T. In addition, since X, = X, (&) and 0<£< T /2, the follow-
ing bound can be shown:

IF(Xo) || <m(T) .

Hence taking 6 =1, inequality (90) is satisfied if
r=2m(T), and inequality (89) is then satisfied provided
that

Tp(2m(T),T)<}.

It is easily seen that since p is bounded, the inequality can be
achieved for a sufficiently small value of 7. This shows that a
local solution to the inverse problem exists.
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APPENDIX A: ZEROTH AND SECOND MOMENTS OF
K-tAND K’

The operator K has the form on the surface §
(x; = const)

Ku[x,t] =J f f k(rxst — $)u(y,p..X5,5)ds dy, dy, ,
R2JO

(A1)
where
k(rxs;,t) = [i 5(t—- I)
r c
b33 r)] exp( — bc’t /2)
LOH|t—-)} — ———,
+ 4; 19 ( ¢ 27
(A2)
where 7P =(x;,—y)*+ (x,—»,)> and ¢ =bc(c’t?

— #)'2/2 1t can be shown that the zeroth and second mo-
ments of K are given in terms of a convolution in the time
variable, as follows:

(Ku)o = ko(x3,2) *up(x5,8) = f ko (x5t — ) up(x4,5)ds,
(1]

(A3)
(Ku), = kz(x3at)*uo(x3;t) + ko(x3at) *uz(x;;rt) s (A4)
where
ko(xs,t) = 27 f " k(rxynrdr, (AS)
(]
ky(xs,t) =21 Jw k(r)x;,t)r dr. (A6)
0

On changing the variable of integration from 7 to £, ko(x3,2)
is evaluated as follows:

7
ko(x3,2) = c[l +f I,($)ds ]e"’: ce”"L(m), (A7)
(V]

where
7 =>bct/2. (A8)

The second moment term is evaluated in a similar manner, as
follows:

7 ,r]' 2
ky(x5,t) =c’e~ "[l + f [1 — (—) ]Il('r]’)dn’]t2
o n

=ce "2 [Iy(n) — L(np)]

=8ne U, (5)/(b%).
The corresponding moments of the inverse operator
K~! are easily obtained. From Eq. (16) it is seen that on
integrating by parts (in the transverse variables) and using

Eq. (A3),

(A9)

(K~ 'u)o = D(Ku)y = D(ky*u,) , (A10)
where
1 8?2 d
D=——_4+b—. All
c? 9t? + at ¢ )
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This can be further reduced to yield

(K~ '), —(i—‘?-+ )u0+7c0m0, (A12)
c 0 2
with
ko(x5,t) = — b2e="I,(9)/(47) . (A13)

Similarly it follows that the second moment of K~' can
be obtained using Egs. (A3) and (A4):

(K~ 'u), = D(Ku), — 4(Ku),

= D(k,suy + korty) — 4koru, (Al14)
- (ii + bc)uz + ko*uz + Izz*uo Py (AIS)
c ot
where
ky(x5,t) = Dk, — 4ko = — 2ce~"Iy(7) . (A16)

The corresponding moments for K’ can be easily ob-
tained from expressions (A3) and (A4), and recalling the
fact that K' = (3 /dx,)K, giving

(K'u)0=—akO *U,, (A17)
Ix,

(K'u), = Ok, *u, + ko ", . (A18)
Ix, X5

The zeroth moment of the composite operator K’K~!
obtained from (A17) and (A10), yielding
(KK o = 220 0Ky = 250

X3 3

—L «D(ky*u,) - (A19)

To reduce this further, the general result for the convolution
of two functions f(¢) and g(¢),

D(f*g) = (Df)*g

+ ((1/¢)A0) + bIO))g() + (1/c2)(0)g(D),
(A20)

has to be used. Here the dot indicates differentiation with
respect to . Using the fact that uy(x,¢) vanishes at t =0,
and that the convolution terms commute ( fxg=g*f),
expression (A19) is reduced as follows:

(KK~ u)o=D [QI& *(ko*uo)] = D [a*u,]
Ox,

= (Da)*uy + (1/c2)é&(x3,0)u(x3,t) ,
(A21)

where
1 a
a(x;t) = —— (ko#k,) -
(x3,0) 2 ax3 (ko*ko)
Inserting in expression (A7) for k, and changing the vari-

able of integration, the convolution k,*k, can be evaluated
as follows:

]
Kooy = (%)e—f Loy — ) Io(nYdn'
0
=(1/bY(1 —e— %),

where 7 is given by Eq. (A8). Expression (A21) can now be
simplified to
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1 Jde

(KK 'u)g= 4+ ——uy(x3,t) + horu,, (A22)
¢ Ix,
where
ho(x5,t) = — 19y a(bcz) xp( — bc’t) . (A23)
2 Ox;
The second moment is obtained in a similar manner:
(KK~ 'u), = ko (K 'u), +—2 Ok, *(K'u),
Ox, Ox,
= 9k, *[D(ky*uy + ko¥uy) — dkg¥ug]
 ox,
3k2 *D(ko*uy) . (A24)
X3

With u, replaced by u, in expression (A19) and (A22) it is
easily seen that the term involving u, in expression (A24) is
just
ho*u, + 1 o u,.
¢ dx,

Using relation (A20) and the fact that the convolution
terms commute, the term involving ¥, in expression (A24)
reduces to

D [i (kotkz)tuo] -2 9 (ko*ko)*uy -
aX3 a‘x3

The convolution k,*k, is easily evaluated (using the Laplace
transform, or otherwise) to obtain

kork, = (b1362)e ﬂf Iy(n —7)q'L(n")dn'
=4/’ {(m—1) + (p+ e~ 2"}, (A25)

where 7 is given by Eq. (A8). Since it can now be shown that
the time derivative of d(ky*k,)/dx; vanishes at ¢ = 0, it can
be shown that expression (A24) reduces to

(KK 'u), = hysuy + 1 o U, + hysu,,
c Ox,
where h, = D d(kyrk,)/0x; — 2d(korky)/3x;, which sim-

plifies to
d ( 1—e~ 2”)
hy=2——).
g x, b
Note: To simplify the calculation for A, use the following
change of order of differentiation:

J (1 d 3> .93
D-Z (kgky) = (=22
ax3(9 D=z 6x36t2+ Ix, 3t

(A26)
(A27)

)ko*k

APPENDIX B: ALTERNATIVE FORM OF A,(£,0)

It will be shown here how R2(§ 0) may be computed by
quadratures from R,(&,t) and Ry(£,t). Differentiate Eq.
(77) with respect to ¢, then set = 0 to give

oo . 5
R,(£,0) = P R,0(28) +f PO - BN
0

X (§',26 —2£")dE’ . (B1)

With G,(£,t) given by the right-hand side of Eq. (64) it can
be shown that

at
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3 J . .
2 Gy(6n = (5 Qz<Ro>):R2 + Qy(Ro) |, ok,

3 . e
+ % [S(R,) + 4c’Ry] — 4c°R,, .

It can be shown that all the terms except the last one depend
upon R, and R, [noting Eq. (63)]. Thus dG,/dr has the
form

36, _ T,(RO, Ry L9 5_3) _ 4R, .
ot c 9 I

To examine the critical term Ro, differentiate Eq. (76) to
give

Ry(&,1) = P ORy, (1 + 2£)

(B2)

+J{ea<§) - BN % (£',26 —2&' + 1)dE’ .
(v
(B3)

With G, given by the right-hand side of Eq. (62), it is seen
that

iaGt—l'= agl *R0+Q1(Ro) t:ORO
10 3R B3B8, ,,
4c I Ot 4 O ’
hence
G, . 1 dc 9B
G =Tk 50 5):

Insertion of expression (B3) for R, into Eq. (B2) results in
the fact that dG,/dt(£,26 — 2§ ") in Eq. (B1) is a function of
Rg, Ry, (1/¢)3c/3E, and IB /5E.

APPENDIX C: LEMMAS ON PROOF OF COMPACTNESS

Let S be a Lyapunov closed surface with total surface
area A. Let A(x,, ;; x,, #,) be the area of the surface of S
that lies inside the sphere of center x,; and radius ct, and
outside the sphere of center x, and radius ct,:

Ay 13 % 1) = f Het,— [x,—y])
S

X[1— H(ct, — [x; —y|)]do, .
(CH

Since the surface is smooth and A(x,, t,; x,, ¢,) =0, it fol-
lows that at least for small values of t, A(x,, ¢,; x,, t,) will
satisfy a Lipschitz-like condition. It will be assumed that the
parameter T will be such that such a condition holds for
0T, ie,

A(xy, t; x5, t2)<x{|x,——x2| +C|t|—t2|}, (C2)

for x,, x, €S, t,,t,€[0,77].

The space C(S)XC©O? [0,T] of functions f(x,t),
which are continuous in x and Holder continuous in ¢, with
Holder exponent 4, 0 <A<1,

fxt) — ) |<U |6 — 1],
forall x € S, t,#t, € [0,7], will be used. For this space the
following norm will be employed:
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oo = sup 0]

«[0,T]

+ sup [fx,t) — fAx.)|/]t, — 6" .
1,,€[0,T)
L#L
(C3)
In the proof of the lemma that follows, we want to extend the
definition of a function f(x,#)eC(S) X C*®* [0,T] to a do-
main over negative values of ¢, as follows:
(x;t) _f(x90 + ), t>0’
K, t<0. (€4
It can be easily shown that F(x,t) is Holder continuous on
the interval [ T,77], where T, <0, with the same Hoélder co-
efficient, i.e.,

F(x,t) =

sup |F(x,t,) — F(x,t,)|/]t, — t,]*

1,L€( T, T]
n#n

= s,}:? f(x,t,) — flx,t,)|/]6, — 1]
1,,6,€[0,T)
L F#
We will now prove the following lemma.
Lemma I: If Gf(x,t) = fsg(xp)f(y,7)H(T)do, has
the kernel g(x,p) = k(x,p)|x —y|~ %, where a<2 and
k(x,p) is continuous on § XS, 7 =1t — |x — y|/c, then

G: C(S)XC*[0,T]-C[S]XC[0,T]

is compact, provided that the constant 7 is such that as-
sumption (C2) holds.

Proof: Define the sequence of continuous kernels
g, (x,y) = min(n,g(x,y)) to avoid the singularity at x = y.
Since S is Lyapunov, it can be shown that g, —»g in L,(.5),
since there are £, —0and a constant k, such that (Giinter?®)

£, (27
f g, — &l day<J. f —Ii‘-’rdrda-*O,
s o Jo

where (7,0) is a local polar coordinate system centered at x,
and lying in the tangent plane.

Let B be the ball in C(S) X C%*[0,T] with unit norm.
We shall show that G, (B) = {4 | = G,.f, feB} is bounded
and equicontinuous, and hence, by the Arzela-Ascoli
theorem, relatively compact.?' By definition, then, G will be
compact.”!

Boundedness is easily shown. If f€B, then

GufI< sup (G,

«[0,T')

(CS)

<llgallz,cs) sxlelg [f(x,8) |

«[0,T]

<lgalle.sr Wl scon =l8nllzs) -
To show equicontinuity, note that
Ih(xp t) — h(xza tz)l

< f 18, O 9) — 84 (e )| 9, 7)| H(r))do,
S
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+ f |8, (X2 V)| |F(p, 7,) — F(y, 7,)| do,
S

+f Ign(xz»y” V(y’0+ )l *H(Tl) —H(Tz)l dU'y ,
N
(C6)

where 7, = t; — |x; — y|/c and Fis defined by Eq. (C4).

Since g, (x,y) is continuous on the compact space S X S,
it is uniformly continuous; so for £ > 0 there is a §, > 0 such
that

|8, (X1,9) — 8, (X2,9)| <€/ (34),

Hence the first integral on the right-hand side of expression
(C6) is bounded as follows:

for |x, —x,| <é,.

f |8 (x1,9) — &, (x20)| [f(3,7)) | H (7,)do,
S

£

—— | H(r))do, su Xx,t

<3AL (r)do, sup 1f(x,)|
(0,T)

<(£/3)”fllc><c‘°-’“ . (o7}

To evaluate the second term, use the property of Holder
continuity, relationships (C3) and (C5), and the fact that

JfeB to give
|[F(y, 7)) — F(y, 7,)|
<Iri =7 1 flle o
<t — 8] + (/o) |x, — x|}
Hence given an £>0, we can find a 8,, (2/¢)é,= [/
3|18 |l 1'%, such that for c|t, — t,] <&,, |x; — X,| <82,

f 8 9] 1F0, 70) = FUp, 7)oy <5 (C8)
S

The third term in (C6) may be handled as follows:

[ o] 19,041 1B — B o,
S

<”gn ”oo {A(xl: tl; x2: tz)
+ A(x,, ty; X, tl)}llf“(:xc(o-“
<2lg, |t {lx, — x5| + €|, — 1]},
using relationship (C2). Hence given an £ > 0, onecan find a

85, where 8, =¢/12«|g,|.., such that for |x, — x,| <65,
clty — t, <65,

f (x| V0 +)] () — H(ry)| doy <5
S
(c9)

Finally, one can combine the results of (C7)-(C9) to
show that for f&B,

[h(x,, ) — h(x, 1,)|<E,
whenever  |x;, —x,| <8, c|t;—1,|<b, where &
= min[§,, §,, §;]. With this result we have shown equicon-
tinuity.

Summarizing, the operator G, is compact, and since
G, -G, G is compact. [ |

Lemma 2: If
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t—r/c
H.f(x’ t)=J‘J- h(x’y;t_s)
SJO

XH(t—I)f(y, s)dsda, ,
C

with 7 = |x — y|, hasakernel 4(x, y; ¢) that is continuous on
S XS X[0,T], thenn H is a compact operator mapping
C(S) X C%* [0,T] into C(S) X C[0,T].

Proof Set

t>r/c,

. _ h(x,.V§ t)_h(-xry: r/c),
hl(x’y) t) - [0’ t<r/c,

Then H fcan be placed in the form

T
Hf=ff hy(x,y:t —5)f(y, s)ds do,
S Jo

+J:Lh(x,y;£)f(y,T—g)H(T——:-)day dr.

Since the kernel A, is continuous on the compact domain
S X8 X [0,T7], the first term is a compact operator. The sec-
ond term involves a bounded operator (the integral in ¢)
acting on the operator

[ ol

which by Lemma 1 is compact mapping C(S) X C%>*[0,T]
into C(S) X C[0,T]. The resulting product of operators is
compact.?! [ |
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Solutions of Maxwell’s equations with boundary conditions

on the hyperplane Zz—ct=0
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In homogeneous free space the electromagnetic field may be represented by a second rank
spinor, each component of which is a solution of the wave equation. This makes it possible to
solve the boundary value problem for the electromagnetic field when the data given on the
hyperplane z — ¢t = 0 are entire functions. Two particular cases of boundary conditions that
are not entire functions and that lead to a relativistic solution of Young’s experiment are

discussed.

I. INTRODUCTION

We consider the wave solutions to Maxwell’s equations
propagating along the 0z direction in homogeneous free
space. We use Gaussian units, the transverse cylindrical co-
ordinates 7,0, and as longitudinal coordinates the cone vari-
ables £ = z — ct and & = z + ct. We introduce the complex
vector A=E+iH (i=+ — 1), where E and H are the
(real) electric and magnetic fields.

From a relativistic point of view A is a self-dual tensor’
having a well-known connection™? with a traceless second
rank spinor ¢ (r,s = 1,2). Explicitly one has

A, —ihg =%, A, +ihg=e" "y},

. (N
Let ¥ denote the matrix
1
vo |84 (2)
v %
then W satisfies the Proca equation?
DY =0,
_i8 . (3
b 20; e %d, — (i/r)d,)
T (3, + (i/r)3d,) —29, ’

and d,, dy, d;, and J are the partial derivatives with respect
to , 6, &, and &, respectively. It is easy to prove that the
relations (1) and (3) imply that A satisfies Maxwell’s equa-
tions.

When the electromagnetic field is self-conjugate,® A is a
null vector A+ A = 0, where the dot means the scalar product
that implies

|El=|H|, EEH=0, $i¢; —¢i¢5=0. 4)
We are now looking for solutions of the type
A=A(r8.£)e™, Y=V(r0,£)e™. (5)

Taking (5) into account the derivative matrix B be-

comes
b 2ik e~ (dr — (i/r)d,)
T €99, + (i/r)dy) —29,

Then from the equation B¥ = 0 and from the traceless con-
dition, one deduces the following relations:

(6)
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W= — 2 = — (i/2k)e= (3, — (i/r)d 3,

¥ = — (i/2k)e (3, — (i/r)3)¥3,
while ¢ is a solution of the wave equation

A + 4ik 3,43 =0,

A, = (1/r)d,(rd,) + (1/P)d%. (8)
Consequently, using relations (1) and (7), solutions of
Maxwell’s equations can be deduced from the solution ¢} of
the wave equation (8).

We discuss here the boundary value problem for the
electromagnetic field with data given on the hyperplane

& = 0 when the boundary conditions are consistent with re-
lations (1).

)]

il. BOUNDARY CONDITIONS ARE ENTIRE FUNCTIONS

We start with a summary of the results we previously
obtained* for the wave equation. One first notes that if ¢ is a
solution of the wave equation independent of 6, then

Y, =r" 9" (¢e™®), n positive integer, (9
(rd)"
isalso a solution. Consequently it is sufficient to consider the
solutions Y=y(r,£)e™* with boundary condition #(r) on
£=0.
These solutions are easy to obtain when ¢ is an entire
function® of order 1 and type 0 < 7 < o of the dimensionless

variable v = — A 2/, Then one has
=3 Yoy (10)
n=0 n!
and y(r,£) is given® by the relation
+ oo
Y(ré) = lim - ’ % J dse /%
€0 T € J_ o
Xf dl f(s + ir cos ), (11)
0
with a, = € + 4ik, where € is a positive scalar, and
. % @ tn
s+trcos€)=f dte ' - 1"
ﬂ 0 ngo ( ) (2”)!
X, (25 + 2ir cos 8) ", (11
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Let us give some examples. Starting with the entire function
of type 1, #(r) = e~ *"/® (A2 = k /a), we get from (11)
and (11')

P(rE) = [1/(a + iE)]e*r/a+id), (12)

This expression multiplied by ¢** is the first focus wave
mode solution® of the wave equation.

The entire function of type 4, ¥(r) = I,(Ar), where Iy is
the modified Bessel function of the first kind of order zero,
leads to

P(r€) = L(Arye* 7% (13)
while with the entire function

U(r) = e~ ¥ (kr*/2a)
we get

YrE) = [1/(a + i€) *]e= 72+ OL(kr/2(a + iE)).
(14)

Applying (9) to (12)-(14) supplies the corresponding solu-
tions depending on @ with boundary condition zZ(r) e,

Let us now come back to Maxwell’s equations. To solve
the boundary value problem with data on the hyperplane
£ = O consistent with the relations (1) one just has to identi-
fy 42 with ¢ and to use relations (1) and (7).

For instance, when ¢} is identified with (12) multiplied
by e*%, that is,

% — [1/(a+ l-g)]e—kr’/(a+i§)eik§, (15)
we get from (7)
1/}} - _ % — [ir/(a + i§)2]e—kr2/(a+i§)ei(kZ‘—9), (15,)

lﬁ% — [,.2/(‘1 4 i§)3]e'k'z/(°+i§)e"(kz'_29).

It is easy to check that the condition (4) is satisfied so that
the electromagnetic field defined by (15) and (15°) is self-
conjugate. Substituting these expressions into (1) gives
A, —iAg = [P/(a + i§)*]e= ket BgihE =0
A, +ihg = [1/(a+iE)]e” krz/(a+i§)ei(k§'—6)’
Az = [ir/(a + i§)2]e' kr’/(a + ig)ei(kE— 6)’

which is the first focus wave mode solution of Maxwell’s
equations.” A sirpilar calculation gives, when one uses (13)
multiplied by ¢’*¢ as an expression of 3,

(16)

A, —ihg = — (A2/4k2)(Iy(Ar) — (2/ANT,(Ar))

Xei(k?+12§/k—9),
A, +iAg ___Io(lr)ei(kZ‘-;Alg/k—B)’ (1D

Ay = — (A /72k)I,(Ar)eE+476/k=0),

With (14) one gets similar but more intricate results. Apply-
ing (9) to the previous expressions of ¥, supplies the solu-
tions depending on 6.

To sum up, using (10), (11), and (11’) together with
(1), (7), and (9) supplies a lot of solutions to Maxwell’s
equations among which the focus wave modes have won a
special fame.® The behavior of solutions (16) has been dis-
cussed elsewhere® as has the Poynting vector and the energy
density.
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For the focus wave modes the consistency of the bound-
ary conditions leads to the following relations:

(cos )(E, + H,) + (sin 0) (B, — B,) = (P/aP)e 7",
(sin 6)(E, + H,) — (cos ) (E, — H,) =0,

(cos 6) (E‘, — I’}g) — (sin 6) (E‘a + fl,) = (1/a)e—*/a
(sin 6) (E, — Hy) + (cos ) (E, + H,) =0,

(cos O)E, — (sin )H, =0,

(sin O)E, + (cos ) H, = (r/a®)e= "2,

where we used (16) together with the definition of A.

lIl. YOUNG’S EXPERIMENT

We ignore whether there exists a general method for
solving the boundary value problem when the boundary con-
ditions on £ = 0 are not entire functions. But in some simple
cases the solution is easy to guess. For instance, let us assume
that one has, on £ =0,

(xp) =8(x)8(A —d?), (18)

where §(x) is the Dirac distribution and x,y are the trans-
verse Cartesian coordinates. The condition (18) means that
¥ is zero except at the pinholes (x=0, y= +d) as in
Young’s experiment.

In Cartesian coordinates the relations (1), (7), and (8)
become, respectively,

Ax—iAy=¢’%, Ax+lAy=¢;’

A, =3 — ), (19
with

9= —t = —(i/2k)(3, —i3,)¥s,

% = — (i/2k)(3, — i8,)93, 200
and

(32 + 92 + 4ik 3, )y = 0. (21)

Consequently one has to find a solution of (21) with (18) as
the boundary condition.
For &> 0 the Serendip method leads at once to

Y(xP,E) = (172€)"*/OF +5+d% cog(2kdy/E), (22)

where we assume k = k, + i€ with €> 0 in order to make
(18) possible. Let us remark that ¢ as a function of x,y,£ is
not continuous at £ =x =0, y = + d, if these points are
approached along the paraboloids &(x*+ (¥ + d)?)
— £=0, ¥ goes off to infinity while 3 assumes the value
zero when they are approached along the surface
EXX+ (y+d)) —£V2=0. It is trivial to check that
(22) isasolution of (21). The solution in the half space £ <0
is obtained by changing k into — k.

In the scalar representation of the optical fields the light
intensity I(x,,£) is proportional to |¢|?, that is, according
to (22) for £>0,

I= (1/4§Z)e—26/§(x2+y’+d2)

X cos(2kdy/&)cos(2k *dy/€), (23)

where the asterisk denotes the complex conjugation; in the
limit € -0 this expression reduces to
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I= (1/4&?)cos? (2kody/£), (23)

which gives the interference pattern obtained in Young’s ex-
periment'® except that the variable £ takes the place of 2z
as expected since the paraxial approximation of the wave
equation is obtained by changing £ into 2z.

Consequently (23') may be considered as the relativistic
expression of Young’s experiment.

Let us now identify i, with (22), which we write as

¥ = (1/28)(cos a)éf, a = 2kdy/¢,

B=(k/E)(x* +y* +d?). (24)
Substituting this expression into (19) gives
¥ = (f/26%) (dsin a+ (x — iy)cos a,
%= — (€263 [((x — iy)* —d?cos a (24")

+ 2d(x — ip)sin a].
Since the condition (14) is not fulfilled, this field is not self-

conjugate. From (19), (24), and (24') we get for the elec-
tromagnetic field

A, = (P/4E3) (€2 +d?* + (x — iy))cos a
— 2d(x — iy)sin a),
A, = — (iP/46%) (€7 —d? + (x — ip)cos a
+ 2d(x — iy)sin a),
A, = (/28 ((x — iy)cos a + d sin a).
These expressions are valid for £ in the half space £ > 0. For
£ <Oonehasto change kinto — k, thatis, Binto — 8. Since
k is complex Re S < 0 and the components of A are bounded
in the transverse direction.

Let us now use (25) to discuss Young’s experiment.
Because of the short wavelength of visible light the interfer-
ence pattern may be observed in practice only if 4 is much
smaller than £. One may also assume x and y small compared
with & since the amplitudes A; decrease as exp[ — (&/
H&*+y +d*)].

Consequently neglecting terms of second or higher or-

derind /&, x/&, y/&, and their products, the expressions (25)
reduce to

A, = (#/2€)co0s ag,
A, = — (i#/28)cos ay, @, =2kydy/E,
A, = (#/2£%) (d sin ay + (x — iy)cos a,

since A? is negligible the electromagnetic field (26) is self-
conjugate to second order.

We now compute the Poynting vector and the energy
density given by the relations

S, = — (ic/Am) e A AY, jik]=123,
W= (1/4m)|A]%

where ¢, is the permutation tensor. Substituting (26) into
(27) gives

(25)

(26)

27

S, = —A(xcosa,+dsina,), S, =A,cosa,, (28)
S, =Afcosa,=cW,
with

A= (c/817'§3)e" QRe/EVXP+ Yy +dY) cos a,. 28"
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Introducing the variables S, = S, — cW, 8z =S, + cW, the
previous expressions become, in the limit € —0,

S, =8, =8, =0 mod(curl U),

(29)
Sz = (c/4m& *)cos® ay,
where U is the vector with components
U,=U, =0,
. (29"
U, = — (¢/8m&>)y(cos ;) (x cos @y + d sin o).

Asis well known, ' from a physical point of view curl U does
not play any role. So we are left with Sz, which is the expres-
sion (23") of light intensity multiplied by ¢/#. Two com-
ments can be made.

(i) The fact that S; and not S, is the energy density of
the electromagnetic field is in agreement with the asynchro-
nous formulation of relativity."!

(ii) The scalar theory may be used as long as d /£, x/£,
and y/& are small. Let us also note that the case d = O corre-
sponds to a point source with the usual inverse square law.

As another example of the boundary value problem we
consider a boundary condition of the slot type:

H(xy) =8(). (30)

The Serendip method still supplies the solution of (21) satis-
fying (30) for £ = 0:

i (xy) = (INE )™, £>0, (31)
which leads to _
1 __ > 3/2y ikyP/E
= — (p/§77°)e™ 75,
h y/€ 1 (31"
__ Y (7 ik /€
# =g am)
and for the electromagnetic field to
. (1 r_ ;) e
VEN e kg
A, =;l(1 —iz+;.) eiky’/E’ (32)
N3 & 2%kE
A, = — (p/E¥?) ™S,
The components of the Poynting vector are
__ 9 —20%/¢ __u — 262/
 =————¢ y S,=—r—e R
8mkE > 7 8mke?
c y4 1 ) —2ep%/
S, =—— (1 - e 5 33
8wé £ 4k (3
c ¥ \? 1
=[5 il
0 8’7 + § 2 + 4k 2 é— 2 €

Let us assume £ very large so that, taking into account the
exponential factor, one may neglect the terms y/£ of second
and higher order. We further assume k&3 1. Then we get
from (34), in the limit € -0,

Sx =Sy =S§ =0, Sz. '—"C/47T§. (34)

One notes from (34) that Sz, which is still the energy den-
sity, decreasés as £ ' instead of £ ~? as in (29), a behavior
typical of a slot antenna. )

Let us write the boundary condition # (x,y) on the hy-
perplane £ =0 as

Pierre Hillion 2221



P(xy) = $(%p) + i (xp). (35)

Then, according to (20) and (21), the boundary conditions
for the electromagnetic field are

_Hy ={bl’ Hx +Ey ={ﬁ2

E,+H,= — (1/4k*) (329, — 23.0,3, — 33¢)),
—E, = — (1/4k*) (33, — 29,0, — 2¢,),
= — (1/2k)(8,¢, — 3. ¥,),

L= — (1/2k) (3,3, + 3, 3).

by

X

>

> B T
k>

(36)

The transformation E+>H, H+> — E, which leaves
Maxwell’s equations invariant in free space, changes A into
— Aand (¢,,%,) into (¢,, — ¥,). Consequently the Babinet
principle has a simple expression leading to further results.

IV. CONCLUSION

The present work suggests a statement and a conjecture.
First the statement: the boundary conditions on the hy-
perplane & = 0 play the role of a source term. We shall dis-
cuss this statement elsewhere by appealing to the asynchro-
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nous formulation of relativity'' that we already met when we
proved that the component S is the energy density. This last
result that we obtained in Sec. III is also true® for the focus
wave modes (16).

The conjecture starts with the remark that in Young’s
experiment, as described here, the wave-particle duality re-
duces to a different choice of boundary conditions on £ = 0,
d #0 versus d = 0. This suggests the following conjecture:
the mathematical description of experiments with photons
require boundary conditions on space-time manifolds.
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An infinite quantum system with correctly defined dynamics 79 as an automorphism group of
a C *-algebra Z of observables is determined by any continuous unitary representation U(G)
of a connected Lie group G, as well as by an arbitrary differentiable real function Q on the dual
space g* to the Lie algebra g of G with the canonically defined Poisson flow ¢ € on g*. For
specific choices of Q and G, the system can be obtained as the thermodynamic limit of a net of
finite lattice systems with the mean-field type interaction of Hepp and Lieb [Helv. Phys. Acta
46, 573 (1973)]. A simple nontrivial model of this type is the quasispin BCS model of
superconductivity in the strong coupling limit, or a corresponding model of the Josephson
junction. A peculiar feature of the considered models is 7 noninvariagce of the usually
considered C *-algebra . of quasilocal observables, as well as an important role of classical
dynamics @ ¢ of a set of macroscopic (intensive) observables in the description of 72. The work
is restricted here to norm-continuous representations U(G), in which case ¢ is isomorphic to
the tensor product .o/ ®.#", where .#"is the commutative algebra of classical (intensive)

observables of the considered infinite quantum system.

I. INTRODUCTION

Mean-field approximations to models in statistical me-
chanics were introduced at the beginning of our century’ to
obtain some description of phase transitions. Quantum mod-
els leading rigorously in the thermodynamic limit to quan-
tum mean-field dynamics as a consequence of a given net of
local Hamiltonians appeared in a description of supercon-
ductivity.? The simplest nontrivial model of the considered
type is the strong coupling limit** of the quasispin formula-
tion® of the BCS model. The correctness of the description of
(the local perturbations of) equilibrium states by the linear-
ized Hamiltonian introduced by Bogoliubov® was demon-
strated by Haag’ by using concepts of the algebraic formula-
tion of quantum theory. The study of the role of the
Bogoliubov—Haag Hamiltonian in the description of time
evolution was initiated by Thirring ez a/.®'° It was shown in
the framework of the C *-algebraic formalism that the de-
scription of the time evolution is representation dependent, '°
and that it can be described in equilibrium states by an auto-
morphism group of the weak closure of the corresponding
Gel'fand—Naimark-Segal (GNS) representation of the C *-
algebra o7 of quasilocal observables.'' Studies of the ther-
modynamic limits of Gibbs states were performed and the
existence and structure of phase transitions was determined
(see, e.g., Refs. 10, 12, and 13). These quadratic models
were generalized to polynomial ones and, in this general
case, classical time evolution of macroscopic (intensive)
quantities was established by Hepp and Lieb'* for the restric-
tion to the subset of ““classical states” '° of the set of all states
of the infinite system; this was possible without knowing the
microscopic evolution of all quasilocal quantities of the infi-
nite quantum system due to a specific way of taking the ther-
modynamic limit of time evolved intensive quantities. Let us
note that the results obtained in Ref. 14 coincide with those
derived from the microscopic evolution 7¢ introduced be-
low.
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Further investigation of the dynamics of the mean-field
models was restricted mostly to the dynamics of local pertur-
bations of limiting Gibbs states.!*'® Some of the conclusions
of these works were rather unexpected: in some states the
time evolution does not satisfy the semigroup property.'”!®
In some attempts'®'? to define time evolution in the consid-
ered (polynomial) models the “Schridinger picture” was
used. Rieckers with his collaborators®®>* stressed the im-
portance of classical observables as well as a specific role of
“symmetry breakdown” in the correct definition of time
evolution in the GNS representations of the considered
states. They proved o-weak continuity of the obtained time
evolution automorphism group of the weak closures of the
representations. The necessity of enlargement of quasilocal
algebras and a role of their nontrivial center in descriptions
of dynamics of systems with long range interactions was
studied in Refs. 25 and 26.

We shall consider in this paper a general class of the
mean-field models that are generalizations of the models in-
troduced in Sec. 2 of Ref. 14 to nonpolynomial interactions.
Our language will be that of the C *-algebraic formulation of
quantum theory.?’?® An inspiring review of the history,
methodological problems as well as possible perspectives of
the formalism, and its applications to systems with many
degrees of freedom is contained in Primas’ book.>® We shall
investigate the thermodynamic limits of local time evolu-
tions of the considered (polynomial) models as well as gen-
eralizations of the limiting time evolutions. Since the ther-
modynamic limits do not exist® in the strong topology in the
algebra of quasilocal observables ./, we shall work in the
framework of the larger algebra &7 **, and the limits will be
considered in the o-s*-topology generated by a subset S, of
the normal states on o/ **. The set S, is contained in the set
of classical states,'* which contains all the permutation in-
variant states'® as well as all the states for which the above
mentioned considerations and conclusions'®*?* were ap-
plied. The states weS, are specified by the existence of all the
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relevant intensive observables obtained from their local
forms by strong operator limits in the strong closures
m, ()" of the corresponding GNS representations 7,,. S,
seems to be the maximal set of states for which the time
evolution of all the considered models can be defined simul-
taneously in a unique “natural” way.?' The resulting time
evolution of the infinite quantum system can be described as
aone-parameter group of the *-automorphisms of a C *-alge-
bra ¥ contained in &7 ** and containing the usually consid-
ered quasilocal algebra .. Hence any pathological looking
features of the considered models appearing in previous
works are either missing or naturally explained in the frame-
work of our approach. Let P be the smallest projection in
the center of .7 ** with the property w(P;) = 1 forall weS,.
Then € is a proper subset of P;.o/**, which allows us to
prove better continuity properties of the timeevolution auto-
morphism group then were stated for limiting evolutions of
weak closures of some GNS representations of .2 in Refs.
18-24. A crucial role of a kinematical group G of the systems
is revealed in our definition of the dynamics.

The sets of bounded observables and states of the con-
sidered systems (i.e., the “kinematics™) together with a set
of their natural symmetries are introduced in Sec. II. Any of
the considered systems of Secs. II and III can be regarded as
a union of a countable set of equal quantum mechanical sub-
systems. Each of these subsystems of a given composed infi-
nite system is determined by a weakly continuous unitary
representation U(G) of a connected Lie group G in a separa-
ble Hilbert space H. We shall consider in this paper only the
cases of norm-continuous U(G) although the general case
can be dealt with with the help of more technical ap-
proaches.?> The usually considered'>?® C *-algebra &/ of
quasilocal observables is the infinite tensor product of a
countable number of copies of the algebra ¥ (H) of all
bounded operators on H defined as the C *-inductive limit*>
of W *-tensor products of any finite numbers of copies of
£ (H). The action U(G) on H induces a naturally defined
automorphism group o(G) of & with a canonical extension
to an automorphism group of the double dual & ** of <.
The commutative C *-algebra.#" of considered macroscopic
(intensive) observables is generated by the simplest Cesaro
means (in the strong topology of P; &/ **) of copies of the
generators of U(G). The algebra.#"belongs to the center £
of & ** and it is isomorphic to the algebra C(E) of all con-
tinuous complex-valued functions on an Ad*(G)-invariant
subset E of the dual space g* to the Lie algebra g of G. The
isomorphism is given by a Z valued, o(G) — Ad*(G)-equi-
variant projection valued measure E, on g* (with supp E,

= E) via the standard functional calculus: f[eC(E)]
—E,(f) (€Z). One has also P; = E_ (g*). If we consider
</ canonically embedded into .27 **, then the C *-algebra &
of observables convenient for the description of dynamics in
the considered models is generated in P .« ** by the subal-
gebras P.o7 and /. € is isomorphic to the tensor product
o/ ® 4" [in the case of norm-continuous U(G)]. The alge-
bras €, ./, and .#" are invariant with respect to (w.r.t.) the
action of o(G), e.g., o(g) (A7) C4 for all geG.

The set of differentiable functions on g* is endowed with
anatural structure of Poisson brackets (also called the “Ber-
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ezin brackets”) coming from the Kirillov—Kostant symplec-
tic structure®-* on orbits of the coadjoint representation
Ad*(G) in g*. This Ad*(G)-invariant Poisson structure3®
associates with any differentiable function Q on g* the Ham-
iltonian vector field A, and the corresponding flow @ € of
Poisson morphisms on g*. The ¢ € invariance of Ad*-orbits
allows us to represent the action of the group @ € on any
element of g* by an action of the Ad*-representation of G
taken on values of a cocycle g,: RXg*— G (cf. Sec. II B).
This fact together with the G equivariance of E, as well as
with the structure of the algebra of observables ¥ leads to a
natural possibility to define an automorphism group 72 of ¥
with the help of the group o( G): 7%is a kind of transfer of the
classical evolution @ € specified by the cocycle &, lif 0(G)
and E, are given]. In Sec. IV the above mentioned definition
of 79 is described, and Sec. III is devoted to the determina-
tion of the time evolution with the help of local Hamiltonians
corresponding to the choice of polynomial @ ’s. The proof of
the identity of both the definitions of 7¢is made by compar-
ing the infinitesimal generators (i.e., the derivations®®) of
the corresponding automorphism groups.

The resulting picture of the behavior of the infinite
quantum-mechanical system corresponding to the dynamics
72 agrees with the common image' of the mean-field theo-
ries: The time evolution of any finite subsystem can be de-
scribed by a Schrodinger-type equation with a time-depen-
dent Hamiltonian (depending on the “external” mean field
consisting of the classically evolved intensive observables
with values in g* as well as on a given initial state of the
infinite system). The mean field is, however, an exact conse-
quence of the internal structure of the interactions in the
infinite system, and no external field is put into the consid-
ered models by hand.

Let us note eventually that we have not mentioned here
some important works connecting the presently discussed
mean-field dynamics with other interesting problems of
physics, e.g., with the question of sources of irreversibili-
ty,'**” and with several differently posed questions of con-
nection of quantum and classical mechanics, cf., e.g., Ref. 25
for some citations. A discussion of these problems supple-
mented with corresponding citations is postponed to later
work.

Il. KINEMATICS OF THE SYSTEM

We shall specify here the “kinematical structure” of the
considered systems by specifying, as usual, the sets of “ob-
servables” and “states” as well as some rules for their inter-
pretation. In the framework of the C *-algebraic description
of physical systems the set of all bounded observables con-
sists of all self-adjoint elements of a given C *-algebra ¢, and
the set of all states of the system is described either by the set
S(%) of all positive normalized functionals on % or by a
conveniently chosen subset of S(%'), e.g., for a W *-algebra
¢ the set S, (%) of normal states on € might be in some
situations sufficient to describe the relevant physical situa-
tions. Since the algebra % of any of the presently considered
systems has the tensor product structure ' ® 4", we shall
discuss in Sec. II C the relation of S(¥) to S(«) and
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S(4"). The standard rule of the interpretation of the
numbers w(c) [with weS(%¥ ), ceC] as expectations for the
observables ¢ in the states » will be complemented here by a
scheme of giving physical meaning to specific ce% . This will
be done by choosing a distinguished symmetry group G of
the system: The group G might be identified with a group of
transformations of a set of measuring devices. The action of
the group G on the considered infinite quantum system al-
lows us to specify a classical subsystem of a distinguished set
of intensive observables with a natural Poisson structure.?
Consideration of this classical subsystem is useful for intro-
duction of dynamics into the considered type of models.

A. The large quantal system

Let II be an infinite countable set and let IT denote the
set of all finite subsets of I, |J |: = card J for JeIl. Let U(G)
be a norm-continuous unitary representation in a separable
Hilbert space H (for the usually considered spin systems H is
finite dimensional). Let u,: H— H,, (pell) be unitary map-
pings onto copies H, of H, U,(g): = m,(U(g)) for all geG
and pell with 7,(4): =u,Au; ', Ac.¥ (H): = bounded
operators on H. Let o/ be the C *-inductive limit (cf. 1.23.11
in Ref. 32) of the net of the W *-algebra .oz (JelIl) given by
the W *-tensor products**2

= o T,(L(H).
peJ

The C *-algebra o7 is simple, cf. 2.6.20 of Ref. 28. Each &/
(JeIT) will be considered as a (‘““local’’) subalgebra of .« in
the canonical way. Then .« becomes a quasilocal algebra.?®
Let o(G) be the range of the strongly continuous homomor-
phism o of G into *-aut .«/: = the automorphism group of
. The morphism ¢ is determined by the action of ¢(G) on
finite linear combinations of the elements xe.«/ of the form

x:= 08 7,(x,), x,&Z(H), Jdl,
ped
by the formula

o(g)(x):= ®J1rp(U(g)pr(g")), 2eG. (2.1)
pe

The strong continuity of o means that the functions
g—0(g) (x) (xex) are continuous in the norm topology of

o/ . Let g be the Lie algebra of G and let X; = X %e.’ (H) be
the generators of U:
exp( — itXy) : = Ulexp(1B)), Peg. (2.2)

The continuity of o is a consequence of the assumed
boundedness of Xz (Beg). The adjoint representation
Ad(G) on g is defined by the formula

Ad(g)ﬁ:=% O[geXp(tB)g“], geG, Peg.

t=

The generators X,; depend linearly on Seg, and their trans-
formation properties under U(G) are

X U@ XU ") = Xaaays -
Let us also write X () for X and let

(2.3)

X'B) =X : =3 7,(Xp), Beg, Jell. (2.4)
=
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The expressions (2.4) represent elements of 7 (hence of
&) in a canonical way. Then we have from (2.1) and (2.3)

a(@(X’(B) =X’ (Ad(g)B). (2.5)

Let S(/) be the set of all states (i.e., positive linear
normalized functionals) on .&7. For any weS(%), let
(7., H,, 2,] be the corresponding GNS triplet (the tech-
nicalities on C*-algebras and their representations can be
found in Refs. 27-29, 32, 38-40). Let {7, ,H, ] be the uni-
versal representation of .7, i.e., the orthogonal sum of all the
7., [weS()]. The double commutant 7, (/)" of 7, (&)
in .¥ (H,) is isomorphic as a Banach space to the double
topological dual .&7** of &, hence & ** is canonically en-
dowed with the structure of a von Neumann algebra. We
shall identify &/** with 7, («)". Let =7, ()"
N, ()’ be the center of .o/ **. Any state w€S(.2/) can be
uniquely extended to an (equally denoted) normal state
weS, (o/**) CS(o/**) and the corresponding W *-repre-
sentation 7, of &/** is the unique normal extension of
7, (&) to & **, cf. Ref. 32, Proposition 1.21.13. We can
consider 7, as a subrepresentation of 7, and for the exten-
sions we have 7, (& **) = 7, («)". For any representa-
tion 7 of &, there is a unique projection
c(r) =c(m)* = c(w)’eF called the central cover of =,
Ref. 39, paragraph 3.8.1, such that ¢(7) o/ ** is isomorphic
to 7()" = w(Z**), and mc(m)) = w(1) [1 is the unit
element 7, (id_, ) of & **]. The algebra ./ is isomorphic to
its universal representation 7, (&) but, due to the simpli-
city of .7, it is isomorphic also to any nonzero representation
7(.«/). Hence &/ can be identified either with 7, (&) or
with any of its nonzero subrepresentations c(7) 7, ().

The “local Hamiltonians” for the description of dynam-
ics 7’ of elements in the subalgebras .« (JeII) are expressed
in the considered polynomial models'* in terms of elements
from (2.4). Hence the thermodynamic limit of dynamics
can be expected to exist in (and only in) the subset of states
S, CS(o) in which limits for J— IT of the nets [ Xj,: JelI]
for all Beg exist in some suitable sense (for general interac-
tions of the considered type; for a specific interaction, the
limiting dynamics can be defined in those states in which the
limits do exist for all such 8°s for which the X, enter into the
local Hamiltonians). Let us note that the existence of norm
limit of the net [Xj,: JeII] is excluded for X, different from
a scalar multiple of the identity in H: Since the norm limits of
all commutators [x, X, ] (x€2/) vanish and « is simple,
any norm limit z; of X, would be a scalar multiple of identi-
ty of «. This would imply

lim o(Xg;) =z5, forall weS(&) .
J

But the spectrum of X; contains at least two distinct points;
hence there are normalized vectors @;eH (j=1,2) such
that (¢,,Xz@,) # (@2,X@,), and for the product states o, , :

wj(® T, (xp)) 1= H(:pj,xpcpj), x, L (H), j=12,
pet ped
one obtains the desired contradiction:
lim o, (Xg,) #lim w,(Xg, ) .
J J
However, it can be easily shown that strong operator limits
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s-lJim Ty (X )em, ()" (2.6a)

exist for many states weS(«), e.g., for all permutation in-
variant states, i.e., the states @ for which the values

w(‘g Tipy (X, )), for any Jell, x,e.(H),

and any bijection j: I1 - II are independent of j.!” Examples
of permutation-invariant states are w,, defined above.
There are states o, on the other hand, for which the strong
limit of 7,(Xg,) does not exist, e.g., the product states
@ := ® 5 @, in which an infinite number of the restric-
tions ” to the local subalgebras /7 : = .#(H,) coincides
with @, [i.e., @7, (x)) = (@, x @,) for all xe.Z (H) ], and
also an infinite number of w? coincides with @, defined
above.

The existence of the limit in (2.6a) is equivalent*' to the
existence of that limit with @ replaced by a (quasi-) equiva-
lent state,>®° i.e., by a state with the same central cover
c(m,) of its GNS representation. After the identification of
xex/ with 7, (x)eo **, we make a natural identification of
,, (x) with xc(7,) : = 7,(x)c(w,), and the existence of
the limits in (2.6a) is equivalent to the existence of the limits

s-lim Xz, PeZ, Peg, (2.6b)
J

with P = ¢(#, ). The limits in (2.6b), if they exist, belong to
the center Z of &/ ** since the nets J— [x, Xj; ] converge to
zero in norm for any xe., where [x, y]: = xy — yx is the
commutator. The existence of the limits in (2.6b) for some
projection PeZ implies the existence of the limits in (2.6a)
for all such w, for which ¢(7,, ) <P. Let P, be the largest of
allsuch projections P for which the limitsin (2.6b) exist. Let

Xg : = s-lim X, P . (2.7)
J

Due to the linear dependence of X, on Beg, the mapping
B—exp(i X, )ePc & (2.8)

is a norm-continuous unitary representation of the additive
group g in the Hilbert space P; H,,. According to the Stone-
Naimark-Ambrose-Godement (SNAG ) theorem (see Ref.
42, § 140, p. 375, or Ref. 43, Theorem VIIL. 12, or Ref. 28,
Sec. 3.2.3), there is a unique projection valued measure E,
on g* [ the dual of the linear space g can be identified with the
dual group § of the additive group g by the association with
any Feg*, the character y,: f—yr(8): = expliF (8))]
with values in P Z such that

Xpn =f F(B) E,(dF), Peg. 2.9)
g.

Let us denote E : = supp E; the minimal closed set ECg*
such that E (E) = P; [ = E;(g*)]. The set E is compact
due to the boundedness of X;’s. The set C(E) of complex-
valued continuous functions on supp E, is a commutative

unital C *-algebra generated (by the Weierstrass theorem)
by the functions f, (Beg), where

Se(F):=F(B), Feg*, (2.10)

are linear functions on g*. Let E; denote also the mapping
from C(E) into P;.Z given by
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E, : fEC(E)E (f) :=ff(F)Eg(dF). (2.11)

A direct consequence of the standard functional calculus of
normal operators*>*? is the following lemma.

Lemma 2.1: The mapping E, from (2.11) is a *-isomor-
phism of C(E) onto the C *-subalgebra .#” of Z generated
by the elements

Xon =E (fp), Beg. (2.12)

Now we shall introduce two C *-algebras suitable for
description of dynamics of mean-field theories, and then we
shall prove isomorphisms of these algebras.

Definition 2.2: (i) Let 7 denote the canonical embed-
ding of the simple C *-algebra & into P; .o/ **:

Mg : X(€H )—>7g(x) i =m,(x)Pg . (2.13)

Let ¢ be the C *-subalgebra of P; o/ ** generated by 7; (.27 )
andby /" : = E, (C(E)). Let us denote by %7 (JeIl) the C *-
subalgebra of & generated by 7; («/”) and 4. ¥ is called
the algebra of observables for o( G)-mean-field theories, and
A is the algebra of o(G)-intensive quantities.

(ii) Let & ® .4 bethe (unique) C *-tensor product; it is
isomorphic®® to the C *-algebra C(supp E,,«/ ) = C(E,/)
of «/-valued norm-continuous functions } on E with the
norm || f|| : = supp[|| / (F)||: FEE] and with the pointwise
algebraic operations.

The algebras 4" and & are naturally embedded into
C(E, o) by

E,(f)(eN)—f, withf(F):=f(F)id,,
for all feC(E), and
x(e y—f, withf(F):=x (forall FeE). (2.15)

The assertions of the next two lemmas are taken from Ref.
38, Proposition IV.4.7 and Lemma IV.4.18, resp. Exercise
IV.4.2.

Lemma 2.3: Let &/ be aunital C *-algebra,.#"a commu-
tative C *-algebra, and let 7,: &/ - % and 75: 4/ - % be
homomorphisms into a C*-algebra ¥ with commuting
ranges. Then there is a unique homomorphism 7 of the C *-
tensor product . ® .4 into ¢ such that

xeof, zeN",

and theimage 7(.« ® /") is the C *-subalgebra of € genera-
ted by 7, (&) and 7 (A).

Lemma 2.4: Let € be a unital C *-algebra generated by
commuting unital C *-algebras .« and.#", 4" commutative.
If xz = 0 implies ||x|| ||z|| = O for any xe.«/, ze /", then the
homomorphism

(2.14)

T(x®z) =T7,(x)Ty(2),

Z x; 82z (cd ®JV)»->Z x,z,€€
J 7

can be extended to an isomorphism of .« ® 4" onto % .
With the notation of Definition 2.2, we then obtain the
following proposition.
Proposition 2.5: There is a unique *-isomorphism E; of
C(E,o/) onto € extending the mappings E, of (2.11), and
g of (2.13). It can be expressed by the formula

B =i [J0 E,@P, FecEa). @16
Note: The formula (2.16) is used here to define the inte-
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gral. It can be defined, however, independently and equiv-
alently by a limit in a weaker-than-norm-topology of a se-
quence of integrals of step-function approximations to f [cf.
Proposition 6.3.6 of Ref. 25(a) ).

Proof: It suffices to show that for any nonzero feC(E),
the equality 7g(x)E,(f)=0 implies x=0. Let
f(F)>}f(F,)>0 for all FeB,CE, with F,eB, and
E (B,)#O0. Then

0L 7 (X*x)E, () — L f (FQ))E, (By)
= — L f(F)ms(x*x)E, (By),

and this implies 7, (x)E;(By) =0. The mapping
x—7g (x)E, (B,) (x€2/) is a nondegenerate representation
of the simple C *-algebra &7, hence its value is zero only for
x=0. Q.E.D.

The isomorphism E, maps C(E, #”) onto €’ (Jell),
endowing the algebra ¥ of observables with a quasilocal
structure (Ref. 28, Definition 2.6.3) coming from that of .«
In the case of €, however, the “local algebras” ¢ contain
also intensive (i.e., “global”) observables.#". Let o(G) also
denote the extensions of the mappings from (2.1) to the cor-
responding *-automorphism group of .« **. From (2.5) and
(2.7) one has o(G) invariance of P; as well as the relation

0(8) (Xpy ) = Xaampns Peg, geG. (2.17a)

This can be rewritten in the form of the G equivariance of the
projection-valued measure E; on Borel sets BC g*,

o(8)(E,(B)) = E (Ad*(g)B), geG. (2.17b)

We can see from this that € and ./~ are o(G)-invariant
subalgebras of o7 **. Hence we can deal with 4" as with a
“kinematically independent” subsystem algebra of a classi-
cal subsystem of the large quantal system specified by the
action ¢(G) of the chosen group G.

B. The classical subsystem of o(G)-intensive quantities

We shall introduce here the canonical structure of Pois-
son brackets on the algebra .4, which is Ad*(G) invariant.
This structure will be used to determine the classical dynam-
icson 4" corresponding to any given differentiable Qe C(E).
Then we shall define a cocycle g, which will be used to trans-
fer the classical dynamics to an evolution of the large quantal
system in Sec. IV. The coordinate free differential calculus
on manifolds of Cartan®** will be used for brevity and clar-
ity of the expression.

Let [B,y] be the Lie bracket of elements S and y of the
Lie algebra g of the group G. The tangent space Trg* to the
dual g* of g at the point Feg* will be identified with the linear
space g* itself by using the identity mapping on g* as a chart.
Then the cotangent space T %g* can be identified with the
Lie algebra g = g**; we shall also transfer the Lie-bracket
structure from g to 7 ¥g* by this identification. Let d f
€T %g* = g be the value at F of the exterior differential df of
feC = (g* R). A Poisson structure®® on g* is given by the
Poisson bracket

[fA1(F):= — F([drfdrh]), Feg*, fheC=(g*R).
(2.18)

This bracket [ £,51€C = (g*, R) satisfies all the properties of
the Poisson bracket on symplectic manifolds** (i.e., bilinear-
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ity, antisymmetry, derivation property, and Jacobi identity)
except nondegeneracy. It associates a unique Hamiltonian
vector field 4, on g* with any QeC ~ (g*,R) by the formula

df (Ag) : =[G, f], feC=(g*R). (2.19)

Let g be a diffeomorphism on g*, and let ¢ *: C(g*) —» C(g*)
be the “pullback™ of @, i.e., @ * f: = fop. Then g is called a
Poisson automorphism iff

p*fh]l=p*fp*h], fheC=(g*R).
Any Hamiltonian vector field generates a family of local

Poisson automorphisms @ ¢ determined by classical Hamil-
ton equations

%ﬁ(ﬂ=[Q,f.](F), Feg*, terp, fC=(g%),
(2.20)

where f, : = @ 2" £, and r; is an open neighborhood of zero
on the real axis. The vector field A, is complete iff - = R for
all Feg* iff @ forms a one-parameter group of Poisson auto-
morphisms: ¢ 2, ; = ¢ Zop 2 for all 5,z€R. For any compact
group G each 4, is complete. In any case we shall choose Q
such that 4, will be complete.

The algebra C(E) is generated by restrictions to E of the
linear functions f; (Beg) from (2.10). The Poisson bracket
of such functions is (since d. fz = B)

[fﬂyf:v](i') = —F([39X]) = _fig,)(](my B!XEQ'
(2.21)

The adjoint action Ad(G) is a Lie algebra automorphism
group*® of g, i.e., Ad(g) (geG) form a linear representation
with
Ad(g)[B.x] = [Ad(g)B,Ad(g)x], geG, Byeg
(2.22)

This implies that the coadjoint action Ad*(G) on g*,
Ad*(2)F(B) : = F(Ad(g™")B), Pes, 8<G, (2.23)

consists of a group of Poisson automorphisms leaving the
orbits

Ad*(G)F:=[Ad*(g)F: geG ] Cg* (2.24)

invariant. The restriction of the Poisson structure (2.18) to
any nondegenerate Ad*(G) orbit converts this orbit to a
symplectic manifold.>*** Any Hamiltonian flow ¢ ¢ leaves
the Ad*-orbits invariant.>®> Due to the G equivariance
(2.17b) of E,, the set E = supp E, is also left invariant by
any @ 2 Hence @ ¢° is an automorphism group of C(E)
that determines a unique *-automorphism group of .4~
= E,(C(E)).

Let us now introduce the cocycle g,. The @ 2invariance
of any Ad* orbit implies the existence of a function g,:
R X g* — G such that

@ &F) = Ad*g, (1 F))F, teR, Feg*. (2.25)

.We shall look for differentiable solutions of (2.25) with the

“cocycle property” *¢

gQ(s1¢tQ(F'))gQ(t)ﬂ =gQ(S+t’F)J gQ(09F) =6,
(2.26)
for all 5,zeR and all Feg*, with ¢ : = the identity of G. Let
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.9

BF: A

By differentiation of (2.25) in t = 0, and with the help of the
definition of the Ad(G)-representation as well of the com-

mutator in g,>>*> we then obtain
F([BE—d:Qx]) =0, for all yeg, Feg*. (2.28)

This implies that a necessary condition for the validity of
(2.25) is the fulfillment of the relation

B¢ =d:.Q+B%, Feg* (2.29)

where 8%¢g, is some of the generators of one-parameter
subgroups of the stationary subgroup G C G for the point F
at Ad*-representation: Ad*(exp(zB%))F= F (t€R), and
the dependence Fi— B Y is differentiable. By differentiation
of (2.26) one gets the differential equation on the group
manifold for g,:

go(t,F), Feg*. 2.27)

2 40P = T.(Ryyur) BR800 = e, (230)

for all Feg*, tR; here F,: = ¢ 2F, R; is the right action of G
onto itself: R, (h):=hg(gheG), and T,(f) maps
g=T,G into T, G for any differentiable mapping f:
G- Gby

T.()B:=|  flexpB)

Equation (2.30) is a finite-dimensional ordinary differential
equation for g,. The uniqueness of the solution of
(2.30),*47 with B¢ from (2.29), together with the unique-
ness of the solution @ 2 of (2.20), prove the fulfillment of
(2.25) as well as of (2.26) by the solution g, of (2.30). Let
us note that (2.30) can be rewritten [equivalently for faith-
ful U(G) ] with the help of a unitary representation U(G) as
a linear (time-dependent Schrodinger) equation for the uni-
tary family U (g, (¢,F)), cf. the notations (2.2) and (2.4):

(2.31)

i% Ulgo(6F) = X(dr,Q + B%)U(go (6F), (2.32)

with the initial condition U (g; (0,F)) = U(e). We shall see
in the following sections that the thermodynamic limits of
the local evolutions by the Hepp—Lieb Hamiltonians corre-
spond to the choice 8° = 0.

C. States and modifications

The algebra of observables € was defined in Definition
2.2 with the help of the limits (2.7) existing in the subspace
of H, determined by the projection P;. We can distinguish
two disjoint subsets of states on the C *-algebra .7: The sub-
set S, represented by nonzero vectors lying in P H,,, and the
subset S T represented by vectors in H, orthogonal to P H, .
The restriction to € C P, </ ** of the unique normal exten-
sion of weS,, to a state on o/ ** is a canonically defined (and
equally denoted) state weS(% ). The same procedure per-
formed with any weSY gives the zero function on ¥:
@(Pg) =0. Let us denote by S, also the subset of states on
% obtained from the corresponding states on ./ by the
above mentioned procedure; the states weS, CS(%') will be
called the 7;-normal states on % .28 It will be seen in the next
section that the thermodynamic limit of an arbitrary polyno-
mial mean-filed dynamics can be “naturally” defined in 7 -
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normal states only: The s*-topology used in (3.11) and
(3.13) is determined by the seminorms (3.5) defined by
states weS,. Any state w€S(.#') can be extended, however,
to a state on the C *-algebra ¢, since .7 is considered tobe a
C *-subalgebra of ¥ in a natural manner, cf. Definition 2.2.
Although the resulting time evolution 72 obtained in Sec. 111
by a thermodynamic limit is an automorphism group of %, it
might look “unnatural” to define by @, ( y) : = o(72( p))
the evolution in the states weS( % ) obtained by an extension
to ¢ of those states on . for which the limits corresponding
to (3.11) and (3.13) in the GNS representations do not ex-
ist. One of the most disturbing aspects of this unnaturality of
the definition of time evolution in “improper states” is the
apparent possibility of existence of such states weS(% ), in
which the evolution of intensive observables w,(E, ( fz)) is
not approximated by the nets @,(Xg,) (Jell) of time
evolved local approximations of Xg; = E, ( fp), cf. (2.12)
and (2.7). It will be shown here how to overcome this diffi-
culty by a choice of “proper extensions” of states on &/ (in-
cluding those in ) to states on . We shall restrict our
attention to pure states, since the w*-limits of them (resp. of
convex combinations of them) constitute the sets of all
states. First we describe the structure of pure states on .

Proposition 2.6: Let € be the C *-algebra generated by its
C *-subalgebras .« and .4, let /" be contained in the center
of &, and let € be isomorphic to the C *-tensor product
o ® 4. Then the state weS( %€ ) is pure iff

for all xe, ze At (2.33)

where the restrictions  , (resp. w ,-) of w to the subalgebra
&/ (resp. to.#") are both pure. If we write /" = E_(C(E))
for a Hausdorff compact E, cf. Lemma 2.1, then any pure
state w ,-€S(.4") is of the form

o (E,(f)=f(F,), feC(E), (2.34)

where F_,eE is a fixed point determined by the pure
weS(7 ) uniquely.

Proof: The first assertion is an immediate consequence
of Theorem 4.4 and Lemma 4.11 of Ref. 38, Chap. IV. The
second assertion is a simple consequence of the Riesz—Mar-
kov theorem (cf. Theorem IV.17 of Ref. 43): The pure states
on the commutative C *-algebra C(E) are described by the
Dirac measures 8: f+— 8p( f): =f (F), feC(E), on the
compact E. This gives (2.34). Q.E.D.

Identification of € with & ® 4" allows us to rewrite
(2.33) in the form v = w_, ® w_,. Hence to obtain a pure
extension weS(¥ ) of w , €S(.«/ ), one has to choose an arbi-
trary F,€FE, and the w - corresponding to F,, by (2.34). For
w ., €S,, there is, however, a unique “physically natural”
choice of @ ;- given by

o AE (fg)):= 1i5n 0., (Xg), Peg.

The formulas (2.33) and (2.35) determine the 7 ;-normal
extension of  ,, since pure states on commutative C *-alge-
bras are characters. We intend to define natural extensions
of pure states w_, €55 given formally by (2.33) and (2.35),
only by reinterpreting the circuit in (2.35). Before proceed-
ing in this way, let us mention possible modifications of the
interpretation of the formalism presented in this paper.
Remark 2.7: The essential tool in the definition of classi-

o(x2) =0, (X))o ;- (2),

(2.35)
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cal observables E_ ( fz) = Xg as well as of the algebra €,
and of the time evolution 72 (cf. Sec. III), is the existence of
the limits in (2.6) and (2.7). Those are limits of the nets
[Xgs: JEIT], where IT was taken to be the set of all finite
subsets of the countable set II directed by the set inclusion:
J< K if JCK, JKell. One can obtain a nontrival reinter-
pretation of the whole formalism by taking II to be a specific
directed subset of the naturally ordered set of all finite sub-
sets of I1. A choice of such a subset II might be connected
with some structure by which the set I1 could be endowed.
Let, e.g., the set I be endowed with the structure of the m-
dimensional lattice Z ™; then a natural choice of I1 is the set
of cubes in Z ™ centered at the origin. The limits in (2.6a)
then exist for a larger set S, of states weS(2/) than before, if
Jis taken there from such a conveniently chosen subset II of
the set of all finite subsets of I1; the projection P in (2.7)
would be then larger than before. Let, e.g., I1: = Z, and let
MI:=[(—m—m+1,...m—2m— 1,m): meZ_]; then
any product state @: = ® ., @, on & [w,eS, (L (H,))]
withw, , , = o, for all peZ (here H, , , is naturally identi-
fied with H, via the unitary mapping 4, 1,7, ) belongs to the
(newly defined) set S,; hence it is represented by a vector in
P.H, (withthe new P ). Such periodic states with minimal
period k larger than 1 did not belong to S, in the previous
case of the limits (2.6) taken for the next X, indexed by all
finite subsets J of I1. All the general formalism and results of
this paper remain unchanged after a redefinition of the set II
(and the corresponding redefinitions of the limits of the nets
with indices JeIT) in the above mentioned sense. The only
important change will be an increase of the projection P
from (2.7); hence an enlarged domain of applicability of 72
in a physically natural way.

Remark 2.8: Let us mention another possible reinterpre-
tation of limits of the nets indexed by JeII that could further
enlarge the projection PgeZ. Let # be an arbitrary directed
set and letJ: .# — I be such a mapping that to any Kell there
is an ixe# such that i > i implies J(/) DK. Then the net
[Xasiy 7€ ] is a subnet of the net [ Xg,: JeIT]. One could
require then only the existence of the limits

s;ii:p Xy PeZ, forall Beg (2.36)
instead of (2.6b), and define P, as the least upper bound in
Z of all the projections Pin (2.36). This kind of limit can be
used also in Sec. III in taking the thermodynamic limit of
77? defining the evolution 72

We shall now proceed to definitions of physically natu-
ral extensions of arbitrary pure states w ., €5(.27') to states on
z.

Proposition 2.9: Thereis asubnet [ Xy, ,,: ie.#, Beg] [#
is a directed set and J: i(€.# )—J (i) is as in Remark 2.8] of
the net [X,;: Jell, Beg] such that the formula

o, (E,(fp)):= l.g;p o, (Xgn), Bes, (2.37)
determines a unique pure state @ ,- on .4 = E (C(E)), for
an arbitrary pure state @, on /. The pure state weS(% )
determined from these w_, and the corresponding @ ,- by
(2.33) satisfies the relation
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o E, (@2 f3))= liierlpw(f?(XM,.) )), Beg teR;

(2.38)
here @ ¢ is determined in (2.20), and 7% *-aut ¥ is deter-
mined by (4.2) and (4.6) [in the present case }"(F)
: = Xy, for all FEE].

Proof: For any fixed Beg, the net [Xg,: Jell] is a uni-
formly bounded net in &/ ** (by the canonical inclusion of
& into ./ **). Since closed balls in .27 ** are compact in the
o-weak topology [i.e., in o(2/**, &/*) topology] by the
Banach-Alaoglu theorem (cf. Theorem IV.2 of Ref, 43),
and the association S—Xj, is linear, there is a subnet
[Xgsiy: 1e#, Beg] of [Xp, ] convergent in w*-topology of
M **,

*_|; —.

wie}lfmeB,(,-, =:Xz,e7. (2.39)
The belonging of the limits X,, to the center 2 of o7/ **
follows as in (2.6b). Since @, is pure, the right-hand side of
(2.37) determines a unique element F,_eg* which in turn
determines the pure state @

o (B (fg)):=F,(B):=w, (X ), Peg. (2.40)
Let us calculate the right-hand side of (2.38) for w given by
(2.33). The pure state weS(%¢') = S(C(E, o)) is concen-

trated on the one-point subset F,,€E in the sense that for any
feC(E, o) one has

WE, () =0, (f(F,)), FeC(EL). (2.41)

Applying this to FP): =o(gg '(tF)) (X, ) obtained
from (4.2), and by the use of (2.5), (2.37), (2.40), and
(2.25), one gets

i Q . =1 ~1 .
Igfn A2 Xgriy ) 1_511}1 @ (olgg '(LF,))(Xgy;y))

= 1‘1‘1}1 @ (X;y (Ad(gg '(,F,))B))

— F, (Ad(gg '(tF,))B)
= Ad*(gQ(t’Fw))Fw ( B)

=¢IQFm(ﬁ) =w/(Eg(¢t .fﬁ))’
(2.42)

since w ,-€S(C(E)) is given by the Dirac measure on E con-
centrated on F,,. Hence (2.38) is proved. Q.E.D.
One can show that the net [ Xj;: JeIl, Beg] has more
than one w*-cluster point in & ** [resp. in .¥ (g, .o/ **)—to
be more precise] for any of the specific choices of IT men-
tioned in Remark 2.7. This means that the choice of the
subnet [Xpg,,,:ie.#, Beg] in the last proposition is non-
unique, and there the described physically natural extension
weS(¢) of w, is nonunique as well. If we consider infinite
systems obtained by thermodynamic limits as mere conven-
ient approximations to large but finite physical systems, then
the above mentioned ambiguity can be interpreted as a con-
sequence of ambiguity in these kind of approximations.

Ilil. THE THERMODYNAMIC LIMIT OF LOCAL
EVOLUTIONS

Let [B;:j=1,2,..,dim G ] be a fixed basis of g, and a
polynomial QeC(g*,R) in the variables F;: = F(B;) begiv-
en. Let
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XE:=|K|Xy =Y m,(Xp),
peK

j=12,.,n:=dimG, Kell. (3.1)
Assume that an ordering of the multiplication of variables F;
in the polynomial Q(F,F,,....F,): = @Q(F) is prescribed in
such a way that the elements Q .7,

Q% : = |K|Q(Xx Xog > Xox ), Kell (3.2)

obtained by the substitution of X x for F; in Q(F), are all self-
adjoint: Q** = Q*. We define the one-parameter groups 7°
C *.aut .« of local time evolutions by

*(x) : = exp(itQ ¥)x exp( — itQ*), xeo, teR, (3.3)

for any finite KeIl. We are interested in a proof of the exis-
tence of suitably defined (thermodynamic) limits

72(x) : = (some topology)-lim 7¥(x), xe«, (3.4)
K

for K - I, with a general polynomial Q. A necessary prereg-
uisite for the existence of 72 for any Q is the existence of the
limits of X, ( Beg). We have seen, however, in Sec. I1 A
that X, cannot have a limit in ./, and weak limits for all the
Xgx’s in the algebra o/ ** exist only in the strong topology
generated by the states weS, CS, (& **): = the set of nor-
mal states on & **, for which the central covers c(r, ) are
majorized by PseZ, cf. (2.7). This topology (called here
also the s*-topology*?) is determined by the family of semi-
norms p,, and p¥ on &**, €S, : = P S, (A**),

Po(X) i =Jo(x*x), p*(x):=Jw(xx*), xed/**.
(3.5)

It is clear that on the subset of self-adjoint elements of .o **
the s*-topology coincides with the s-topology determined by
the seminorms p,, only. These topologies are Hausdorff on
the subalgebra P, o ** = 77, ()", and we shall work in
the framework of this von Neumann subalgebra of .o/**
identifying .« with 74 (&), cf. Definition 2.2.

Notation 3.1: Let [B;:j = 1,2,..,n: = dim G ] be a fixed
basis of g, and let cj; be the structure constants of g:

(B> B ] = ¢k Bm- (3.6)
Let X(B):=X; (Beg) with the norm |[X(B)| from
& (H). Let the polynomial Q be written in the form of linear
combination of p monomials of the maximal degree g with
the upper bound M>1 of the absolute values of the coeffi-
cients. Let us denote

(1) b:=max[1 + ||X(8))|:j= 1,2,..,n];
(ii) ¢ : = max[|ci |: jkom = 1,2,..,n];
(iil) ay : = max[nc, 2|K |6 ], KelI;

(iv) b(x) : = max[b,||x||], xe;

(v) BX .= o®U[Xp,: Beg, Lell].

We shall also use for multiple commutators in <7,

[px]m+ D= p[px]],

[yx]@:=x, [px]:i=px—xp.

For the generators X § we then have the relation,
[XK X =icp X5, Kell, jk(m)=12..n. (3.8)
By multiple use of this formula, and by recursive calcula-

3.7)
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tions of degrees and numbers of monomials in variables X ,K ,
and variables [X,{,[X’z,...,[Xj’,,x] 1] (xex’) and
[X5[XEKn[X5X]"*]] (LelD) occurring in the
multiple commutator [Q X,x]™, one obtains from elemen-
tary properties of the norm [cf. Lemma 6.2.4 in Ref. 25(a) ]
the following lemma.

Lemma 3.2: Let JeIl, xeB”’, Kell, and let m be any
positive integer. Then the following estimate is valid:

N[Q* X1 < [b(x)/q)(m — 1)!(Mpg’b*~'a;)",
(3.9)
where Notation 3.1 was used.
Now we can prove existence of the limits in (3.4) for
small z depending on the choice of xe.«.
Lemma 3.3: Let ry: = (Mpg®ba, ) "' (Kell), and let
|¢|<r;, xeB” for any fixed jeIl.

(i) The sum
= 3 T grypem (3.10)
m=0 m!

is convergent in norm in 7, and the convergence is uniform
on the Cartesian product of the sets [K: Kell], [#: ]2]<r,],
and [xeB": ||x||<a] with any geR , .

(ii) The following limit exists in P; .o/ **:

72(x): =s"‘~li’1(n & (x). 3.11)

Proof: (i) is a consequence of the estimate (3.9) which is
independent of KeII and the corresponding majorizing pow-
er series is uniformly convergent on the Cartesian product of
the three sets as stated in the assertion.

The uniform boundedness in KeII of the multiple com-
mutators in the right-hand side of (3.10) together with (2.7)
and (3.1) imply the existence of

s*lim [Q%x] "™ePy o/ *+.
K

This fact combined with assertion (i) leads to (ii). Q.E.D.

Proposition 3.4: The restriction to .7 of the mappings
72 from (3.11) for real ¢, |t |<7,, are *-homomorphisms of
&7 into €7 [cf. Definition 2.2(i}].

Proof’ The mappings 7~ are inner automorphisms of <7,
and their canonical extensions to </ ** leave elements of &
(hence also P;;) invariant, so that 7% can be considered as
inner automorphisms of P; .« **. The properties of the s*-
convergence*>***° imply then that 7¢ are *-homomor-
phisms of &7 = 7 (") into Pz.o/ **. Each multiple com-
mutator [Q*x]" (xea/’, KDJ) is a polynomial in the
variables Xg,, and in some of the variables of the form
[Xfl, [Xj’z,..., [Xf,x] ] ]e.r/’ which are independent of
K. The strong limits of X, are elements of 4", cf. (2.7) and
Definition 2.2 (i). Hence the sums of the norm-convergent
series

2y = 3 Y solim (@5x]™, xewr?,  (3.12)
m=0 m' X
are elements of %7 Q.E.D.

Proposition 3.5: Let |t |<r, (: =r; with [J| =1), reR.
The limits

AE,(f3)): = s*-lim ™2(Xg ), Peg, (3.13)
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exist in .#” and have a unique extension to the *-automor-
phism group 7€ of .#" given by the formula

TAE (N =E (92" f), feC(E),

where @ € is the Hamiltonian flow on g* generated by the
Hamiltonian function Q. 7€ is strongly continuous on /",

Proof: Let us calculate the right-hand side of (3.13) ex-
plicitly. Let [ Q, f ] be the Poisson bracket on g* (2.18), and
let

[Q’f](m+l):= [Q9[Q7f](’")]:
First, we intend to prove the equality
=E ([Q./s])

for all meZ_, Peg. Using the Lie algebra representation
property (with LCK),

[X5 X ] =iXige, Bxes, (3.16)
and the relation (2.21) as well as (2.7) and (2.9), we obtain

X1 =E,([f3: /1) Boxea.

3.17)

(3.14)

(0. f19: =1

™ s*-lim s*-lim [Q %X, 1™ (3.15)
L K

s*-lim s*-lim i[ X &,
L K

Since Q1is a polynomial in f; (Beg), one obtains (3.15) with
a help of the algebraic properties (i.e., bilinearity, antisym-
metry, derivation property, and fulfillment of the Jacobi
identity) of both the commutators and the Poisson brackets
as well as due to the morphism properties of the mapping E,
from (2.11). Then the norm convergence in (3.10), the
properties of the s*-convergence, the equality (3.15), and
the norm continuity of the mapping E, give, for small €R,

AE, )= 3 B ([0/3]™)

-£(3 104 1) = B, (),

(3.18)
where
fa = 3 (0.1 (). (3.19)
m=40 .
It is easily seen that f,, satisfies (2.20), hence f3, = @ 2* ;.

The morphism and continuity properties of the mappings
2* and E, on C(E) generated by fp (Beg) imply the exten-
sion of (3.18) to (3.14) for short times 7. The group property
of @2 C*-aut C(E) together with the fact that E,:
C(E) -/ is an isomorphism, prove that there is a unique
one-parameter group 7¢ such that (3.14) is valid for all zeR.
The strong continuity of 7¢ on .#" is a consequence of the
uniform continuity on compacts of the flow ¢2,***" since
E = supp E, is compact. Q.E.D.
The proposition gives a natural extension of the family
of mappings 7% &7’ - %7 of Proposition 3.4 to an evolution
group of the algebra .#” of classical observables. Further ex-
tension of 72 leads to the following theorem, which is the
main result of this section.
Theorem 3.6: There is a unique C*-automorphism
group 72 = [72 reR] of ¥ extending the mappings 72 of
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Proposition 3.4 as well as of Proposition 3.5. The group 7€ is
strongly continuous on %, and the restrictions of 79 to
&’ ( Jell) are one-parameter automorphism groups of the
C *-subalgebras "’ of €.

Proof: Let us choose any JeIl, and let | | <r; for a given
teR. Then we can apply Lemma 2.3 with & replaced by
&’, 7, replaced by 72 of Proposition 3.4, and 7, substituted
by 72 of Proposition 3.5. By a simultaneous use of the struc-
ture of € according to definition 2.2 as well as of the map-
ping from Lemma 2.4, we obtain a unique homomorphism
72 €7’ - ¢’ extending those of Propositions 3.4 and 3.5. We
shall now prove the group property of these *-homomor-
phisms 7€ of €7 for small real ¢ (invertibility of 7€ will then
also be proved in this way), i.e.,

=Tg(7'g()’)): ye(gj’ max(|tl|’ ‘t2‘) <i ry.
(3.20)

Tt?+ I3 )

Due to the structure of %7, it is sufficient to prove (3.20) for
the elements of the form y=xz xeo’,ze/". But
2(xz) = 72(x)72(z), and the restriction of 7¢ to .#" satis-
fies (3.20). Hence it is sufficient to prove (3.20) for
y=xeol’.

We shall first prove the equality

Tf(s*-ligl rg(x)) = s*-lilr<n (i (x)). (3.21)
(Remember that we have not proved the s*-s*-continuity of
the morphism 7% ¥’ %”.) By considering that Q is a
polynomial, that the product in P .o/ ** is s*-continuous on
bounded sets, and by repeated use of (2.7), (3.13), (3.14),
as well as of the morphism property of 72, one obtains

T,(f(s*-lim[QK,x] ('"’) = s*-lilr<n 2([@5x]1) . (3.22)
K

The equality (3.21) is obtained from (3.22) by the uniform
norm convergence in (3.10) as well as by the norm continu-
ity of 72.

Since 75 (x)eB’ for all xe.o/ 7 and all Kell, we can apply
Lemma 3.3 to obtain

s*-lim 72(7f (x))
K
= s*-lim s*-lim Tﬁ (”f (X))
K L
- , k ¢ m
_ s*-hm s*-hm (ltl ) (lt2 )

Lkmok! m'

X[@5IQ%x]™] .

(3.23)

The estimate of the form (3.9) with m replaced by m + kon
the right-hand side can be proved for the multiple commuta-
tors in (3.23) in the same way as in Lemma 3.2. Hence the
sum in (3.23) converges in norm uniformly in L, KeII. Con-
sidering again the specific structure of @ and @ and the
s*-continuity of the algebraic product on bounded sets, we
can set L = K in (3.23) and obtain
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(e (x)) = -li‘r(nv'f(rg(x))

(ltl) (lt2 )"'

= s*-lim i

K km=0

[@Fx}m+®

S ()" k)
= g%l
s llr(nkz_o 0 =127 [ig¥x]

(3.24)

where the last equiality is valid according to Lemma 3.3. This
proves the group property (3.20) for small t€R, hence, since
such 7€ are defined on the whole %7, 7¢ can be uniquely
extended to an automorphism group 72 C*-aut%” for any
JeIl, and these in turn have a unique extension to
2C *.aut € due to norm continuity of any 7¢ (determined
now on the union of all €, JeIl, for any fixed teR).
The strong continuity of the group 72 means

=7':,+zz (x),

=0, forallye¥? . (3.25)

lim}}72() — |
For ye.’ (JeIl) the validity of (3.25) follows from the uni-
form convergence in (3.12), and this together with norm
continuity of any morphism 72 implies (3.25) for all ye.os.
The strong continuity of the restriction of 7¢ to ./~ was
proved in Proposition 3.5, and the continuity (3.25) for gen-
eral elements ye% can be obtained easily from that for
y=xz,xed,zeN". Q.E.D.

Let us calculate the infinitesimal generator of
72 C*-aut %,*8 i.e., the derivation®®*® §, of 72,

(3.26)

8o(y): =nlim % (r2) ), yeD(Sy) .

where D(8, ) is the domain of 85, and the limit is taken in
the norm of %, cf. Ref. 28, Consequence 3.1.8. The explicit
form of §, obtained in the next proposition will enable us to
prove in Sec. IV an explicit expression for the time-evolved
element 72(y) for an arbitrary ye% .

Proposition 3.7: Let 8, be the infinitesimal generator of
rQ, and let yeD(8,) be of the form y = E, (/') for some
JEC(E, o), JeIl. Then the element 8, ( y)e% is expressed
by the formula

8olE, ()= f (i[X’(dFQx}m ]

+ $ SAPIOEIP)E @R, (2
=

where the first square bracket is the commutator in /7, the
symbol [Q,F; ] (F) denotes the Poisson bracket of the func-
tions Q and F;: F—F(f;) on g* in the point Feg*, and
6,f (F) is the value of the partial derivative of f with respect
to the component F; of Fin the point F.

Proof: The formula (3.12) is valid for all xeB’; by its
differentiation at ¢ = O one obtains
x€B’,

Jell . (3.28)

8o (x) = s*-lim [iQ*x],
X
The derivation property of the commutator, the polynomial
form of Q as well as the formulas (2.7) and (2.12), lead for
xe” to
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8y (x) —12 E, (5,0)[X]x)

=i (X018, @, (329)

where &, Q is the partial derivative with respect to F}.

The vector field A, is the derivation of the strongly con-
tinuous (cf. Proposition 3.5) antomorphism group @ 2* of
C(E) introduced by (2.20). Let D(4,) be the domain of
Ao By the norm continuity of the mapping E, from (2.11),
we obtain from (2.19)

Combiningﬁ(3.29) vs:ith (3.30), one obtains (3.27) for ele-
ments E ( f) with f: =2 x,f, for any finite number of
x €, f1€D(Ay). Let Z (E) CC(E) be the set of polyno-
mials in f; (Beg). The cansiderations leading to (3.18)

show that f;’s are analytic elements®® for 4,,. Since analytic
elements of any derivation on an algebra form a subalgebra
and §, is bounded on & 7 accoridng to (3 29), cf. also
Lemma 3.3, the set €3 of elements E, ( F) of €7 with
Fi= 2xf [xed’, fLeP (E)) formsanorm dense sub-
set of %7 of analytic elements for &y which is §,, invariant:

8o,%$C €+ . The union of all the €7 (JeIl) is then a §,-
invariant norm-dense subset of %’ consisting of analytic ele-
ments for §,,. Let this union be denoted by € ». According
t03.1.20 of Ref. 28, € p is acore for §,. Then the expression
(3.27) is valid for all E, (f)e‘g,,,

5Q(Eg (Zx/ %))
= zk: (0o (xi)E, (fi) +xE ([Qfe]))

(3.30)

-3E, (z (6,0 [Xx0 1f +xk6Jk[Q,E])),

x e’ . (3.31)
The closedness of 5, now gives the result, since the operator
in (3.27) of the form

S[Q.F16;: D(Ag) +C(E, )
J

is just an alternative form of the derivation 4, of @ ©* on
C(E,«'). Q.E.D.

Remark 3.8: The notation 2, [ Q,F; 6, for A, is unam-
biguous on the set of continuously differentiable functions
C(E). For a general feD(Ay) the symbol Z,[Q,F;]6;
should be understood as the directional derivative in the di-
rection of A, (given by the vector components [ Q,F; ] in the
basis [§;:j = 1,2,...,n] of Trg*) at any noncritical point F,
i.e., Feg* in which dQ 0. For any critical F, d.Q = 0, the
value of A, f=[Q, fleC(E) is taken to be zero,
[Q,f1(F) : =0, for all feD(A,). The domain D(44) con-
sists of such feC(E), for which the mentioned directional
derivative can be continuously extended to the whole E with
zero values at critical points.
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IV. THE DYNAMICS OF GENERALIZED MEAN-FIELD
MODELS

Let & be an arbitrary C*-algebra, and let
o(G) C*-aut o be a strongly continuous representation of
aconnected Lie group G. Let E; be a projection-valued mea-
sure on g* with values in the center & of o** [identified
with 7, (/)" as before]. Assume that E; is G equivariant,
ie.,

o(g)(E,(B)) = E,(Ad*(g)B), gcG, Borel BCg*,

4.1)

and that the representation 7, (/) E, (B) of .« is faithful
for any open BCsupp E,.Set P; : = E_ (g*). Let us assume,
moreover, that E: =supp E, is compact and contains at
least one nontrivial (i.e., of a positive dimension ) orbit of the
Ad*-representation of G. We shall identify o/ with 7 (&)
as in preceding sections.

Let QeC ~(g*,R), and g, be a differentiable function
satisfying (2.25) and (2.26), or equivalently, g, is the solu-
tion of (2.30) with 8¢ from (2.29). Let C(E,«) and
ANt = E (C(E)) be as in Definition 2.2.

Propos:tton 4.1: Let feC(E &), teR. The function
Fo .+ E— o/ determined by

YAGE a(gQ"(t,F))(f(rp °F)), Feg*, (42)

is norm continuous: f €C(E,«/). The mappings
JS—f, (zeR) form a one-parameter group of *-automor-
phisms of C(E, <),

(}',)s =}’,+s, for all £,5eR , (4.3)
and this group is strongly continuous,

lim ||f, —f|| =0, feC(E, o). (4.4)

t-0

Proof: The support ECg* of E, is left invariant by
Ad*(G) transformations due to (4.1), hence E is also @<
invariant. The differentiability of @© and g, on RX g*, and
the strong continuity of o(G) together with the norm conti-
nuity of each o(g)e*-aut o7, lead to the continuity of
Faie. F ,€C(E, ). If we consider, in addition to the listed
continuity properties, the compactness of supp E;, we ob-
tain (4.4). L.

The morphism properties of the mapping f—f, of the
C *-algebra C(E, o) into itself are due to morphism proper-
ties of @ *e*-aut C(E, .« ), the morphism properties of each
o(g)€*-aut 7, as well as the pointwise character of algebra-
ic operations in C(E,« ), e.g., (f,fz) (F): f,(F)fz(F)

The group property (4.3) is obtained from the group
property of the flow g2, from the cocycle property (2.26),
as well as from the group representation property of o(g),

0(8.8;) = 0(g,)°0(8,), £1,8:5G. (4.5)

The group property implies invertibility. This shows that the
considered mappings f— f, form a strongly continuous one-
parameter group of *-automorphisms of C(E,«/'). Q.E.D.

The assumptions of this section left the conditions of
validity of Proposition 2.5 unchanged. Let & be given as in
definition 2.2. The following theorem is an immediate conse-
quence of Propositions 4.1 and 2.5.
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Theorem 4.2: the mappings 72 € — % (€R) deter-
mined by

9E,(f)):=E,(f,), fC(E.), wR, (4.6)

form a strongly continuous one-parameter group of *-auto-
morphisms of the C *-algebra €.

Proof: The morphism and continuity properties of the
automorphism group of Proposition 4.1 are conserved by the
*-.isomorphism E,: C(E,« ) — % of Proposition 2.5.

QE.D.

Proposition 4.3: Let o(G) be locally faithful, i.e., the
kernel (heG: o(h) = o(e)] is discrete. Assume that 8o sat-
isfies (2.26). If the function

F(eE)—algg '(4,P)(x), teR, xeo , (4.7)

are all constant, then By: = B ¢ from (2.27) is a constant in
g- Hence the restriction of Q to any Ad*-orbit in E is identi-
cal to the restriction of the linear function Q(F): =F(B,),
Feg*, up to an additive constant.

Proof: The constancy of (4.7) together with (2.26) im-
ply that the function t—0o(g, (¢t,F))e*-aut «/ is a one-pa-
rameter group independent of F. There is an isomorphism of
g onto one-parameter subgroups of o(G) due to the local
faithfulness; hence ofg, (1,F)) = olexp(18,)) for some
Bo€g. The continuity of g0 in F, the continuity of 0(G), and
the boundary condition g, (0,F) = ¢ imply B¢ =B, (for
all FeE), so that d.Q = B, — B, according to (2.29). The
differentials drf, (yeg) of the functions f, (F): = F(y)
contain a basis of the cotangent space to the Ad*-orbit
through any FeE. Hence any function Q° on the orbit with
zero Poisson brackets [Q°, J¢ 1 = 0for all yeg on the orbit
equals a constant function on the orbit,

Q°Ad*(g)F) = Q°(F), for all geG.
We have for the Q used in the definition of 8o in (4.7),
— (@ 1(F) =F([deQdrf, ])

=F([Bo —B#x]) =F([Bo:x])s xes,
since F( [B x]) =0 (Feg*, yeg) due to the definition of
B, cf. the text below (2.29). Hence [Q,f 1= [Q,fx] for
all yeg, and the restriction of Q%: = Q — Q toany Ad*-orbit
in E is a constant function. Q.E.D.
Corollary 4.4: Let o(G) be locally faithful, and let 8o be
as above. The one-parameter group 79 from (4.6) leaves the
C *-algebra o/ invariant: 78 (/) = o, iff

Q(Ad*(g)F) = Ad*(§)F(B,) + Q°(F), for all geG,
(4.8)

for some B, g, and some Q °eC= (E) constant on the orbits
of Ad*(G) lying in E, and d.Q°= —BY (FeE), cf.
(2.29).

Proof: The 72 invariance of < means the constancy of
all the functions in (4.7), as is seen from (4.2) and (4.6),
and from the identity of .« with the E, image of constant
functions in C(E, ). The necessity of (4 8) for this invar-
iance was proved in Proposition 4.3. Assuming (4.8), one
obtains from (2.29): 8¢ = B,,, and the unique solution 8o of

(2.30) is independent on the parameter Feg*:
8o (LF) = exp(tBQ) The constancy in (4.7) is now clear.
Q.E.D.
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Let us now derive the explicit form of the derivation §,
of the automorphism group 7 introduced in this section.

Proposition 4.5: Let 6, () (Beg) be the derivation of
the strongly continuous  one-parameter  group
t—olexp(#8)) of automorphisms of =7, and let A, be the
derivation of the strongly continuous one-parameter group
@ ®* of automorphisms of the C *-algebra C(E, /), in the
notation of Sec. III. Let 72 C*-aut & be given by (4.6).
Then the infinitesimal generator (i.e., the derivation ) of 7%is
expressed by the formula

8o(E, (F)) = f (AGHE) — 8, (B JUP)E, (dF) ,

E,(f)eD(8,) , (4.9)

where B € (FeE) is given in (2.29), and D(6y) is the do-
main of the derivation &,.

Proof: Due to normAcontinuity of the mapping E,, it
suffices to prove that for feE .~ (D(8,)) one has

Al 7 = Ak — 6, (BYJF)), for FeE,

dtii=o
(4.10)

where the derivative should be taken in the norm topology of
2/ (and uniformly in FeE). By differentiation of (4.2) at
t =0, we obtain

4 s m=2] Koo

dt :=oft(F)—dt';=of(¢tF)
L g PN, (AD)
dtli-o

The first term on the right-hand-side of (4.11) gives the first
term on the right-hand side of (4.10), which is an immediate
consequence of the definition of A,. We can write according
to Remark 3.8,

AoftP) = }_: [Q.F1(F) 8/(F) .

The second term on the right-hand side of (4.11) is the de-
rivative of the composite function ¢r>0(g,(¢)) with
8 : =gg ' at any fixed FEE. The derivative of # gy ' (1,F)
is, according to (2.27), equal to — B Zeg. The derivative of
g—0o(g) at g = e is the linear mapping &, from the tangent
space g to G at the identity e to (in general unbounded)
derivations 8, () (Beg) on the C *-algebra .. The compo-
sition of these two differentiations gives the second term on
the right-hand side of (4.10). This result can be obtained ina
more explicit way by introduction of normal coordinates on
a neighborhood of the identity of G. Q.E.D.

Corollary 4.6: Let o/ and 0(G) be defined as in Sec. II.
Let 72 of (4.2) and (4.6) correspond to S € = dQ (Feg*)
for any differentiable QeC(E). Then the vglue of the
derivation 8, from (4.9) taken for feC(E, o)
NE; Y{D(8,)) (JeII) can be written in the form (3.27).

Proof: The first term in the right-hand side of (4.9) can
be written in the form of the second term on the right-hand
side of (3.27), in accordance with (4.12). The linearity of §,,
as well as an explicit expression of B € give us

(4.12)

5,(BD)(x) =3 §,0(F 6,B)(x), xed’.  (413)

=
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The derivations 6, (B) (Beg) are easily calculated from
(2.1) and (2.2). For xe«’ one has

8,(B) (x) = — il X (B).x] . (4.14)

Insertion of the obtained expressions into (4.9) gives (3.27).
Q.E.D.

According to the Hille-Yosida theorem,?® a continuous
one-parameter group 7¢ of automorphisms of a C *-algebra
% is determined uniquely by determination of its generator
&, on some of its cores in ¢ . Hence the preceding corollary
shows that the set of evolution groups 72 on % defined in
this section contains the subset of evolutions obtained in Sec.
III as thermodynamic limits of local Hamiltonian evolu-
tions. The specification of the general case to the models
considered in Sec. I1I consists of (i) substitution for .« of
the infinite tensor product C *-algebra ® ,.;; - (H,) deter-
mined in Sec. II; (ii) choice of ¢(G) in the form (2.1) with a
norm-continuous unitary representation U(G); (iii) taking
B9 :=0 (for all FEE) in (2.29); and (iv) the choice of
QeC(E) to be a polynomial in variables F,:= F(5;),
j=12,..,n=dimG.

A general discussion of equilibrium thermodynamics of
the considered models, and an analysis of specific simple
examples is supposed to be published in forthcoming papers,
cf. also Ref. 25(a).
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A theorem is presented on the location of the essential spectrum of certain intermediate
Hamiltonians used to construct lower bounds to bound-state energies of multiparticle atomic
and molecular systems. This result is an analog of the Hunziker—-Van Winter—Zhislin theorem
for exact Hamiltonians, which implies that the continuum of an N-electron system begins at
the ground-state energy for the corresponding system with N — 1 electrons. The work
presented here strengthens earlier results of Beattie [SIAM J. Math. Anal. 16, 492 (1985)] in
that one may now consider Hamiltonians restricted to the symmetry subspaces appropriate to
the permutational symmetry required by the Pauli exclusion principle, or to other physically
relevant symmetry subspaces. The associated convergence theory is also given, guaranteeing

that all bound-state energies can be approximated from below with arbitrary accuracy.

I. INTRODUCTION

Variational techniques for obtaining upper bounds to
eigenvalues of a multiparticle Hamiltonian H are well devel-
oped and can often yield quite accurate estimates to eigen-
values of interest. However, upper bounds alone cannot pro-
vide complete estimates of the error in the approximations to
the eigenvalues. To do this one must bracket the eigenvalues
of interest by also computing complementary lower bounds.

In general, the computational effort is greater for lower-
bound estimation, and the related analysis more subtle, than
that required in standard approaches for upper-bound esti-
mation (such as Hartree—-Fock and configuration interac-
tion methods). Furthermore, lower-bound procedures
usually require some form of additional a priori spectral in-
formation. For example, Temple’s inequality™? can often
yield a reasonably tight lower bound to a particular eigenval-
ue provided that the eigenvalue of interest can be explicitly
isolated from the next larger eigenvalue, which requires a
good estimate on the next eigenvalue. Such needs for a priori
spectral information often become problematic in practical
circumstance. The method that we consider here, the meth-
od of intermediate Hamiltonians, has by contrast fairly re-
laxed requirements for a priori information, though effective
use of this information may offer distinct computational
challenges.

The method of intermediate Hamiltonians was used
with great success by Bazley and Fox*> to obtain lower
bounds to He, and by Hill’ to prove that H ~ has only one
bound state. Extensions to three-electron problems proved
more difficult, although some results have been obtained.®*"*
This method requires a decomposition of the self-adjoint op-
erator H as H, + H, where information on the discrete spec-
trum of H, is explicitly available and H is a symmetric posi-
tive-definite operator (i.e., H>0). Those eigenvalues of H,,
that lie below the infimum of the essential spectrum of H
[i.e., the bottom of the continuum, denoted here as . (H) ]
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are lower bounds to the corresponding eigenvalues of H. Be-
cause these bounds invariably tend to be quite crude, one
seeks improved bounds by carefully approximating H# from
below (in the sense of quadratic forms). As originally con-
ceived, this was done with an increasing chain of positive
semidefinite finite-rank operators. The resulting problem
was equivalent to the evaluation of the spectrum of a degen-
erately perturbed operator with known spectrum.'? A de-
tailed discussion of intermediate operator methods can be
found in Refs. 13-15.

The principal difficulty in applying standard intermedi-
ate operator techniques to multiparticle Hamiltonians is that
the lowest point of the essential spectrum of the base opera-

‘tor, A. (H,), often lies below the lowest eigenvalue of H.

Since finite-rank approximations to H produce compact per-
turbations of H, that leave the essential spectrum of H; un-
perturbed, the method as originally developed in Refs. 4 and
5 cannot yield convergent lower bounds. Fox'® developed a
modification of the standard intermediate operator ap-
proach utilizing noncompact perturbations of the base oper-
ator H,, yet retaining the critical property of producing com-
putationally resolvable intermediate operators. Recently
Beattie!” showed that a variant of Fox’s construction yields
intermediate Hamiltonians for which A. (H,) can be made
arbitrarily close to A. (H), the lowest point of the essential
spectrum of the exact Hamiltonian. This allows, at least in
principle, tight lower bounds to all eigenvalues of the Hamil-
tonian. These results were obtained for the full Hamiltonian
operator without considering the permutational symmetries
of the system. In calculations for real atomic and molecular
systems, one wants to consider Hamiltonians that are re-
stricted to appropriate symmetry subspaces so that the Pauli
exclusion principle is satisfied. In this paper we show that the
results of Ref. 17 can be extended to such symmetry-restrict-
ed Hamiltonians. The crucial point is to extend Beattie’s
analog of the Hunziker-Van Winter-Zhislin (HVZ)
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theorem to intermediate Hamiltonians restricted to appro-
priate symmetry subspaces.

In addition, we discuss extensions to systems containing
several species of identical particles, and to molecular sys-
tems. Finally, we show that the lower bounds obtained via
this construction converge to the exact eigenvalues of H.
Thus all bound states of H can, at least in principle, be ap-
proximated from below with arbitrary accuracy.

The behavior of a single particle with spin s is described
by a Hamiltonian operator acting on a suitable dense subset
of the Hilbert space #° = L?(R?) ® C>**'. For real elec-
trons, which have two spin states, we have 77

= L ?(R®) ® C2. The Hamiltonian for N identical particles
then acts on an appropriate subspace of

HN=HRHSH IS @K,

i.e., the tensor product of N copies of 7. If the particles are
bosons (s = integer), the N-particle Hamiltonian must be
restricted to the symmetric subspace of 7", which we de-
note as & . If the particles are fermions (s = half-in-
teger), the N-particle Hamiltonian must be restricted to the
antisymmetric subspace of &, which we denote as ™ .

The multiparticle Hamiltonians that we consider have
the form

N
HN=2[_Ai+W(ri)]+ZV(ri_rj)’ (1)
i=1 i<j

where A, is the three-dimensional Laplacian acting on co-
ordinates of the ith particle, and W and V are suitable poten-
tial functions. The restriction of Hy to ™% or Y will be
denoted H, . or Hy _ , respectively. For N electrons in the
field of a fixed nucleus of charge Z, W(r) = — Z/r and
V(r) = 1/r, where r = [r|. For molecular systems with M
fixed nuclei of charge Z,,...,Z,, at positions R,...,R,,,

M _ ZJ 1
W(r) = Z —_—— _ and W(r)= —.
= [r—Ry| r
In the molecular case, tractable intermediate Hamiltonians
appear to exist only for homonuclear diatomic molecules, in
which case the Schrédinger equation for the Hamiltonian

h= —A~Z/[r—R,| —Z/|r—R,|

can be solved exactly.

We require that the potentials in both the atomic and
fixed-nuclei molecular cases satisfy conditions sufficient to
assure convergent spectral approximations, as follows:

(a) W and VeL*(R?) + [L~(R%)],,
(b) V>0 almost everywhere in R®,

(c) the self-adjoint operator corresponding to
h= — A+ W is bounded below and has as its
spectrum negative eigenvalues of finite multiplic-
ity, and essential spectrum [0, 0 ).

Although practical applications generally require that A4
actually have some negative eigenvalues, the analysis re-
mains valid if some 4, possesses only essential spectrum
[0,00).

(In the case of diatomic molecules with finite nuclear
mass, for example, it might actually be useful to consider
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h; = — A,;>0; unfortunately, other difficulties prevent us
from extending these techniques to molecular systems with
finite nuclear mass at present. In the extension to several
species of identical particles discussed at the end of Sec. IV,
the charge of all particles must have the same sign.)

il. INTERMEDIATE HAMILTONIANS

Following earlier work, we consider intermediate Ham-
iltonians that can be expressed in the form

N
HP =S hi"+ 30, (2)
i=1 i<j
where 4 {* and ] denote, respectively, approximations to
h;= —A; + W(r;) and V(r; —r;) having the following
key properties.

(i) The approximation A% has the form
Tio + Ak, (WE,', where A, (h) is the kth
eigenvalueof s = — A + W(r), E, is the orthogo-
nal projection onto the span of the eigenspaces cor-
responding to eigenvalues A,,.., A, of &
E,' =I— E,, T,, is symmetric and has finite rank
(k+a) with range denoted TI,,, and
Tio + i1 (WE <h in the sense of quadratic
forms.

(ii) The approximation v has finite rank with range
11, ® I1, for some explicitly known S-dimensional
space II; C#°, and v‘g < V(r; —r;) in the sense of
quadratic forms.

[Although the analysis in Ref. 17 is given for operators on
L?(R®), it can readily be extended to operators on
& =L*(R*)@C**'. However, we note the following
changes in notation:

nok, A2-hE,+ A, ,(W)E.",

Ao—=h, AJ-[h—Ar (W]ES,

Ak (h), AZ+A30°=T + A, (W,

U, ~E.5¢, Span,{d3q,}-[h—A:, (W)]E’ Q,,

Aij—’ V(l‘i —l'j)9 AUPB_’UB

i
HB"')HB, %k VSpana{quv}%Fka.]

The construction of T, depends on the spectral resolution
of & and the choice of a finite-dimensional subspace
0, Cz

Ty =hE, +[h—A,,  (W]E Q",

where Q % is a nonorthogonal projection operator with range
Q, and kernel {[# — A, ., (h) ] E,'Q°}". The approxima-
tion v} is defined similarly as ¥(r, —r;)R %5, where R% is a
nonorthogonal projection with range A% and kernel
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{V(r; —r;,)AZ}H. A more complete description and analysis
may be found in Refs. 16-18.

Define the subspace .#*** =T, V I14. Notice that for
a simple two-particle intermediate Hamiltonian given by
HiP=h+h}*+v], a full set of explicit reducing
spaces may be constructed as #*Pe. w*b, _a**
® [aﬂkaﬁ]l, [jkaﬁ]le./”kaﬁ’ and [/kaﬁ]i ® [.//kaB]l.
Itis not hard to see that on the last subspace, H 5*® reduces to
a scalar multiple of the identity J, while on the first subspace
it is essentially a matrix operator. On the remaining two sub-
spaces, H 4*#is effectively a direct product of a matrix opera-
tor and a scalar multiple of /. This means that the spectrum
of H 4*# can be computed explicitly through a matrix diago-
nalization. However, these subspaces will not be reducing
subspaces for H 5% . To obtain reducing subspaces with the
correct permutational symmetry, the first and last subspaces
above must be replaced by their symmetric or antisymmetric
components, while the middle two spaces must be replaced
by

‘z/‘éﬁl,’i =jkaﬁ® [jkaﬂ]l j‘_’ [lkaﬁll®/kuﬂ.

The construction of reducing subspaces in the N-parti-

cle case follows a similar pattern. To construct reducing sub-
spaces for H ’,‘v" 5 welet

&N y (3)

.....

descnbe a subspace of N with
N =M, if iel€,,...E ),
and
N = [M*P], if g8, )
If permutational symmetry is not considered, then ¥t £,

not be a reducing subspace for the symmetry restricted in-
termediate Hamiltonians H 32 . Therefore we now define

kaﬁ kap
‘Z/ B & @ 7//‘51--‘-‘5, ’

ie, X¥lis the span of the unions of all subspaces of the
form (3) w1th exactly r copies of .#**? and N — r copies of
[#*B]' Let #'3# . denote the symmetric and antisym-
metric subspaces of 7 5. Then ¥ {*? , is a reducing sub-
space for H 5 for all ’, and

N

L= @ XN (4)

r=

I

Iil. LOCATION OF ESSENTIAL SPECTRUM

Let A.(A4) =info,,(A) and A,(4) =inf o(A4). For
Hamiltonians of the form (1), the celebrated HVZ
theorem'® is equivalent to the statement

A. (HN) =/11(H1v— 1 ),
i.e., the essential spectrum of the Hamiltonian of NV particles
in the field of a fixed nucleus (or several fixed nuclei) begins
at the lowest eigenvalue of the corresponding system with

N — 1 particles. In the case of symmetry-restricted Hamilto-
nians, Hy . , this result becomes

A‘(HN,i ) =A’1(HN-—1,:1: ) .
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Beattie!” gave an analogous formula for intermediate Hamil-
tonians without symmetry restrictions. The extension of
Beattie’s formula to symmetry-restricted intermediate
Hamiltonians is the following theorem.

Theorem 1: A. (H¥2. ) =A(HF?, )+ i, (h).

Before proving this result, it will be useful to make some
observations about the spectral properties of H 4%, , by
which we denote the restriction of H ¥ to ¥ '3 . All ei-
genfunctions of H %%, have the form

P+ {G(xl!""xr)gl(xr+l).”gN—r(xN)}’ (5)

where x; = (r;,s;) represents the space and spin coordinates
of the ith particle, G is an eigenfunction of H }¢%,_, the g, are
in [.#**#1', and p , projects onto ¥ . Thus H 5%, has
pure point spectrum consisting of elgenvalues of the form

eval(Hi¥?, Y=eval(H!E) + (N=nA 1 (B) . (6)

However, because h ** is a multiple of the identity on the
inﬁnite—dimensional space [.#***]!, the eigenvalues of
Hie + have (i) finite multiplicity, if r = N; and (ii) infinite
mu1t1p11c1ty, if r<N. Thus H 4% . has only discrete spec-

trum, while H 57 has only essential spectrum when N> r.

To prove Theorem 1, we first note that (4) implies
A(HEE W A (HEE ). @)

Applying a similar analysis to A. (H %% ) and using (7)
along with the observations above, we find that

ACHEE )y =min,_o_y A (HNE,)
= mln,=o,"_’1v /1 (HNr +
= Il'lil’l,,=o,"_,1y~ 1 {Al(Hfzﬁi

+ (N=r)d, (h)}

5 ) = min, _ o,

.....

+ [(N_ 1) _r]ik+1(h)}+/1k+1(h)
= minr=o,...,N—1{'11(H’z§Iaf Lr+ )} + Ak (h)
-‘—"lll(HI):/a_ﬂi,:t ) +ik+l(h) .

IV. EXTENSION TO SYMMETRY SUBSPACES

Our analysis thus far has not explicitly considered spin.
The spin was present implicitly by the inclusion of C=** ! in
# = L2(R*) ® C**'. When spin is explicitly considered, it
suffices to use trial functions ¥ in 5 that have the form

V=3 ®.(ry..r5)8 (S8n) (8)

t=1

where ®,c[L?*(R?*)]" and ¢,e[C**!']¥, and for which
{®,} and {4, } are bases of irreducible representations of the
symmetric group Sy. It is then natural to ask if Theorem 1
can be extended to this situation, i.e., to Hy , defined as the
operator H, restricted to the subspace of [L >(R*) 1¥ corre-
sponding to the irreducible representation o of S,,. Before
showing that such an extension is possible, we point out that
Theorem 1 actually suffices for most practical calculations.
If one is interested in bound states belonging to a particular
subspace o, Theorem 1 implies that it suffices to consider
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intermediate Hamiltonians restricted to the subspace #°7,
provided that the eigenvalues of interest lie below
A« (Hy, . ). However, the extension to other irreducible rep-
resentations, which we give here, is useful for several rea-
sons.

(a) One is occasionally interested in bound states em-
bedded in the continuum, i.e., in energies E,,, which lie in the
region A.(Hy . )<E, <A.(Hy,). (Hill's proof® that
H ~~ has nobound states in the quartet sector is an example
of such a situation. )

(b) A similar analysis can be applied to other physically
relevant symmetries besides permutational symmetry.

(c) This analysis can be extended to consider several
species of particles, as described below.

(d) The spectrum of Y is a subset of that for # .
Hence restriction to #°¥ can reduce the density of eigenval-
ue clusters and increase the gap between computed eigenval-
ues, as compared to that when 5%, is used. This improves
both the conditioning and convergence rate of computa-
tional algorithms used ultimately to resolve the final matrix
eigenvalue problem.?°

Sigalov and Sigal?!?> have shown how to extend the
HVZ theorem to Hamiltonians restricted to symmetry sub-
spaces. We summarize their analysis for Hamiltonians of the
form Hy, ,. Let o and w denote irreducible representations of
Sy and S, respectively, with n < N, so that S, is isomorphic
to a subgroup of Sy. Let @ < o indicate that the irreducible
representation o is present in the decomposition of o re-
stricted to S,. Sigalov and Sigal?"*? showed that, in the case
of Hamiltonians of type (1),

/1: (HIV,O) =minw<¢, /ll(HN_ l,m) . (9)

The corresponding generalization to intermediate Hamilto-
nians is the next theorem.
Theorem 2:

A(H5E) =min,_, A|(H¥?,,) + A (B) . (10)
Proof: We first note that eigenfunctions of H % have
the form

PG{G(XI!“"xr )gl ('xr+ 1 ) . 'gN— r(xN)} ’

where the notation is as in Theorem 1, except that o denotes
the restriction to the subspace #°Y corresponding to o, and
G is an eigenfunction of H** with w <o. The proof of
Theorem 1 can then be easily extended to this more general
case. We omit the details.

It should be clear that our analysis could easily be ex-
tended to symmetry subspaces corresponding to several spe-
cies of identical particles instead of N electrons, e.g., NV, elec-
trons and N, muons with N, + N, = N. In this case, — A,
would be replaced by — A,/m; in (1), where m;, is the mass
of particle /, and H,, would act on ™ @ F#™:.

V. CONVERGENCE

The question of what conditions on the approximating
subspaces Ag and 0, are sufficient to guarantee convergent
estimates has been addressed in more general settings by
Beattie, '® Greenlee,?? Beattie and Greenlee,?* and Brown.?
In our setting, the derived density criteria sufficient to guar-
antee convergence may be succinctly stated:
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(1) lim A isdensein [W>?*(R?) @C¥*!]
e [W*(R)eC¥+!], (11)
(2) lim Q, isdensein W>2 (R*) @C**!, (12)

where W22 (R*) denotes the second Sobolev space embed-
dedin L 2(R?). In particular, these density conditions induce
core conditions within every symmetry subspace #°~ suffi-
cient to produce convergent spectral estimates for H {2,
provided one additional hypothesis holds. The convergence
results cited above all carry the proviso that the lowest point
of the essential spectrum of the intermediate operators must
move up sufficiently to expose the eigenvalues of Hy, to
convergent estimates. That such movement can be guaran-
teed for the full unrestricted Hamiltonian operator was
shown in Refs. 18 and 24. We show here that this is also the
case for Hamiltonians restricted to symmetry subspaces.

Theorem 3: Under the density hypotheses (11) and
(12), the family of intermediate Hamiltonians {H 5%}, .o
provides convergent lower-bound estimates to the lowest
point of the essential spectrum of Hy,,:

kapB

As a consequence, every lower eigenvalue of H  , is accessi-
ble to convergent estimates, and

lim A, (H5) =A,(Hy,), (14)
kapB

for every i such that A, (Hy ) <A. (Hy,) .
Proof: Consider first the case N = 2. We have from (10)

A (H%) =min,_, A,(H¥®) + A, ,(h)
=A(H) + Ay, (B)
=4, (A% + A, (B) ,
=4 (M) + A, (B) =A(H,y,) + A, (h) .

Since A, , , (h) —0 as k— oo, (13) holds for N = 2, and the
density conditions (11) and (12) guarantee that (14) holds
as well. Now make an induction hypothesis and suppose that
(13) and (14) hold for all N < M, for some M > 1. We may
then deduce that
limA. (H§2) = limmin,, _, A,(H}% )
kaf kap

w<o

=min,_, limA,(H%*% , )
kap

= minw<xf AI(HM— l,m) =2" (HM,a-) .

Hence (13) holds for ¥ = M, the density criteria again im-
ply (14) for N = M, and the induction step is completed.
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Let H be the closure of the restriction of the three-dimensional Laplacian — A on the domain

C&(R>\2), where 2 = U;_ ,dK(0,R;) and K(O,R;) is a closed ball of radius R; centered at
the origin in R 3. It is well known that H is a closed symmetric operator with deficiency indices
( 0,0 ). In this paper all self-adjoint (s.a.) extensions of H are constructed; these extensions
contain as particular cases the quantum Hamiltonian describing concentric §- and &’-sphere
interactions. It is also shown that the s.a. extensions of H may be obtained as norm-resolvent
limits of momentum cutoff and scaled separable potentials.

I. INTRODUCTION

Inrecent years there has been a lot of interest in studying
sphere interactions in quantum mechanics; see Refs. 1-3 and
the references therein.

Consider in L (R 3) the Laplacian — A on the domain
D= Cg(R>\U_,3K(0,R))), where K(O,R;) is a closed
ball of radius R, centered at the originin R >, and denote by H
the operator H = — A_lp. In Ref. 2 it is shown that H is a
symmetric operator with deficiency indices (0,0 ), and
that H may be written in the form

H=Ieoﬁ“h,,{x}ﬁ®l, (1.1)
where the transforx_nation Uis given by (2.3), and, for fixed
leN,, the operator A, ;z, defined by (2.6) and (2.7) is a sym-
metric operator with deficiency indices (N,N). Consequent-
ly h; () admits an N 2-parameter family of self-adjoint (s.a.)
extensions. A particular N-parameter subfamily of s.a. ex-
tensions corresponding to concentric §-sphere interactions
is discussed in Ref. 2.

In this paper we study the general N *-parameter family
of s.a. extensions of & 1{ry - In Sec. I1, using the general theory
of s.a. extensions of symmetric operators* and the decompo-
sition (1.2), we obtain all s.a. extensions of 4, (., and H,
respectively. Furthermore we show that these extensions
may be obtained as norm-resolvent limits of momentum cut-
off (Sec. III) and scaled separable potentials (Sec. IV).

Il. CONSTRUCTION OF SELF-ADJOINT EXTENSIONS

Consider in L *(R ?) the closed, non-negative minimal
operator

H= — ACZR* U dK(O,R))), 1<j<N, (2.1)

where K(O,R;) is a closed ball of radius R; centered at the
origin in R *, and

(im/2)R )2 H (2 (kR ) (kr),

(k,r) =
$u;(kr) {(iﬂ/Z)R}/le+1/2(kRj)"”2vaz(k’)'

* On leave of absence from IFT, Uniwersytet Wroctawski, Poland.
®) Permanent address: Department of Mathematics, University of Burundi,
B. P. 2700 Bujumbura, Burundi.
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r<R;,
r>R,,
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A a2 d? a?
T o ax: = ox}

is the Laplacian.

Following, e.g., Ref. 5, p. 160, one can decompose
L?(R?) with respect to angular momenta,

L*(R?®)=L*(0,00);Pdr)@ L%(S?) (2.2)
(S %istheunitspherein R *), and introduce the unitary trans-
formation

~'[ L 2((0,00 ;P dr)-L 2((O,oo s
Ty =1fr), r>0,
in order to get the following decomposition of L 2(R 3):

(2.3)

L*R?) = I§oﬁ—'L %(0,00):dr)® [ Y],

leN,, 2.4)

where [ Y"] denotes the linear span of the spherical har-
monics. With respect to the decomposition (2.4), H reads

—I<mgl,

H=,$ U-thmUsl, 2.5)
=0
where
; d II+1)
h = — , 2.6
1{R} x: + = (2.6)

g(}l,’{k}) = {f'EL 2((0)w ))lﬂf'acloc((oaw ))’
f0,)=0 if I=0; f(R,, )=0;
—f" + 11+ 1)r~*eL*(0,0))},

leN,, 1<j<N, {R}={R,,..Ry}.
2.7)

Following Ref. 2 one can show that 4, (., has deficiency
indices (,¥), and that the deficiency subspace N_; is
spanned by the N linearly independent functions

Imk>0, 1<j<N, (2.8)
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where J, (2) and H {(z) are, respectively, Bessel and Han-
kel functions of order v (see Ref. 6). Therefore all self-ad-
joint extensions of & 1{r} are givenby an N 2-parameter family
of s.a. operators.

A particular N-parameter family of s.a. extensions of
h; gy corresponding to the quantum Hamiltonian describ-
ing N S-interactions with supports on concentric spheres of
radii 0 <R, <R, - <Ry has been extensively studied in
Ref. 2. In this paper we investigate to which situation the
other s.a. extensions of /, x, correspond. We will follow the
strategy of Ref. 7 in the analogous treatment of point interac-
tions (cf. also Ref. 8).

From the general theory of s.a. extensions of symmetric

operators* it follows that the s.a. extensions 4,y (z) Of A, ¢z}
are given by

N N
D (hyiry) = [8+ > Cj[¢1,j+ +]ZI Updir- ]

=1

| geg(ilz,{x) )s C,-EC] ’ (2.9)

N N
hiuiry [8+ 21 Cj[¢t,i+ + > Uty ”
= =

. N N
=hyr) 8+ Y C,-[¢1,,-+ - > Uy, - ] (2.10)
j=1 =1

where U;, 1<, j'<N, denotes a unitary matrix in C N and
$rj. =,V £ir), Im{£i>0 provide a basis of
ker[h #z) Fi], respectively.

The case U= — 1, i.e,, U, = — &, gives the free ki-
netic-energy Hamiltonian for fixed angular momentum /:

d*  II+1
h iy =hyp = _d—rz+%’ (2.11)
D () ={fEL*((0,00))| £, f'€ACic((0,00));
S0L)=0 if I=0,
—f" + 11U+ 1)r2feL (0,00 ))}, [N,
(2.12)
J

gu(nr) = [

we can rewrite (2.16) in the form

[M(K) )7 — [Mi(k) ] = [8(k) ]y — [8:(K) ]y,

where we have used the notation

[g;(k) ly = ¢I,j(k!Rf ) =8k (Rj’R] ).
As a consequence of Egs. (2.13) and (2.15) we infer that
!

(Hymy — k) '=H_, i —kH '+ & o

I=0m=—1l;7=1

k*cp(Hyspy), Imk>O0.

From the relation

N N
(B iry _kz)[¢1,i+ + X Updis ] =~k — (i+k2>fZ Updrr—» 1<J<N,
S=1 =1

it follows that
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/2P PH Y |, (k)P VA, (R, P&,
Gm/2)r PH Y |, (kPP 2,y (k) Por

From the above analysis we obtain a family of s.a. exten-
sions of H given by

Hy ry =I®ov—lhI,U,{R} Uel. (2.13)
The particular case U = — 1 yields the kinetic-energy oper-
ator :

H_,(;y=—-4 Z(-A)=H**R? 2.14)

[H ™"(R*) being the standard Sobolev space®].

We note that the above treatment trivially generalizes to
n>2 dimensions using, e.g., Remark 2.1 in Ref. 1. Applying
now Krein’s formula* we obtain

(hl,u,{R} - kz)_]
N
=(he—kH7"+ 3 [M(K)],

hi=1
X (@, (= k), ), (K),

kzep(h“,’{R}), Im k>0, U# - 1, IENo,
(2.15)

where ¢, ; (k,r) is defined by (2.8) and
[M,(0))7 " = [M (k)]
= = (k2 - klz)(¢1,]( - ]_‘)»¢1,j(k'))
= — (k2= k™8, (kk"),
k*k%ep(hyiry), Imk>0, Imk’'>0. (2.16)

Using the first resolvent formula

(k*—k ,2)gl,kgl,k’ =81k — &1k

Imk>0, Imk’'>0, (2.17)
where

8 =(h—k»™', Imk>0, (2.18)

denotes the free resolvent with kernel
Im k30, (2.19)
(2.20)
(2.21)

z [M, (k) ]y (|, (— I—C)Y;",‘)|‘|_l¢1,j(k)Y;",

(2.22)
(2.23)
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N
(hl,U,{R} + ")—l¢l,j+ = (Zi)—l[¢"i+ +f21 U17¢I,J'_ ]

N
=(ho+D7";0 + 3 RZACEI IR N YRR T

=1
N

=207y '—¢l,j—)+iz (M =D) ] Biy s o804 )00,—» 1<J<N.

LT =1

From (2.24) a straightforward computation yields

N
Up +6;, =2 mzl B4 b DT [MG=D]F, 1<GT<N,
=

(2.24)

(2.25)

sincethe ¢, ; _ are linearly independent. (Here M # =M ;; denotes the transposed matrix in C ”.) We note that (2.25) may

be rewritten in the form

[M=D] ' =20UT+ D75 =iV

Therefore, using Eqs. (2.20) and (2.26), we infer

[M)] ' =WT+ D) gD —e(N=D] + & —i) —g k).

(2.26)

(2.27)

Equations (2.15) and (2.27) imply that the spectrum of A, ;, (5, is given by the absolutely continuous spectrum of 4,,, and

that the point spectrum is determined by
0, (hyiry) = {keC |det[ M, (k)] ' =0}

The particular case
(M (K) 17" = [ai '8y + (&) 1) =1

— 0 << 00,

(2.28)

(2.29)

gives rise to the Hamiltonian describing a finite number of é-interactions with support on concentric spheres,” whereas

[M, ()] ™" = [Bi'6y — 8i,(kR) 1T -1,

&l,j(k’r) = [

yields the Hamiltonian of N&'-interactions supported by
concentric spheres.’

. APPROXIMATIONOF A, », BY MOMENTUM CUT OF
HAMILTONIANS

. Here we define a family of operators h 1 and show that
A, uiry (the operator A, in momentum representation)
can be obtained as a norm-resolvent limit of il,,w as w— 0.
Let

- N
b=+ Y [Atlyet, @) (@80, (3.1)
hi=1
@2 (p) = (R,/2m) 2y, (p)j1(PR)) = x., (D)@, ; (D),
(3.2)

where, (z) is the spherical Bessel function and y,, is defined
by
if | p|<o,
if | p|>w.
The resolvent of 4, , is given by
(ill.w - k2)—1
—_ (pZ_kZ)—l + (p2 __k2)——l
N -
X ¥ M)y lei (@ -k e,

M=1
N
=@ =k + S [MPR)],
»F=1

X |XwFl,k,j)(XmF1.—7c,j|x

1,
Xo(P) = [0 (3.3)

.(34)
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— o0 <le< 00,

(iar/2)[r"zH}L)l,z(kr)]'|,=R}r”2J,+Vz(kr), r<R;,
/2 [P 11 RO Y|, g PH (22 (RP), r>R;, Im k>0,

(2.30)
(2.31)
f
where
Fi, () = [(R;/2m)'7%,(pR) 1/ (p* — k2), (3.5)
—[Mr()]; "= [A?]; '+ (& (), (3:6)
(&7 (K))y =@t —kD)pi;)
Y S PR,
Imk>0. 3.7

Let g7'(k) be the N XN matrix with elements (g7(k));.
Then as @ — w0, g7°(k) converges to the matrix g,(k) with
elements

1 = p*dp j,(pR.)j,(pR;)
(a0l = (R [ B
(3.8)

The integral in (3.8) can be performed explicitly, and indeed
one gets (see Ref. 10, p. 119)

© pn2 ; R.)j R
L(Rij).,zf p°dpji(pR,)j (PR, )

2 o 7P _k? =8 (Rp,R; ).

We note that in momentum representation the resolvent
of b,y (ry [cf. Eq. (2.15)] reads
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oy — k™!
— (P2_k2)—l + (pZ__kZ)——l
N -
X ¥ [MK) ]y le )P — kD),
hi=1
N

= (P2 - k2)~l + z [M[(k)]jf lFl,k,j>(Fl,—E,j|'
=y
’ (3.9)

A short computation shows that the rank-1 operator

|¥oFrk ;) {XouF), ;| converges in Hilbert-Schmidt norm
totheoperator |F,, ;) (F, _ ;|as@— o whenIm k> 0,i.e.,

al)i_'m IHXwFI,k,jMXmFI,—E,jl - |F1,k,j><Fl,—E,j|“2 =0,
Imk>0. (3.10)

Consequently &, converges to A, (x; in the norm-re-
solvent sense iff

lim [M§(Kk)]; = [M, (k)]

Therefore we have to choose the matrices A} in such a way
that (3.11) is fulfilled. Thus if we choose A, to be indepen-
dent of & and equal to

—Ar = —[A7]7]
=) —g(=D]WT+ 1)
+&( =1, (3.12)

then (3.11) is trivially satisfied and we obtain the relation-
ship between the Hermitian matrix A, and the unitary ma-
trix U. We note that there is an interesting characterization
of elements of the domain & (A, (&, ) in terms of boundary
conditions, namely, for every function f,€Z (h;yz;) the
jump of the derivative of f; at a fixed point R;€[0,) is
given by

(3.11)

N

FIR ) =R, )= 3 [A]fi(R;),
1

v

J=

(3.13)

where A, represents coupling constants in front of & poten-
tials with nonseparated boundary conditions (called “non-
local” & potentials in Ref. 7). Locality of these potentials has
been proved in Ref. 11.

IV. APPROXIMATION OF A, 5, BY SCALED
SEPARABLE HAMILTONIANS

In this section we show that A, ; (z, can be obtained as a
norm-resolvent limit of a family of scaled separable Hamil-
tonians. Let us define in L %((0, «0 ))

N

hi=hgo4e? z [C@ Wi >0,
=1
4.1)

where C, (&) denotes a Hermitian matrix and ¢} ; is centered
around R, e.g.,

¥, (r) ="y, ((r—R;)/e), (4.2)

for some function ¢, ;€L '((0, 0 )). The resolvent R £: of 4§
is given by

2244 J. Math. Phys., Vol. 29, No. 10, October 1988

(h— k) '=(hy —k* '+ 8RS,

N
SR:. = z (Ao —kz)_l[D,(g)]jf

=1

X |95 Iy — kD) 74|, (4.3)
with
— D) ' =€[Ce)];"
+ (W — kDT ,). (44)

We observe that there is norm convergence:
el & -
SR iz_o.z [M, (k)10 (k))& (— k)|, Imk>O,
e=Vir
(4.5)

ife~'[D,(€)] " converges to [ M, (k)] ~'and §g¢, ,(r)dr
= 1540. This allows us to adjust the £ dependence of D, (¢).
We may take the following dependence of [C,(£)];:

[C@)]7' =" +O0MNC); "
Then the study of the limit

(4.6)

Ellra e [Di(e)) " = [M (k)]
gives
~Ci'=[a(D - =D]W T+ D!
+ & ~h.

Again C, corresponds to coupling constants of & potentials
with nonseparated boundary conditions.
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The perturbed cubic Schrédinger equation: Selection mechanism, resonant

limits, and spatial chaos
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Separable solutions of the perturbed cubic Schrédinger equation that are sinusoidal in time
with frequency ), are considered. Two processes associated with the integrable limit € -0 are
demonstrated. The first will be called a selection mechanism and is demonstrated for
Ginzburg-Landau-type perturbations. The second is a resonant limit process and will be
demonstrated for perturbations containing spatial driving terms of wave number ¢. Spatially
chaotic behavior is studied in the limits 2_—0, -0 and 2, - «, ¢— oo such that ¢/0Q7

= const.

1. INTRODUCTION

We consider separable solutions of the perturbed cubic
Schrédinger equation,

i, + Yo + WY =f (X 500,.8,,..) (e€1), (L)
which are of the form
Y. (x,t) = exp(i P, (x) . (1.2)

The periodic standing-wave solutions of the unperturbed
problem, € = 0, are well known and have been studied pre-
viously. The perturbed nonlinear Schrédinger equation has
been studied recently by a number of authors who, for the
most part, focus on the fate of solitons under small perturba-
tions in their evolution equations.'”® Generally speaking,
these questions are important in discerning how sensitive
certain solutions are to small changes in the model equa-
tions, a concept that is commonly termed structural stabil-
ity. Our purpose is to demonstrate two processes that are
associated with the integrable limit € —0. The first will be
called a selection mechanism and is demonstrated for Ginz-
burg-Landau-type perturbations,

f W) =i[¥+ Y — |¥1%Y] - (1.3)
This form of perturbation has the effect of complexifying the
coefficients of the nonlinear Schrodinger equation, which
introduces important new phenomena.*'?> The Ginzburg-
Landau (GL) equation in this form arises in the study of
hydrodynamic stability theory (see references listed in Ref.
5). The second process we call a resonant limit process,
which will be demonstrated for simple linear functions,

FWe,) = y,¥ cos(gx) + ¥, cos(gx)exp (i) t)

—Vs¥x  (V1,¥2V3ER>0) . (1.4)

Section II contains a brief review of known facts about
the standing-wave solutions of the unperturbed and per-
turbed problems. We start by studying the separable solu-
tions (1.2) of the unperturbed problem. This leads to a sec-
ond-order nonlinear ordinary differential equation (ODE)
for the spatial function P, whose solutions are given by peri-
odic Jacobian elliptic functions. After fixing the two con-
stants of integration, the solutions form a continuous family
which can be parametrized by a similarity parameter A or,
equivalently, by the temporal frequency €,,. Thus it is shown
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that an extra mechanism is needed in order to fix the param-
eter A, thereby uniquely determining a solution of the unper-
turbed problem. We then study the separable solutions of the
Ginzburg-Landau equation (1.1), (1.3). Results from Refs.
4-6 are mentioned in which the periodic spatial part of the
solution is given both asymptotically and numerically. Con-
trary to the unperturbed case, once the constants of integra-
tion are chosen, there are no remaining free parameters. In
Sec. III we describe a selection mechanism by which distin-
guished values for the similarity parameter A and the fre-
quency ), are picked out in the limit € » 0. Explicit examples
of how this selection mechanism works are given. In addi-
tion, it is mentioned that the selection process can also be
viewed as a bifurcation problem in €. In Sec. IV we study
perturbations of the form (1.4). Using a version of the Mel-
nikov technique''* we discuss the existence of spatially
chaotic behavior in special regions of the parameter space
(71,¥273). The results are summarized in Theorem 1. The
chaotic regions are then studied as functions of frequency (2,
and wave number g. In particular, a resonant limit process is
introduced and summarized in Lemma 2, which describes
the size of the chaotic regions as Q, —+0, g—0and 2, - w0,
g~ o such that ¢/QZ = const.

Il. SPATIALLY PERIODIC STANDING WAVES

Consider first the unperturbed cubic Schrodinger equa-
tion,

i¢t+¢'xx + l'/”z'/’:o' (2'1)
When (1.2) is substituted into (2.1), this yields an ordinary
differential equation for the spatial function P,

Py=QP,— P} . (2.2)

It is well known that this equation can be put in the form of a
Hamiltonian system with one degree of freedom.'* For pres-
ent purposes we will not pursue this approach, but instead
integrate (2.2) directly. Multiplying (2.2) by P, and inte-
grating once yields

(P):=E—V(Py), (2.3)

where E is an arbitrary constant of integration. The potential
Vis given by

V(Po) =4P5 — QoP3 . (2.4)
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There are three distinct solutions to (2.3) that depend on the
constant of integration (energy level) E.

(a) E<O:
Py(x) = + V2 AdnlA(x —x,), k), (2.5)
k2= (242 —Qu)/A%. (2.6)

Here x, is the second constant of integration, and k is the
modulus of the even Jacobian elliptic function dn. The simi-
larity parameter A is related to k and Q, via (2.6). The ener-
gy level E is related to 4 and ), by the formula

E=21%(A%—-€,) <0. 2.7)
(b) E>0:

Py(x) = + Q0 + A2 enfd(x — x,), k), (2.8)
k2= (Qo+A%)/247. (2.9)

Here k is the modulus of the Jacobian elliptic function cn.
The energy level E is related to 2, and A via the formula

E=}(A*—-Q2). (2.10)
(c) E=0:
Py(x) = + V2 Asech(A(x — x;)). (2.11)

This is the limiting case of (a), (b) in which the modulus
k-1,

We now focus our attention on the even solutions (2.5).
Once the two constants of integration E and x,, are fixed, the
solutions (2.5) form a continuous family parametrized by
the similarity parameter 4 or the frequency Q,. This can be
seen by solving (2.7) for 0,

Q,(A,E) =A*—E/24%. (2.12)
Substituting (2.12) into (2.6) yields
k2=1+E/244. (2.13)

Thus for a given value of E the parameter A can be chosen
freely, which then fixes the modulus (2.13) and the frequen-
cy (2.12). Without loss of generality we set x, = 0 in future
considerations, and for definiteness we only consider the
positive solutions.

Consider now standing-wave solutions (1.2) of the
Ginzburg-Landau equation (1.1), (1.3) with O<e<1.
Upon substitution this yields a complex spatial Duffing-type
equation, which we write

P _(Q . +ie)  (1+ie) P2
P. (1—ie) (1—ie)

Now introduce polar coordinates P, (x) = R(x)exp(if(x))
and use the transformation

W=U+iV=P./P.,=R/R+i0. (2.15)

Note that by differentiating W once we see that W satisfies a
complex Riccati equation,

W+ W2=pP/P,. (2.16)

Equating the real and imaginary parts of (2.14), (2.16)
yields

U=a,—U*+V?—a,R?,
V=ﬂl - ZUV—ﬂsz ’
where

(2.14)

(2.17)
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a,=(Q, -/ (1+6é),
a,=(1-)/(1+é),
Bi=e(1+0.)/(1+€),
B.=2/(1+¢€).

Now equating the real and imaginary parts of (2.15) gives
R=UR, (2.19)
6=V. (2.20)

The system of equations (2.17), (2.19) forms a closed sys-
tem of three equations in the three unknowns (U,V,R) that
determines the spatial structure of standing-wave solutions
(1.2) to the Ginzburg-Landau equation (1.1), (1.3). It has
been shown in Refs. 5 and 6 that this system supports a rich
variety of solutions (see also Refs. 7-9). For our purposes it
is sufficient to note that for € > 0, there is a range of frequen-
cies 2, for which periodic solutions to (2.17), (2.19) of
wave number ¢ exist and are stable. In addition, a dispersion
relation has been computed relating the frequency 2, to the
spatial wave number ¢q. We refer the reader to Figs. 1 and 2 of
Ref. 5 for plots of the periodic solutions and the nonlinear
dispersion relation. Contrary to the unperturbed € = 0 case,
there is no extra parameter in the problem; thus, once 2,
and e are fixed, a unique periodic solution is determined.

(2.18)

(ll. SELECTION MECHANISM

Our purpose here is to show how the limit e-~0in(1.1),
(1.3) selects a particular value for the similarity parameter A
in the solution (2.5) of the unperturbed problem (1.1). We
will focus only on the spatially even solutions (2.5). For this,
an extra relationship is needed for the €#0 problem relating
the frequency ), to the spatial function P,. Thus we prove
the following lemma.

Lemma 1: For spatially periodic solutions of the GL
equation (1.1), (1.3) of the form (1.2) (P, complex) we
have

(14 Q) =2||P|I2/1IPe|l3 » (3.1)
Pp=U= ype D= yppa 3,
P =8= e~ Q=D g, G2

where
£ 27
[IPln = f |P.|"dx, L =-——=spatial period. (3.3)
0 q

Proof: Substitute (1.2) into (1.1), (1.3) to get an ODE
for the spatial function
P€= (Q, + ie)  _ (14 ie) lPe|2Pe' (3.4)

(1 —ie) (1 —ie)
Muitiply (3.4) by the complex conjugate of P, and integrate
over a period. Separating real and imaginary parts gives the
result.

We now show how the condition (3.1) is used in the
limit €~ 0 to provide an extra constraint on the relationship
(2.12), (2.13), thus picking out a limiting frequency 2, and
amplitude A for the solution (2.5). The limit €— 0 requires
us to impose two compatibility conditions relating the sep-
arable solutions of the unperturbed problem to those of the
perturbed problem. These two conditions are as follows.
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(1) Periodicity condition:
2K /A =2n/q, (3.5)

where K is the complete elliptic integral. This condition
guarantees that the period of the Jacobian elliptic function
solution (2.5) matches the period of the €0 problem in the
limit €-0.

(2) Selection mechanism:

(1+Q.) =2||P[3/||P.|l? - (3:6)

This condition holds for all separable solutions (1.2) of the
GL equation for €£0; hence we apply the condition in the
limit e 0.

We now carry out this selection process for two specific
cases.

Example 1: Fix the wave number ¢ of the € #0 problem
(1.1), (1.3) such that g°> = 2. Then the limiting solution of
the unperturbed cubic Schrodinger equation (1.1), for
€ = 0, is the spatially independent solution

Uy =e". 3.7
To see this we must show that the limiting frequency ), = 1,

and that the spatial part of the solution (2.5) reduces to
unity. This is most easily seen by fixing the modulus of (2.5):

k*2=0. (3.8)
From a standard table of elliptic integrals,'® (3.8) =
K=mu/2. (3.9)

Using the periodicity condition (3.5) and (3.9) we get

Now using (3.8) and (2.6) gives
242=1Q,. (3.11)

Using the selection criterion (3.6) and the fact that
dn(x,0) = 1 gives

314+ 0g) =242, (3.12)
Thus (3.12) and (3.11) =

Qo=1. (3.13)
Furthermore, (3.13) and (3.11) =

A2=}. (3.14)
Equation (3.14) combined with (3.10) =

F=2. (3.15)

Finally, using (3.13)-(3.15) with (3.8) and (1.2) = (3.7).

Example 2: Fix the wave number ¢ of the €0 problem
(1.1), (1.3) such that ¢ = 0. Then the limiting solution of
the unperturbed cubic Schrodinger equation (1.1) fore =0
is

Yo = |[§ exp(3 it)sech(|f3x) . (3.16)
To see this we must show that the limiting frequency 2, = 3,
and that the spatial part of the solution reduces to
/€ sech(|/7 x). This is most easily seen by fixing the modu-
lus of (2.5):

ki=1. (3.17)
From a standard table of elliptic integrals,'® (3.17) =
K=ow. (3.18)
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Using the periodicity condition (3.5) and (3.18) =

g=0. (3.19)
Now using (3.17) and (2.6) =
Q,=42. (3.20)

Using the selection criterion (3.6) and the fact that
dn(x,1) = sech(x) gives

(1 + Q) =44%/3. (3.21)
Here we have used the identities
j sech®(x)dx =1, (3.22)
0
f sech®*(x)dx = —. (3.23)
o 3
Thus (3.21) and (3.20) =
A2=Q,=3. (3.24)

Finally, using (3.17), (3.19), and (3.24) in (1.2) and
(2.5)=(3.16).

We remark that, equivalently, one can view this selec-
tion mechanism as a bifurcation problem in the parameter €.
The limiting frequencies {1, of the unperturbed problem that
are “selected” in the limit €0 are the bifurcation points
along the (2, axis. The periodic standing-wave solutions to
the system (2.17), (2.19) are the bifurcated Jacobian elliptic
functions of the unperturbed problem.

IV. SPATIALLY CHAOTIC REGIONS

We now turn to perturbations of the form (1.4) and
discuss the existence of spatially chaotic behavior in certain
parameter regions. When the separable solution (1.2) is sub-
stituted into (1.1), (1.4) one gets

P, =Q.P. — P} + €(y,P. cos(gx) + 7, cos(gx) — y3P.).

(4.1)
An equation similar to this but with different perturbation
terms is studied in Ref. 17, where it is shown that chaotic
(temporal) behavior occurs for certain parameter regions.
We first follow a similar analysis and view (4.1) as a pertur-
bation from a Hamiltonian system for € € 1. This allows us to
apply methods due to Melnikov'*'* to show under what pa-
rameter restrictions (y,,¥,,%5) chaotic behavior occurs.

After rescaling (4.1) such that

P.=\Q.F x=\1/0.X, (4.2)

one arrives at the first-order perturbed Hamiltonian system
F=¢,

G:F—F3+e(—7i‘-Fcos( qX) (4.3)
Q. V0,
+ 7;2/2005( qX)—— ] G).
Q; o,/ Ja,

We study the phase space of the perturbed system (4.3),
€<£1, near the unperturbed separatrix solution:

Fy(X) = v2sech(X),

(4.4)
Go(X) = — v2sech(X)tanh(X) .
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The phase space of the unperturbed problem, € = 0, pos-
sesses three fixed points: (F,G) = (0,0),( + 1,0), where the
origin is a saddle with a smooth separatrix orbit (4. 4) de-
scribing the stable and unstable manifolds. We briefly review
the ideas described in Refs. 13, 14, and 17-19. To study the
perturbed problem, the phase space can be extended to three
dimensions (F,G,X) and the motion viewed in the Poincaré
section X = const (mod 2m/Q,/q). The perturbed stable
and unstable manifolds can still be identified in the surface of
section but are made up of a sequence of distinct points.
Generally speaking, they no longer join smoothly. If y; is
large enough, they will not intersect at all. However, if the
ratio of the parameters y,/y, (7, =0) or y3/¥, (¥, =0) is
sufficiently small, the stable and unstable manifolds will in-
tersect transversally. This process is called a homoclinic bi-
furcation and signals the onset of chaotic behavior. To check
when a transverse crossing occurs, Melnikov introduced a
function (now known as the Melnikov function) that mea-
sures the distance between the perturbed stable and unstable
manifolds in the Poincaré section. If this distance function
has a simple zero, the manifolds intersect transversally and
chaotic behavior results. This method and its application to
equations of the form (4.1) is by now relatively standard,
and we refer the reader to Refs. 14 and 19 for a more thor-
ough introduction to these ideas.

We first show that for sufficiently small €, the condition
for a homoclinic bifurcation to occur in the perturbed system
(43)1is

57’3 <H(q,Qe ) ’
where

H(q,Q, y =0T csch( 9 )+
q 93/2 2\/‘-)'-€

€

4.5)

LZRWER)
Q: 2yQ,
(4.6)

Since the analysis is standard, we only show part of the de-
tails. The Melnikov function measuring the distance be-
tween the perturbed stable and unstable manifolds in the
Poincaré section at the point ¢, is computed from

D(t,) = —Jw dt(;;‘ Fy(t — 1,)G,(t — t,) cos(;ﬂt_)

€

t
+ Q’" G,(t — 1) cos(‘/q_)

€

372

€ €

_77_’0_3:(;30—%)). (4.7)
AH,
H;nlx
A
/%/// iy

n,n nh )

FIG. 1. Threshold function H,(}) for fixed g, with chaotic region shaded
and {,, the most chaotic frequency. The 2, and (1, are the lowest and
highest frequencies giving rise to chaotic behavior for H, = A
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After substituting (4.4) into (4.7) and simplifying, we ob-
tain

D(ty) = — 2% sin(

€

g to)fw dr sech®(7)

to) J drsech(r)

=)

+2 LJ dr sech?(7) tanh?(7)
Q —

X tanh(7) sm(

R

93/2

X tanh(7) sm(

(r=t—1t). (4.8)
Performing the remaining integrations yields the condition
(4.5) for D(¢,) to have a simple zero. The results of this
section are summarized in the following theorem.

Theorem 1: The perturbed cubic Schrédinger equation
(1.1), (1.4) supports a family of temporally sinusoidal, spa-
tially chaotic solutions of the form (1.2) for € sufficiently
small, provided (4.5) is satisfied. The chaotic behavior is
caused by the presence of transverse spatial homoclinic or-
bits in the associated Poincaré map, which implies that the
map contains Smale horseshoes.?®

We call the function H in (4.6) the threshold function,
and study its behavior in the following section.

V. RESONANT LIMITS

First consider the case in which ¢, = 0; thus the thresh-
old condition (4.5) becomes

3\[— _mq_ T
}’z ez sech(2 Q‘/z) H,(¢.9,).

The threshold function H, is shown in Fig. 1, where we plot
H, as a function of Q, for fixed ¢. It can be seen from this
diagram, and is straightforward to prove, that lim,,_, . H,
—0. Thus these limits reduce the size of the chaotic region in
the parameter space. Furthermore, there exists a value £, .,
that we call the most chaotic frequency at which H, achieves
a maximum. This value can be computed by solving

(5.1)

=0 (5.2)

a0,

FIG. 2. The wave number g versus ) plane showing resonant limit sector
for H,. For g—~0, 1 —~0o0r g- o, {1 — oo in the shaded region, H, blows up.
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g=kJQ

qg= k03/2

FIG. 3. The wave number g versus 2 plane showing resonant limit sector
for H,. For ¢—0, -0 in the shaded region, H, blows up.

for ., holding ¢ fixed. It is worth noting that for a fixed
value of the ratio ¥,/¥, lying in the unshaded region marked
“A” in Fig. 1, one can decrease the frequency £}, and ob-
serve a window of chaotic behavior for Q. € [Qy,,,, Dpign 1
The values Q,,,, and £y, can be explicitly computed given
the other parameters in the problem. Similarly, holding €2,
fixed one can study H, as a function of . It is easily seen that
the behavior is similar to that shown in Fig. 1. Note that
there exists a value g,,,, that we call the mos? chaotic wave
number, which can be computed by solving

dq
for g, holding Q. fixed.

For the case ¥, = 0, the threshold condition (4.5) be-
comes

I ¢ T
—:% <T & csch(; &)Eﬂl(q, ,.).
The behavior of H, as a function of each variable is similar to
that of H,; hence we do not show a separate diagram. We
remark only that Q.. and ¢, can be computed as in
(5.2), (5.3) with the obvious change of H, to H,.

We examine now the limits of H; (j = 1,2) as a function
of both the variables ¢, . This behavior is summarized in
the following lemma.

Lemma 2: The following limits are taken holding ¢/Q¢

= const.

(a) For ¢—0, ), -0,

=0 (5.3)

(54)

on 1 0, azi,
(i) llmH,={0’ a<:
0, a<d, a>3,
(ii) lim H, = { o, Ka <3,
const, a=3%.
(b) Forg— o0, ), —» w0,
@) limH1={°°’ *<b
0, a>i,

(ii) lim H,=0, forall a.

The shaded regions in Figs. 2 and 3 show the sectors in
the (¢,Q.) plane in which H; - « as ¢—0, , -0 and
g— o, 2, — oo forj = 1,2, respectively. Because the thresh-
old function blows up in these limits and thus provides no
upper bounds on the ratios in (5.1), (5.4), we call these
limits resonant limits and the corresponding exponent a the
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resonant rate. The resonant limits demonstrate a coopera-
tion between the frequency €}, and the wave number g, in-
creasing the size of the chaotic region in the given parameter
space (7,,7273), and should be contrasted with the individ-
ual limits mentioned earlier and shown in Fig. 1. The proofis
arelatively straightforward analysis of the functions H;, and
involves competing effects of exponential versus algebraic
behavior; we therefore do not include it.
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In a previous paper [D. L. Huestis, J. Math. Phys. 16, 2148 (1975) ] a superposition principle
was developed that allows the representation of an arbitrary wave function in an explicit
uniformly convergent expansion over the discrete Siergert states for finite-range potentials.
Possible difficulties were identified that could arise for special values of the potential strength
due to degeneracy of the complex Siegert eigenvalues or vanishing of the norm of the Siegert
state. In this paper these difficulties are addressed. By generalizing the Siegert eigenvalue
problem, distinct orthogonal eigenfunctions with nonvanishing norm are obtained,

recompleting the Siegert basis.

I. INTRODUCTION

For potentials of finite range [ V(r) = 0 for r> 1], Sie-
gert! completed the identification of resonance wave func-
tions with the poles of the S matrix through his eigenvalue
problem,

— "+ UMY=k, P(0) =0, ¢ (ro) =ikip(ro),

where
Ur) = Cm/#)V(r) and k?*= (2m/#)E.

This is simply Schrodinger’s s-wave eigenvalue problem
with an outgoing right-hand boundary condition. If we con-
sider the usual scattering boundary condition,

¥(r)»A exp(ikr) + Bexp( — ikr), as r— o,

we see that the requirement that ¢'(r) = iky(r) for r>r,
implies that B must vanish and that the S matrix defined by

S= —A4/B

must have a pole at the resonance energy.

Humblet?? divided the Siegert poles into three groups,
called a, b, and ¢ (see also Refs. 4-6). The b poles are the
bound states, with &, along the positive imaginary axis, k,

= i|k, |. The a poles, sometimes called the antibound or vir-

tual states, lie along the negative imaginary axis, &,
= —i|k,|. The ¢ poles are the ordinary complex reson-
ances, sometimes called radioactive or decaying states. They
are distributed in the lower half of the complex k plane, sym-
metrically about the imaginary axis. Humblet showed that,
for potentials of finite strength and finite range, only a finite
number of g and b poles exist, whereas the ¢ poles constitute
a denumerably infinite set. As the potential is made more
attractive, the ¢ poles approach from both sides of the nega-
tive imaginary k axis, eventually merging to form two a
poles. As the potential is further strengthened, one of this
pair moves up the imaginary k axis, eventually becoming a
bound state, while the other moves down toward more nega-
tive imaginary k values, remaining an antibound state. This
motion is illustrated in Fig. 1.

In our previous study,’ we recast the Siegert eigenvalue
problem in regular and dual two-component bases,

5 _|#00| g B0
n = ,(,2)(") ’ n ¢I(2)(") ’
with boundary conditions
2250 J. Math. Phys. 29 (10), October 1988
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¢fxl)(0) =0, ¢f:l)(ro) = ¢p(|2)(r0)»
¢I(1)(0) =0, ¢I(”(ro) = ¢Iz(2)(’o)9
and functional

@18, =1 f T (BB _ gtog@),

where we have added a factor of } to match the usual Schré-
dinger normalization for bound states (see also Ref. 8). The
regular and dual eigenvalue problems are then written as

2y’
AA " (r)

L(Dn = , o = o
A (r)+f U(x)dLP (x)dx @,

~A Y'(r) — U(r) J 1 (x)dx ~
Lot = ¢ o¢ ¢ = ik &t
$1 (r)

For eigenvectors defined as above, we can easily show that
l(kn - km ) <$I’$m) =0,
and thus as long as &, #k,,, we can define normalization
constants such that
(®,8,.) =N,8,,.
This orthogonality allows us to expand arbitrary functions
in the eigenbasis,

T Y T T T T T
4+ —
ko
L r -
E k1
J -
- k
2 e—t— &
k—‘l
4 [N N IR NN N
8 4 0 4 8
Re k

FIG. 1. Trajectories of Siegert eigenvalues for the s-wave finite square well.
Arrows indicate the direction of motion from U= — 15to U= —25; k,
and k_, collide at — i for U= — 21.1907.
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=3 a,,@,,
where
a, = (1/N,){®!,F).

In our previous investigation, we explored the restric-
tions on the form of the function F necessary to obtain a
convergent expansion, which imposed relations between the
upper and lower components of F. Further difficulties arise
from either degenerate eigenvalues, k, = k,, for n#m, or
vanishing normalization, N,, = 0 for @,,, #0. As we noted,
Dobson® suggested that these two difficulties are expected to
occur simultaneously. In our brief description above of the
trajectories of the Siegert eigenvalues as the potential
strength is increased, we indicated that the collision of pairs
of ¢ poles on the negative imaginary k axis is a normal result
that is necessary for the creation of bound states. Thus we
must modify the two-component formalism to account for
these degeneracies.

In addition to difficulties in orthogonality and normali-
zation, the confluence of eigenvalues leads to only a single
eigenvector, while for nearby values of the potential strength
we have two. As suggested by Friedman'® and elaborated by
Dobson,’ we might attempt to recomplete the vector space
by generalizing the eigenvalue problem. In the present case,
th1s generallzatlon corresponds to considering solutions of
(- i%)?® = Oand (L " — ik)?®' = 0. For nondegenerate
eigenvalues, the “‘squaring” of the eigenvalue problem leads
only to the eigensolution preyiously found [if we require that
(L — ik)® and (L' — ik)®" satisfy the boundary condi-
tions]. In the degenerate case, we get two distinct eigenvec-
tors, of which orthogonal linear combinations can be chosen
having nonvanishing normalization.

Il. DEGENERATE SIEGERT STATES FOR THE SQUARE-
WELL POTENTIAL

Although degenerate antibound states are expected for
all types of attractive finite-range potentials, we will develop
our approach based on the specific example of the finite
square well,

Ury= —-U, 0<r<r,=1,
U(r) =0, r>r,
The regular and dual Siegert wave vectors are (see Ref. 7)

TABLE I. Some Siegert s-wave eigenvalues for the finite square well, depth
U= —21.1907, radius r, = 1.

n" Rek, Im %, Rek, Imk,
0 0.0000 3.8301 2.5536 0.0000
1 0.0000 — 1.0000 4.4934 0.0000
2 6.1959 — 1.3863 7.6753 — L1191
3 9.8422 — 1.6683 10.8429 — 1.5143
4 13.2390 — 1.8901 14.0030 — 1.7870
5 16.5387 —2.0728 17.1585 — 1.9979
6 19.7889 —2.2278 20.3111 —2.1706
7 23.0102 —2.3626 23.4616 —2.3171
*The corresponding resonances with n <O satisfy k, = — k* .

"+ Uy, and k/ cos(k') =ik, sin(k.) is the eigenvalue

condition. The normalization constants are N, = (1 + i/
k,)/2, which vanish for k, = — / and diverge for k,, = 0.
We will first deal with the case of a bound state at zero
energy, k, = 0, which does not result from collision of eigen-
values, but which prevents the choosing of ¢!(r)
= @'V (r) as we previously supposed.” In this case, which
occurs for U, = k ;2 with k|, = (n + }), the Siegert eigen-

vectors are (with N, = — 1)
A sin(k,',r) A* 0
®, = 1 and &, = k; cos(k,r)

The second special case is the first occurrence of
k, = — i, which happens for U, = 1 and which also does
not correspond to a degeneracy but merely the progression
of the first antibound state on its way toward becoming a
bound state. In this case we divide both the regular and dual
eigenvectors by k/ and take the limit as k ; —0, obtaining
(With No= —})

r r
(1 +7) 1

True degeneracies result for potential strengths
U, =1+ k% satisfying k , cot(k ) = ik, = 1for k. >0.
The first occurrence of this condition is for U;~21.1907,
resulting in the Siegert eigenvalues listed in TableI. Insuch a

case we already have one eigensolution with a vanishing
norm,

% _' sin{(k . r)
" (= 1/ )cos(k L) + ((1/k L) + k2 )cos(k 1)
and

sin(k ,r) . ,
&,=| .k, (kK gy | Sntan
—lk’ cos(k,r) +1i T % cos(k}) k. cos(k.,r)
" " " To find additional solutions of (L —ik)*®=0 and
and (L' — ik)*®' = 0 we consider
~ sin(k.r)
<DI - n A _ d - A'T _ ad At
— ik’ /k,)cos(k " r) ®, ak: ®, and 6, ok -
where k; is the wave number within the well, K ;>==k2  These derivatives give
i |
~ rcos(k.r)
"+ 17k P (cos(k r) — cos(k ;) + (r/k ;)sin(k )
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and
rcos(k.r)
(1 4k *)cos(k’r) — k' rsin(k’r)
With some algebra we can confirm that
(L - ik,)0, = —k; ¥,

AT=
n

and

(L~ k8] = — kA1,
and thus

(L — ik,)?®, =0 and (L'—ik,)?0! =0.
We can also evaluate the functionals

(T1Y,) =0, (81,0,) = — (1+3k2)/12,
and

(¥1,0,) = @},7,) = ~k./4.

At this point can we consider choosing linear combina-
tions of the pairs of regular and dual vectors to obtain the
desired orthogonality and nonvanishing norm. One such
choice is

8, = (1+3k2/Ck )Y, — 6,
and
8! = (14 3k2/G3k )T — 81,
which gives
(01,6,) =(61.8,) =0
and
@1,8,) = (1 +3k2/12= — (81,8,).

A A A ~
Below we will use ®, =@¢" and &P, =",
Another reasonable choice of linear combinations is

A

&,, =%, B, ,=+3k2/6k)T! -6,
and

8 = (1+3k2/6kHT, -8, &, =31,
with

@,,.8_,)=(,8,,)=0,
and

@,,.8,,)=(3",8_,)=k/4
This choice has the advantage that E) +n and (I\)*_ . are the
)

¢I(2)(0)

+1

FIG. 2. Expansion ¢, (r) = Z¥ ya, (k)¢i"(r) over square-well Siegert
states for the first degenerate case, U~ — 21.1907, for k = 0,4,8. Dashed
lines indicate the exact solutions; solid lines represent the partial expansions
to + N. The imaginary parts of the partial expansions cancel when the
terms a, @, and @ _ ¢4 _ , are included together.

continuous limits of C/I;,, and @I, from nearby values of the
potential strength. However, it removes the presumably nat-
ural symmetry between the upper, or physical, components
of the regular and dual Siegert eigenvectors, ¢{(r)
=410

lIl. GENERALIZATION OF THE SUPERPOSITION
PRINCIPLE

As in our previous investigation,” we wish to expand in
the Siegert basis the vector corresponding to the exact scat-
tering wave function:

\/l\/k =Y a, (k)</f>,,.
With the same assumptions as previously,
L, = — k20, g0 =0,
P (ro) = 9P (ro), ¢;<”l(ro) =97 (r),
wecanevaluatea,, (k) = (82 ,\f‘,‘)/N,, through the equality
(k> — k2)X®,¥,) = (8],(~ L7 - k2)%8,).

Using similar manipulations as previously,” we obtain

$LP7(0) — (U(0) — k7)1 (0) | #>(0)

a, (k) =[

T (ki—k2) (k2 —k2)?

For nondegenerate eigenvalues, we have ¢/"(0)
= (U(0) — k2)¢1®(0) [see Ref. 7, Eq. (17)] and obtain
the same expansion coefficients as previously (with an addi-
tional factor of | due to the present change in the definition of
the “inner product” functional). In the degenerate case the
expansion coefficients explicitly display the repeated nature
of the eigenvalue. As we discussed above, the degenerate
eigenvectors can be constructed in various ways. All consis-
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2N,

I
tent choices of linear combinations will lead to the same ex-
pansions, but with different expansion coefficients.

Figure 2 compares partial expansions with the exact
wave functions for the first degenerate case of the finite
square well, as described in Table I. The rate of convergence
is much more rapid than for the much weaker potential stud-
ied previously (U, = — 0.5), largely because of the smaller
imaginary parts of the Siegert eigenvalues. The curves la-
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beled N = 1 include the small contribution due to ¢$"(r)
and the sum of the contributions of the degenerate ¢, ()
and ¢V, (r). We can see that not only is the present expan-
sion formula correct, but also that failure to generalize the

Siegert eigenvalue problem would lead to significant errors.
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The inverse problem is studied in a system of mixed spectrum of which the continuous part
coincides with that of a repulsive & potential and the discrete part coincides with that of an

attractive & potential.

From the standard analysis of the one-dimensional
Schrodinger equation we know that in a repulsive 8 potential
case, a reflection coefficient arises without any bound state,
while in an attractive §-potential case, a reflection coefficient
arises with a bound state. The inverse problem for the spec-
trum containing only a continuous part that is the same as
that of the attractive § potential has been studied in a recent
paper.' In that paper they find that the corresponding poten-
tial still has the same § distribution, but besides there is one
more repulsive piece to the right of the § distribution that is
just enough to prevent the formation of a bound state. In this
paper, we extend the inverse problem to a mixed spectrum
case in which the reflection coefficient comes from that of
the repulsive & potential and the discrete spectrum comes
from that of the attractive one. We find that the factorization
method can still be extended to solve this inverse problem.
For the corresponding potential we find three terms: the first
is the same repulsive § distribution; the second is an attrac-
tive piece to the right of the § distribution that is the same as
that in Ref. 1 except for a negative sign (because of this, we
think that this piece is responsible for creating such a bound
state); the third, as shown in Fig. 1, is to the left of the §
distribution. This term is to ensure that the potential also has
the same reflection coefficient in the presence of the bound
state. We are now going to give the details.

For one-dimensional Schrodinger equation

2
— L v o0 =k ()
dx
with potential

V_{x)= —2ab(x), a>0, (2)
it is easy to obtain a reflection coefficient

R_(k) =ia/(k — ia) 3

and a single bound state with a discrete level p = a and the
wave function

$_(x) =e— ™ (4)
from which one can deduce the normalization coefficient
] —1
p_= [f |#(x)|? dx] =a. (5)

The spectral transform, thus, is

S_[V_(x)] = {ia/(k —ia), — o <k< w, a,a}l.
6)

* On leave of absence from the Institute of Theoretical Physics, Academia,
Sinica, Peking, China.
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For the potential

V,.(x)=2a8(x), a>0 (N
it yields the following reflection coefficient:

R, (k) = —ia/(k + ia) (8)

and there is no longer any bound state. The corresponding
spectral transform is

S, Vi) ={—ia/(k+ia), — o <k<w}. (9)
Now we select a mixed spectrum

(10)

and ask what the form of the potential V(x) is.
To solve this inverse problem we begin from the
Gel’fand-Levitan-Marchenko equation®

K(xy) + M(xy) + f K(xz)M(p,2)dz=0, y>x,
(1
where the kernel M(x) is defined by
M(x) = _2_1_J‘ exp(ikx)R(k)dk + p exp( — px)
T J-w

(12)

Because of the existence of the 8(x) function, one has to
separate the function K(x,y) into three branches P(x.,y),
Q(x,y), and T(x,y) (see Refs. 1 and 3} as shown in Fig. 2,

= —af( — x)exp(ax) + a exp( — ax).

P(x,y), if x+y>0, x>0
K(xy) =10(xy), if x+y>0, x<0; (13)
T(xy), if x+y<0, x<O.
V(x)
o / '
FIG. 1. The inverse potential for the spectrum given by Eq. (7).
© 1988 American Institute of Physics 2254



FIG. 2. The branch regions for the function K(x,y).

The equations for these three functions are

P(xy) +ae2+Y L a f P(x,z)e 2+ dz =0,
O(x,y) +ae®**” + a T(x,z)e~ 0+ dz

X

-y
—a T(y,z)e*0+2 dz

+a T(x,z)e*0+2 gz

o0

+a Q(x,z)e 0+ dz=0.

The positive exponent term appearing in M(x) makes
the problem a bit more complex. However, it is still solvable
and the solutions are

POy =— =27 tanh(g) =,
\/fcosh(ax+¢) 3
ax —2ax
Q(xy) =ge-o 1277 (15)

4ax + 2e 2 — Je?o*
e™[1 — 2¢ — 2]
4ax + 2e~ 2> — J2*
2ax —2ax
ta dax + 1e°™* — 2e .
dax + 2e 2 — 2

T(x,y) = —2ae™

Hence
K(x,x+0%)
= —2afe /(2 + e~ 2**)]0(x)
dax — 32 — 22 1 4

® —a+agdy =, +a 8( —x). (16)
+a f_x Q(x,z)e dax + 20 _ joi
T(x,y) — @e=+» 4 ge=ox+» (14) The above equation yields the following potential:
J
V(x) = — 2K, (x,x +0%) =2ad(x) — 2a*0(x)csch’*(ax + ¢)
2 o3 H
_8(—x) 8a° sinh(¢ — ax) [ax cosh(¢ — ax) + sinh(¢ — ax)] . (17

[ax + sinh(¢ — ax)cosh(¢ — ax)]?

As seen from Eq. (17), besides the original 4 distribu-

tion, there are two more pieces added to the potential, with -

an attractive one to the right of the § distribution and the
other one to the left of the § distribution, which is attractive
in the region near the origin and repulsive in the rest region.
In conclusion, we have extended the inverse problem for
the spectrum coming from a single §-distribution potential
to the case of a mixed spectrum. The factorization method
can still be generalized to solve the problem. By comparing
the result with that in Ref. 1, we see that the potential form
+ 2a®d(x)csch?(ax + @) is responsible for creating (with
negative sign) or annihilating (with a positive sign) a bound
state with p = a and the corresponding normalization factor
p = a of the wave function.
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A quantum WKB approximation without classical trajectories
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The time evolution of a coherent state is studied in the limit #— 0, for a spinless nonrelativistic
quantum system in Euclidean space with smooth bounded time-dependent scalar interaction
v(x,t). The lowest-order WKB approximation is derived rigorously, complete with an explicit
bound on its L 2-norm error over a specified finite time interval. The method is based on a
constructive series representation of the classical action, thereby avoiding the need to analyze
the behavior of classical trajectories. The amplitude of the initial states considered is neither

assumed to be of rapid decrease, nor to depend on #.

I. INTRODUCTION

In this paper, the Wentzel-Kramers—Brillouin (WKB)
approximation of the solution to the time-dependent Schro-
dinger equation will be rigorously derived, without the use of
classical trajectories. For initial Cauchy data which belongs
to a large class of generalized coherent states, the leading-
order asymptotics as #—0 will be obtained by employing a
constructive series representation of the relevant classical
action. This rather direct approach to the problem allows
one to obtain a simple bound on the error in the WKB ap-
proximation (in the sense of the Hilbert space norm), com-
plete with explicit formulas for the constant coefficient ap-
pearing in the error estimate, as well as for the size of the time
interval on which this approximation is valid. This interval is
short enough to prevent the occurrence of caustics.

Consider a nonrelativistic quantum system of spinless
particles having mass 7, moving in Euclidean space, and
interacting via smooth bounded time-dependent scalar po-
tentials. The state space of such a system is the Hilbert space
F =L2(R%C), and the Hamiltonian is (for each time reR)
a self-adjoint operator H(#): DH(t) C 7 - 57, induced by
the differential expression

2
H(x, —”,-vx,z) =L (i vx) + o) .
I i

1.1
> (1.1)

Here xeR? is the variable of the system configuration space;
if there are N particles moving in three dimensions, d = 3N.
The function v: R X R — R describes the total potential en-
ergy of configuration x at time ¢, and # = 27# is Planck’s
constant. The assumption of a common mass m for all parti-
cles is not restrictive because a change of particle coordinates
can always cast a Hamiltonian with distinct particle masses
into the form (1.1).

Time evolution of the quantum system is described by
Schrodinger’s equation

# 2w — HOW, (eR),
dt

(1.2)
whered /dt denotes thestrongderivativein 5, and ¥ €7 is
the state of the system at time ¢. In this work, I will consider
the Cauchy problem for (1.2) obtained by specifying, at
some fixed initial time seR, initial data of the form

Y, (x) = p(x)exp[ (i/M)k - (x —y)]. (1.3)

® Present address: Department of Applied Mathematics, University of

Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
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Here k,pcR? are parameters of the initial data, and @isan #i-
independent function chosen from a suitable dense linear
subset of #°. It will not be assumed that ¢ has compact
support.

The WKB method has as its goal the determination of
an approximate wave function, Y (x,#), which is asymptotic
to ¥, (x) in the limit #— 0. To say the least, this method has
been widely studied.!~'® Let us briefly recall the standard
WKB approach to the above Cauchy problem, in order to
facilitate a comparison with the present approach. To avoid
unnecessary technicalities, assume temporarily that the po-
tential v(x) is static, and choose s = 0.

It is shown in Ref. 1 that during a sufficiently small time
interval, say |#| < T, the lowest-order WKB approximation
has the form

VY, (x) =Y(xt) + R (¢,x) , (1.4)
where
Y(x,0) =J (5, y(£,x)) " 2@ (y(£.x))expl (i/)S(1,%) ] ,
. (L.5)
and the error term R, has the L *>-norm bound
|’s|u<pT ||Ry(2,)|| < CHh. (1.6)

The functions J, y, and S appearing in (1.5) are determined
by solving a two-time boundary value problem for the
trajectories of the classical-mechanical system associated
with (1.1).

Let g=¢( * ;90k): ( — T,T) - R be the unique classi-
cal path satisfying Newton’s equation

d2

29N = —m~Vlg(n)), (1.72)
subject to the initial conditions
9(0) =¢o, 21(0) L (1.7b)
or m

Then for |7| < T, one must show that the map q(7; - ,k) isa
diffeomorphism of an open set containing supp ¢, onto an-
other open set in RZ. Next, J is defined as the Jacobian
determinant of this map

o
J(z,q(,)sdetb—’l (t:90.k) , (1.8)
0
while y is the inverse map
y(tx)=q(t; - k)~ '(x). (1.9)
© 1988 American Institute of Physics 2256



From these quantities one may obtain a classical path

T q*(T)=q(1;y(tx),k) (1.10)
which satisfies the boundary conditions
*
#=x, L=k, (L11)
or m

imposed at the times 0 and te( — 7,7). Finally, the so-called
action S is defined for this problem by

S(tx)=k-(y(tx) —y)

+ f dr[ig—(fg}m)z—v(q*(r))]- (1.12)
(4]

Clearly, the process of making the standard constructions
just outlined mathematically rigorous involves an elaborate
analysis of the difficult two-time ‘boundary value problem
for the classical trajectories. This problem is further compli-
cated when it is not assumed (unlike Ref. 1) that supp ¢ be
compact. Essentially this is because the constructions lead-
ing to formula (1.12) for S arise from using the method of
characteristics—generally a local method—to solve the clas-
sical time-dependent Hamilton-Jacobi equation
B L w5+ =0,
at  2m
subject to the initial Cauchy data S(0,x) =k - (x — »).

This brings us to the central idea of this paper: it is possi-
ble to entirely circumvent the introduction and analysis of
classical trajectories in deriving the #i— 0 WKB asymptotics.
This is based on the observation that one really only requires
a complete integral S of the Hamilton—Jacobi equation, hav-
ing the correct initial condition. The functions y(#,x) and 1/
J(2,y(t,x)) may then be constructed from S by straightfor-
ward differentiation.

Of course, the Hamilton-Jacobi equation (1.13) is a
nonlinear first-order partial differential equation in d + 1
variables, and so finding explicit solutions is a nontrivial
task. Nevertheless, it will be shown that the complete inte-
gral S(x,t;k,s), appropriate for defining Y (x,?), may be ob-
tained constructively as a convergent infinite series. The
terms in this series involve parametric integrals of the deriva-
tives of potential v over linear paths, the derivative structures
being determined by tree graphs.

One advantage of using the constructive series solution
S is that it eliminates the need to use a local method to solve
(1.13); specifically, it avoids the implicit function theorem
used to obtain the map y in (1.9). Moreover, all the proper-
ties and estimates of .S and its derivatives required to prove
the desired #—0 asymptotics of ¥, may be obtained using
elementary analytical methods. For example, an (x,k)-uni-
form time interval on which Y'(x,¢) exists will be found, and
an explicit formula for the coefficient C appearing in the
error bound (1.6) will be computed. With C known, the
statement ““#i is small”’ may be interpreted more precisely.

The plan of the paper is as follows. In Sec. II the action
S(x,t;k,s) will be constructed and shown to satisfy the Ham-
ilton-Jacobi equation. The properties of its derivatives re-
quired in the WK B analysis will be derived. Section III gives
a brief summary of those aspects of the exact quantum-me-
chanical system that are of interest. In Sec. IV the WKB

(1.13)
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wave function Y is defined and studied, and its asymptoticity
to the exact evolution is proved in Theorem 2 (the main
result of the paper). The proof employs the elegant method
of Maslov and Fedoriuk’ for bounding the total error. In
Sec. V this result is compared with related ones in the litera-
ture, and some concluding remarks are made. The Appendix
contains a proof of the form taken by the terms in the series
defining S.

It is worth remarking on the motivation for the form of
this series, which is closely related to the representation of
Hamilton’s principal function obtained in Ref. 17. Its formal
origin derives from comparing the WKB approximation and
the connected graph representation'® of the mixed coordi-
nate-momentum representation propagator (x|U(¢s)|k),
where U(1,s) is the quantum time evolution operator. The
details of such a comparison are given in Sec. 4.1 of Ref. 18.
In terms of the function S* discussed there, one has
S=85*—k-y

Il. CONSTRUCTION AND ANALYSIS OF CLASSICAL
ACTION

The action S(x,t;k,s), which is the essential ingredient
of the WKB approximation for (1.1)-(1.3), is studied in
this section. Here .S is shown to be a solution of the classical
Hamilton—Jacobi equation, and its associated Jacobian de-
terminant D is shown to be positive on a sufficiently small
time interval. The estimates of derivatives of .S and D re-
quired for the WKB error estimate are also made.

I begin by defining the class of potentials » that will be
employed throughout the remainder of the paper. Here N
denotes the positive and W the non-negative integers. The
gradient of a function with respect to a vector argument is
denoted by V, while d denotes the derivative with respect toa
scalar argument. Thus if 2cW¥ is a multi-index, and /eW,
then

(V3 ) (x,t) = vg(i)lu(x,z) .
at

Definition 1: A potential energy function vis said tobe in
the class % if

(i) ve€C = (R? X R;R);
(ii) v is bounded,
ol . =sup{o(x,n)]|(x,0)eR!XR} < o 5

and (iii) there exist U,B,K€(0, « ) such that if acW¢, leW,
and |a| + />0, then

V23|, <UB K /\d ).

It is simple to show that % is a real vector space, and
that if ve %, then v( - ,?) is a real-analytic function for each
fixed ¢.

As was mentioned in the Introduction, the terms of the
series used to define S will be specified with the aid of certain
gradient structures associated with tree graphs. It is useful to
review the notation used to describe these objects.

A (labeled) tree graph'® Ton neN vertices is an ordered
pair = (VT,ET). The vertex set ¥'T of T consists of n natu-
ral numbers—the ““vertex labels.” The edge set ET of T con-
sists of # — 1 unordered pairs of distinct elements of VT
thus if BeET is an “edge,” we may write 8 = {ig, jz} C VT,
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ig < jg. Of course if there is only one vertex, ET is empty.
The tree T'is a connected graph: T cannot be expressed as the
union of two graphs on disjoint vertex sets. Hence each ver-
tex label ie VT must appear in at least one edge ScET. Vertex
sets consisting of the first n natural numbers are usually en-
countered, so the following abbreviation® will be used:

i={12,.,n} (neN).

The symbol .7V denotes the set of all trees having vertex set
V. According to Cayley’s theorem,'® if the cardinality
|V|=n,then | T ¥|=n""2

In order to explain the gradient structures to be associat-
ed with a given tree, some preliminary definitions are need-
ed. Denote the unit interval by / = [0,1],and letg: I X I-R
be the unit interval Green’s function

g&e ) =max{£&€ -1, (2.1)

which is clearly a continuous symmetric function of its two
arguments.

Next, if x,keR? t,seR, and m > 0, define a space-time
linear path w: I-R? XR,

w@=x+E-DUE—Dk/ms+ & —5s)). (2.2)

Now we introduce a product of » potentials ve % evaluated
at different arguments. Specifically, ¥,: (R? XR)"-R,

V. ((x',7"),...,(x",7")

EV,,( X (x",T”))EH v(xA1?), (2.3)
p=1 PER

so that V, is C=, and a symmetric function of its
n (R? X R)-valued arguments. Let V, (icii) denote the gra-
dient with respect to the ith vector argument; in particular,

v Vn( >"< (x ”,T”)) =p(x",7") - Vu(x'\7) - u(x", 7).
p=1

Finally consider a given tree T€7 n. With each edge
B =g, js} in ET, we associate a differential operator by,
which acts on potential products ¥V, of the form (2.3). This
by is a function of an n-tuple £ = (£,....§, )€l " and is de-
fined by

bp=bs(8)=g(£,.£,)V,,*V,, . 24)
Notice, since g is symmetric and the gradients commute,
that b, is indeed a well-defined function of the unordered
pair 8. With these notations in place, the coefficient func-
tions that play the key role in the series expansion of S can be
defined.

Definition 2: For neN define the “tree sums”
a,: (R*XR)>-Rby

. (X 1k, EJ d” b ]
a, (x,t:k,s) B §Te2]_n ﬁgr 8(£)

X V"( X w(s‘,,)) , (2.5)
pe
where if » = 1 the empty product is taken as unity.
Lemma 1: For all n, a,eC =, and for n>2,
la,|<n" UK~ 1), (2.6)

Further, if neN, a,fc W, IeW, then for |a@ + 8| >0,
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|V$VEa, |<n® ~2U K 2n— Dpyle + 81

X |At /m| 8\ (K 7Jd )= +#1,
while for |a| + />0,
|vtlza§an |<n"‘2U"K2("' 1)n\a|+l

X(B+ (K |k | /Ndm)(K/Nd)'™ . (2.8)

In these equations |k |, = 2¢_, |k,|, the time displace-
ment is denoted by Ar=¢ — s, and V, (resp. d,) denotes the
derivative with respect to the ith vector (resp. scalar) argu-
ment.

Proof: These results are straightforward consequences
of Definition 1, and the fact ve % . For example, (2.6) results
from Cayley’s theorem and the fact that 2(n — 1) gradients
occur in Mg zrbg if TeZw. In (2.7) and (2.8) the inter-
change of differentiation and £ integration f,, d "¢ is justi-
fied by Theorem B3 of Ref. 21. |

The constructive series representation of action S can
now be defined using the tree sums a,, . It is convenient at this
point to fix an initial time seR, a yeR, and a mass m for the
remainder of the discussion.

Definition 3: In terms of Ty, = (1/K) (m/eU)'/?, let Q,
be the time segment (s — 77, s + T ), and define a function
D=P( -, ;- ,5): R XQ, XR?Y-R by the series

0 n—1 2n—1
O(x,tk,s) = z (=)'~ At

ne=1 nlm"—!

2.7)

a, (x,t;k,s) . (2.9)

Also define S=S( -, - ; * ,5): R¥XQ, XR‘>R by
S(x,tks)=k- (x —y) — At(k?/2m) — ®(x,t:k,s) .
(2.10)

Notice that the first two terms on the right-hand side of
(2.10) are a solution of the free Hamilton-Jacobi equation
[(1.13) with v =0] with initial value k+ (x — y). Since
® = 0if At = 0, orif v = 0, then clearly ® should determine
the modification to this solution produced when v is present.
The following lemma studies the convergence properties of
the series P, thereby showing .S is well defined.

Lemma 2: (a) For each fixed re(}, series (2.9) con-
verges absolutely, and uniformly for x,k€R? The conver-
gence is also uniform for ¢ in compact subsets of {)..

(b) Function ®eC=. For all a,fcW9 W, and
(x,t,k)eDP (the domain of D),

VIVE 31 D(x k) = 3 (= (_d_)’
ne1 nim"— 1 dt

X [At? = 'ViVEa, (x,tk,s) ] .
(2.11)

This series converges absolutely, and uniformly for xeR“ and
(t,k) in compact subsets of O, X R% If / = 0, the conver-
gence is uniform for keR“.

Proof: Both (a) and (b) are straightforward conse-
quences of Lemma 1, standard tests for series convergence,
and Theorem B3 of Ref. 21. Since the results of (b) are espe-
cially important in the remaining analysis, its proof will be
sketched in the most tedious case where |8 |,/> 0.

Write z = (x,1,k)eD® and let
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L@ =[(=)""Ynm"~'1At?" " 'a,(z,5)
be the summand in (2.9). According to Theorem B3 men-
tioned above, the following three conditions must be verified
toprove (2.11): (i) forevery n, f,eC =; (ii) V*f, (2) is abso-
lutely summable over neN, for all yeW?¢* !, zeD®; and (iii)
for every compact Z C D and ye W *+ ! there is a summa-
ble sequence {b, = b,(Z,7)} such that

|V, (2)|<b, (2€Z, all n).

In view of Lemma 1, condition (i) holds, and it suffices
to verify the summability in (ii) and (iii) for n> N, where
NeN will be conveniently chosen. Turning to (ii), let

y = (a,lB); since f,€C = we may differentiate in the fol-
lowing order

V. (z) = (%)'vﬁv: [ (x,t.,k) .

As in the proof of Lemma 1, we have
vivia, = [ a3 1] ] veveva( x, wee).
" 17 7 LgeET p=1

From (2.2) and (2.3) one sees that each d/dx; in V3 be-
comes E;,'= ' Vﬁ’, while each 3/3kj in Vf becomes
3 _(At/m)(§, —1 )V‘s’ Here & is the Kronecker delta, so

5 eW" has value 1 at J, and 0 elsewhere.
Choose N large enough so that 2N — 1 + |8 | > I. Then

3 V7, (@)

n>N

d t
— 1 n—1+|8ly—1|{ & A 2n—l+lﬂ|f d"
z (et ) I(dt) g 1" ¢

n>N

el

j=1

(5 m)

(which is obviously convergent if Az = 0). Apply Leibnitz’
rule to the action of (d /dt)’; those powers of d /dt acting on
V #V2a, may be taken inside the £ integral (by a proof simi-
lar to that of Lemma 1), and then replaced by

$[$ 6 vEvisa)

p=1 lao=1

Upon applying the bounds in Lemma 1 to the resulting
derivatives of v, and using |§, — 1|<1, one finds after some
rearrangement the majorizing series

3 V7, @)

n>N
<§:( 2At2U) ml—lﬂl{n_K'—))a-b-ﬁllAtIlBl_l
En n K*\j@

Xi(l\ (2n—1+lﬁl)| IAtl—r

r}(2n—1+|ﬁl
lkll]l T i—r—2
X{B + .
[ Jydm

On the right-hand side here, employ the following bounds
(for 0<rgi, At #0):
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(:)a(ll, |At] ~"<max{1,|Az| '},

B+K|k|/(Ndm))~'<(1+B+K|k|/(dm)).
Also note that

{
S Al 2n+ Bl -(2n+ 1B —2)

c@2n+ Bl —r) =n"?P(n),

where P,(n) is a polynomial in 2, of degree /, and is positive
for n>N. These facts lead to the final estimate

hd 2 2 n o0 at
S V5@ Y (EAE_U) n_(ﬁ)l sl

n»N n=N m n! \/E

Bl—1_
x (122 s,
m

where C = C( |At |k |1,58,K,B,d) is independent of n. Em-
ploying the bound n"/n!<e"/y2, and the fact |At| < Ty,
then (2.12) is seen to be convergent by the ratio test, verify-
ing (ii).

Finally (iii) follows from (2.12) noting that the sum-
mand is monotonically increasing in |Af |, behaving near
At =0 like |Az|*+18I=1-1 which is nonsingular since
n>N. s

The next goal is to establish that .S'is indeed a solution of
the Hamilton-Jacobi equation. This is the content of the
following proposition and theorem.

Proposition 1: The family of functions {a,, },..., of Defini-
tion 2 satisfies the following integral identities for all
(x,t,k)eR*+ 1

(2.12)

a,(xtks) = f dév(w(&)); (2.13a)
I
a, (x,tk,s) = —l"il(l)fdggz"—z
t=1 I
X{(V,a,°Via,_w(é):ks) (nx2).
(2.13b)
Proof: See the Appendix. [ ]

Let H.: R** 'R be the classical Hamiltonian asso-
ciated with (1.1), viz.,

H_ (x,p,t) = (1/2m) p* + v(x,t) . (2.14)

Theorem 1: Let ve% . For each (k,s)eR“ X R, the func-
tion S( -, * ;k.8): RYXQ, R is a solution of the Hamil-
ton-Jacobi equation

8,S(x,t:k,5) + H.(x,V,S(x,t:k,5),¢) = 0 (HI)

Progf:From (2.10) and Lemma 2 itisclear S( -, - ;k,s)
is C'! so it must be shown that (HJ) holds identically for
(x,1)eR? X Q.. A direct computation of the left-hand side of
(HJ) using (2.10) results in
S+ H (x,V,5,1t) = — 3,®(x,t;ks) ~m™'k-V,®

+ (1/2m)(V,®)> + v(x,1) ,
(2.15)

where omitted function arguments are the same as their last

appearance. Appealing to Lemma 2, substitute series (2.9)
for ®, differentiate term-by-term, and evaluate (V,®)? by
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the Cauchy product; the right-hand side of (2.15) becomes

« (_)n(At2)n—l
;.21 n! m

X[[(Zn-— 1) +Azi+—A—’k-v,]an(x,t;k,s)
o m
12\ (n
~6,,,lv(x,t)+-2—z ] (Va,Via,_ )(xtks)t.
/=1

(2.16)

The 277! is absent if n = 1. It will now be shown that the
{ -+ }in (2.16) vanishes for all neN. Consider the n =1
case (similar arguments apply if n>2). Replace (x,?) with
w(A)in (2.13a), where A€l. In doing this the following com-
position law is used:

W) | (o = wy =[x+ (4 — 1)Atk /m]
+ (&= DA~ 9)]k/m,
s+E[AE—9])=w(é) .
Therefore (2.13a) has become
a)(w(d);k,s) = f dé vw(&A)).
1

Now multiply this by A, change the integration variable to
¥ = £A, differentiate with respect to A, and set 4 = 1 to find

[l + Ati + —Ai k- V,,]al(x,t;k,s) =v(x,t) .
a m
Hence the n = 1 term in (2.16) is zero. [ |

At this point, it is worth noticing two useful conse-
quences of the Hamilton—Jacobi equation and the smooth-
ness of S. First, if (HJ) is differentiated with respect to the
parameter k, one obtains

V. S(x,t;k,s) + (1/m)V,V,SV.S=0; 2.17)

in the second term the d X d matrix V,V .S [with elements
(V,V,8),;=V5V /S ] multiplies the vector V,S. The sec-
ond consequence concerns the determinant D
=D( ", ;" ,5): R XQ, XRY-R defined by

D(x,t;k,s) =det V,V,S(x,t;k,s)
=det[§ — V,V,®(x,t1;k9)],

where § is the unit matrix (i.e., Kronecker delta).
Lemma 3: For all (x,t,k)e® D, the following continuity
equation is obeyed:

d,D(x,t;k,s)

+V, « {D(x,t;k,s)V,H,(x,V,S(x,t;k,5),t)} = 0.
(2.19)

Proof: This follows from differentiating (HJ) with re-
spect to x; and k;, and performing a number of algebraic
manipulations. ]

I now introduce a slightly smaller time domain than £},
on which the remaining analysis will be done. The reason for
this is that on this smaller domain the useful quantities de-
rived from § are particularly neatly characterized.

Definition 4: Given o0€(0,1), define (o)
=[1+ 1/0y2mr] ~ /2Ty, and introduce the time segment

Q. (o) =(s—t(o)s+ t(a)). (2.20)

(2.18)
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Note that (o) =0 as 0—-0; it will always be assumed that
0€(0,1). The family of convergent series y: [0,1) XZ—-R
(where Z denotes the integers),

o

r(Ah=3 A" n, (2.21)
n=1
A, =(1+ (oy2m)~ ")~ 'e(O,1), (2.22)

will occur frequently in subsequent estimates.
Lemma 4: For xkeR? teQ (o) and a,BeW¢,
| + B | > 0 one has the estimate

VSV 20 (x,5k,5) |
Kle+oi-2 (t(a)

Bi—1
< ) Y(Aosla+B|—2).

VZrdie+8 \ m
(2.23)
In particularifa = §,, B = §; (i, jed),
|ViVi®(x,5k.s)| <o/d, (2.24)

where Vi =V is the ith component of the gradient on the / th
vector argument.

Proof: Estimate (2.23) follows at once from (2.11)
and (2.7). ]

Based on these explicit estimates, many of the critical
properties of the relevant quantities derived from S will now
be obtained.

Proposition 2: For any t€Q), (o), keR? the following map
is a C = diffeomorphism:

f=V,5(" ,tks): RISRY.

Remark: For comparative purposes, I point out that if a
study of the classical trajectories were to be made, then this
diffeomorphism would turn out to be the map x — y(#,x) in
(1.9). However, no use will be made of this fact.

Proof: Lemma 2 implies f is C *. Let ucR? be arbitrary
and consider the map F: R?— R defined by

F(x)=(At/m)k + u + V,P(x,5k,s) . (2.25)

If x,x’eR?, applying Taylor’s formula and Schwarz’ inequal-
ity to the jth component of F shows

|Fj(x) — F;(x")|<|x — x| |[VF{(x' + A(x — x"))|,
for some Ae(0,1). But (2.25) implies that for any zeR¢,

IVF,(2)] = [V V4@(z5k5)] ( S (")z)m g
i\Z)| = z,t; W) < —_— =—,
Fi 17 2 ,';1 d ‘/‘7
where (2.24) was used. Hence
d 172
[F(x) — F(x)| = (z (F;(x) — F}(x'))z) <olx —x'|.
=1

Since o < 1, F is a contraction mapping and therefore
possesses a unique fixed point, say x, = F(x, ). From the
definitions of f and F, this is equivalent to the statement
Sf(x, ) = u. Thisshows f is surjective, while the uniqueness
of x, implies that f is injective. Finally, /' ~'eC ~ by the
inverse function theorem. [ ]

The WKB error estimate to be found in Sec. IV requires
some bounds on the determinant D, and its derivatives. This
section concludes with a study of these. It is useful to begin
by establishing some notation for matrix norms, and recall-
ing a few basic facts from matrix analysis.
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Let 4,BeC?*? be d X d complex-valued matrices. The
operator norm of the linear transformation associated with
Ais

|4 |=sup{|du| |ueC?, |u| =1},
where |u|?> = 2¢_,|u;|>. This norm has two well-known
properties of interest. The first is that

|det 4 |<||4 ||, (2.26)

while the second®? (Neumann series) shows thatif | B || < 1,
then § + B is invertible and

lE+B < —|Bh~". (2.27)
Another useful matrix norm is the Hilbert—-Schmidt norm

d ) 172
ll=( $ u,r)"

Lj=1
It may be used to estimate a trace via
| Te(4B) <[4 ]2/|B ]2, (2.28)

which is seen by regarding Tr(4B) as a Hermitian_inner
product of two vectors 4 T,B on the index set d Xd, and

applying Schwarz’ inequality. The matrix norms || - || and
| - ||, are both algebra norms, viz.,

4B ||<l|4|l 1B, NA4B|.<[|4IllB ], (2.29)
and are numerically related by

4 1<l <V |4 ] - (2.30)

The derivative of a determinant will be treated as follows. If
A4: (a,b) C R—C?*4is C' and everywhere invertible, then
one has the well-known result

det A(A) (detA(/l))Tr[A(/{) A Y,
(2.31)

which follows from differentiating the permutation expan-
sion of the determinant and manipulating the resulting co-
factors. The inverse matrix appearing in (2.31) may be esti-
mated by?

4~ lI<l4]“~ 7 det 4] . (2.32)
Lemma 5: Let x,keR?, teQ, (0), and i, jed. Then
(1 — )< D(x,t:ks) < (1 + 0)?, (2.33)
|Vi D(x,t;k,8) |< (K /\2m)y (A1) (1 + )", (2.34)
|Vi V4 D(x,tk,s)]
<[EKAZDPALD A +0) 1]
X(1—0o) 41 +d~"?%)
+ (KP/2my(4,,2) (1 + o)~ 1d =2 (2.35)

Remarks: (a) Bounds for |V,D| (and the Laplacian
|A,D|) are obtained by multiplying the constants on the
right-hand side of (2.34) [and (2.35)] by Vd (and d).

(b) Result (2.33) together with Theorem 1 implies that
S'is a complete integral (in the sense of Jacobi’s theorem?*)
of the Hamilton-Jacobi equation, on the domain
R X O, (o) XR%

Proof: Begin with (2.33). Let A =6 — V,V,® be the
matrix whose determinant is D. Using (2.24) and (2.30) we
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have | — V,V,®|| <o < 1. It follows that

1D <[4 [“< (1 +a)?,
which proves the right inequality in (2.33). Applying the
Neumann series result to 4 gives .

4 <1 =V, V@) '<(1—0a)"".
Consequently (2.26) implies

|D|=|detd ~'|7'>l4 7Y 74> (1 — o).
This proves (2.33) once it is seen that D > 0. But this is true
because 6 — £V, V,® is invertible for £e[0,1], and
[0,112& — det(5 — £V,V,P)eR is continuous, with value
laté=0.

Turning to (2.34), we employ (2.31) with A = x; and
find
|ViD|=D|Tr(4 ~'Vid)|<D||4 '||LIVi4].. (2.36)

But D[4 ~'||,<DVd |4 ~li<Vd |4 |4~ '<Jd (1 + o),
and from (2.23) one easily gets

V54 ||, = ||V} ¥, V,®|,< (K A2m)y(4,,1)d =2,
Inserting these results into (2.36) establishes (2.34). A simi-
lar pattern of estimates applied to the identity

ViViD =V{DTr(4d ~'ViA)

+DTr(4 7' [Vi{ViA-V 44 7'Vi4 ])

leads to (2.35). [ |
IIl. THE QUANTUM SYSTEM

In this brief section, the quantum system associated
with the wave-mechanical Hamiltonian (1.1) is defined.
The relevant properties of the time evolution governed by
Schrodinger’s equation are also recalled. Finally, the initial
value problem, whose WKB approximation is sought, will
be formulated.

Definition 5: Let K,: Dy—57 = L*(R) denote the
self-adjoint extension of the Laplacian on R, specifically

D,={ye’ |’ F P(a)eL 2(R%)}, (3.1a)
FK(a)=a>F y(a), (3.1b)

where . €% (7°) (the bounded operators on 5% — ) de-
notes the unitary Fourier transform,

Fi(a) = (27)“”2dee_"""‘z//(x) (peL'NL?).

For #i,m > 0 the free Hamiltonian is defined by Hy = — (#/
2m)K,: Dy—#°. For ve% and tcR, one has the potential
energy operator V(1)eZ (7)), V()¢ (x)=v(x,t)P(x).
Finally, the total Hamiltonian is defined as the self-adjoint
operator

H(t) = Hy + V(£): Dy— 3¢ . (3.2)

Proposition 3: There exists a two-parameter family of
“Schrodinger evolution” operators {U(¢,s)eZ (#°) |t,seR}
with the properties (for all £,5):

(a) U(1,5)(Dy) C Dy

®) US| =1;

(c) U(y, - ) is strongly continuous;

(d) U(s,s) = I (the identity on 5%°);
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and

(e) on the domain D,, U(,s) is strongly differentiable
with respect to ¢ and s (separately), and satisfies

m%www=ﬁmwww, (3.38)

-mgwmw=wmwmw (3.3b)
Ay

for all YeD,,.

Remark: Of course the operators U(t,s) have a number
of additional properties, such as unitarity. Those listed
above are sufficient for the subsequent development.

Proof: The results follow readily from the general theo-
ry?® of linear evolution equations in Banach space, with
time-dependent unbounded operator coeflicients, together
with the facts that H(¢) is self-adjoint with z-invariant do-
main Dy, and t+— V(¢) is strongly continuously differentia-
ble. [ ]

The next result is required in order to compute the ac-
tion of H(¢) on a smooth WKB wave function.

Lemma 6: Let D, ={yeC>NL?*(R?)|AyecL ?}, where
Ay denotes the ordinary Laplacian of the C? function y:
R?~C. Then D, C D, and K¢ = Ay for yeD,.

Proof: This follows from a standard functional-analytic
argument proving that D, is a core for K,,. (See Ref. 22, pp.
298 and 299.) |

The preceding results in this section, even though well
known, would require a considerable amount of work to
prove from first principles. However, since such results are
ultimately an essential part of any serious discussion of
quantum evolution (and its approximation), the work re-
quired to prove them should not be regarded as contributing
to the level of difficulty of the WKB method being presented
here.

Let us now consider the Cauchy initial value problem
(IVP) for Schrédinger’s equation. Suppose ¥eD,, is given.
Then Proposition 3 implies that

R 3t V,=Uts) g’ (3.4)

is a strict solution of Schrodinger’s equation with initial val-
ue ¢. That is, ¥,eDH(¢) for all ¢, (1.2) holds, and ¥, = ¢.
More generally, if Y7\ D,, then (3.4) defines a general-
ized solution of the IVP.

In the next section, initial data ¢ of the form (1.3) will
be considered. Specifically, I will assume that

¥(x) = @(x)exp[ (i/f)k+ (x - »)], (3.5)

where geC *(R%C) and VepeJ? for all ac W with |a|<3. A
simple calculation then shows yeD, C D, so the resultant
exact solution (3.4) of the Schrédinger IVP (1.2) and (1.3)
is in fact a strict solution. Moreover, the initial states of the
form (3.5) form a dense linear manifold in 7.

IV. THE WKB WAVE FUNCTION AND ERROR ESTIMATE

This section contains the analysis of the lowest order
#i—0 asymptotics of the Schrédinger IVP (1.2) and (1.3),
for times in Q, (). The constructive series solution .S of the
Hamilton-Jacobi equation is used to define the WKB-ap-
proximation wave function Y. A few simple properties of Y
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are derived, and used to show that Y is asymptotic, as #—0,
to the exact solution of the IVP, with respect to the norm of
.

Definition 6: Denote by f RYXQ,(g) XR‘->R? the
map

S(x)= flx;t,k,s) = V,8(x,k,s) . (4.1)

Interms of £, S, and D define the “lowest order WKB wave
function” Y: R? X Q, (o) - C by

Y(x,0) =VD(x,t;k,5)@ ( f(x))exp[ (i/B)S(x,t;k,5)], (4.2)

where k,ycR“ are the parameters appearing in the initial data
(1.3), and @ has the properties assumed at the end of
Sec. II1.

As indicated in (4.1), the arguments £,k,s of f will be
notationally suppressed, the reason being that it is useful to
regard x — f(x) as a diffeomorphism of R?, according to
Proposition 2. Regarding (4.2) recall that D>0 [Eq.
(2.33)]. From the initial #=s values S=k+(x —y),
f=x, D=1, it is seen that Y satisfies the initial condition
(1.3) exactly,

YT(x,5) = @(x)exp[(i/f)k- (x—y)]. (4.3)

Two technical properties of Y which allow the Hilbert space
operations H, and d /dt to be applied to Y via partial differ-
entiation are obtained next.

Lemma 7: (a) For each e}, (o),

Y( - ,0)eD, = {gpeC>*NL?|AgeL?}.
(b) The map Q. (o) D t—Y( - ,t)eL? is strongly
continuously differentiable, with

[%T( . ,t)](x) =dY(xt) [Q(0), aa. x].

Proof: (a) From Lemma 2 and the hypothesis on g, it is
clear Y( - ,#)eC2. Also, upon noting that Dis just the Jacobi-
an determinant of f, one employs the change of integration
variables x' = f(x) to show Yel 2,

fdx|T(x,t) | = f dx D(x,t;k,s) |@ (f(x))|?

~ [axlperr =g <.

It remains to show AY'( - ,#)eL % A straightforward differ-
entiation of (4.2) with respect to x yields the estimate

|AY (x,2) |
@([(55) + (G vs)

AL, L]
Y R ﬁIAlsl e (f(x))]

+ 160+ (S0 + 2w vl

+

X198 (G)] + IO IATIR N - (44

The next step is to observe that each g-independent factor in
the { --- } of (4.4) has a finite x-independent bound. For
example, in Lemma 5 it was shown that D ~' < (1 — o) —¢
and |V,D |, |A,D | < const. Inasimilar fashion it is possible to
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derive x-independent bounds for the other quantities |V,S |,
|AS |, IVA(x)|2» |Af | appearing in (4.4). These bounds will
not be exhibited here because their precise form is not re-
quired in the remaining analysis; it is only their existence at
this stage which is of importance.

The result of these observations is that

f a8 (50) < [ dx Dixss) (ol S00)
+ C,|Vp (fx))] + C||VVe (S0))]]2)?

where C; depend on k and o but not on x. After changing the
variable of integration again, and noting that |@ |,|V@ |,
|IVVe ||,€L ? by hypothesis, we see AY( - ,t)eL %

(b) Here the proof relies on a bound study of the first
and second partials, 3 Y and Y, of Y with respect to the
time argument. Consider the more difficult case of 32Y.
After differentiating (4.2) twice with respect to ¢, one ob-
tains an estimate quite analogous to (4.4) except that the
derivatives of Y, D, S, and f with respect to x are now with
respect to ¢. Again, it is sought to bound the @-independent
coefficient functions by x-independent constants. This can
be accomplished by first eliminating the occurrence of any ¢
derivatives of S or D through repeated use of the Hamilton—
Jacobi (HJ) and continuity (2.19) equations. Once this is
done, the resulting coefficient functions only contain deriva-
tives of S or D, with respect to x and k, and they may be
estimated analogously to (a) above. These steps result in

|87 (x,1) | <D(x,k,5) " {Colgp (f(x))]

+ GV (f0))] + ClIVV@ (S} »
(4.5)

with C, independent of x. This implies 2Y( - ,t)eL % anda
similar (but simpler) calculation shows d Y( - ,t)eL? as
well.

With these results, the strong derivative (d /dt) Y ( - 1),
teQ, (o), can be shown to exist and equal d Y( - ,¢). In fact,
by employing Taylor’s formula, one has

2

llt,Lt[T( ) )t')_T( ',t)]_aT( .)t)

- (" - ’)2 J dx|3*Y (x,7) |2,

4.6
3 (4.6)

where |7 — t| < |t’' — t|. Since the constants 6,. in (4.5) are
independent of te€)_ (), it is seen that the right-hand side of
(4.6) tends to zero as ¢’ —¢. A similar argument shows that
t— dY( -,t) is strongly continuous. L]

Another ingredient of the error analysis is the “approxi-
mate Schrodinger equation” satisfied by Y'; it will be studied
next.

Lemma 8: For €€}, (o) the following identity holds:

ﬁ2

d
iAi—Y () =H@®)Y( " ,t) +—
a (.0 (0Y( )+2m

g 4.7)

where g,€5” has the explicit form
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g.(x) = D(x,t;k,5)"/? exp[% S(x,t;k,s)]

4D _(3.DY]

{52 - (22 Jetseon

+%V1D'V(rp°f)(x)+A(<p°f)(x)].
(4.8)

Furthermore the map ¢+ g, is strongly continuous.
Proof: Thanks to Lemmas 7 and 6 we may compute as
follows:

[(mi— H(t))T( : ,t)](x)
dt

=ihdY(x,t) + EﬁiA’Y‘(x,t) —v(x,)Y(x,t)
m

="z exp| Ls]{ -~ ptseN[a5 + 997 +9]
# 2m
+ #p (f())(2D)
X [a,p +Lwp-vs+ DA,S)]
m

+ #Vp (f(x))+ [Zl:(x) + %’V\fl(x)V,S”

+ (##/2m) g (x), (4.9)

where df /dt=4, V,S and g, (x) is given by (4.8). Now the
entire { -+ } in (4.9) vanishes due to (HJ), (2.19), and
(2.17). This implies g, and that (4.7) holds.

In order to prove the strong continuity of ¢+ g,, one
cannot rely on Lemma 7 because H,, is an unbounded opera-
tor. Instead one relies on the by now familiar type of argu-
ment used in the proof of Lemma 7. Such an analysis leads to
the bound

9
at

g,(x).<D(x,t;k,S)”2 Y CL(a)|Ve(fix)
acw?
|lal<3

[0, ()],

with C, (o) independent of x. With this estimate g, is easily
shown to be strongly continuous in . It is this part of the
analysis that requires the hypothesis that the third partials of
@ remain in L2, [ |

So far, Eq. (4.7) only says that Y satisfies Schrodinger’s
equation approximately—to within a term (#/2m)g,
which tends (in L ? norm, and in modulus) to zero as #—0.
But in quantum mechanics, Schrodinger’s equation is an
evolution equation in Hilbert space, and so one really wants
to show that Y( - ,¢) is close to the exact solution ¥, in the
sense of the norm of 7. This brings us to the principal result
of the WKB analysis.

Theorem 2: Let ve%, #,m>0, seR, and 0€(0,1). Let
H(t) be as in Definition 5, and ¥.: R — 57 be the solution of
the Schridinger initial value problem,

d

ifi—W, = H(t)¥, (teR), (1.2)
dt

¥, (x) = @(x)exp[(i/f)k- (x —p)] (x€RY), (1.3)
where geC*(R%C) and Vpe? for all acW? with |a|<3.
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Let Y be constructed via Definition 6. Then for all te€), (o),
¥, =Y D<C, (o) |t —s|fi/m, (4.10)
where the finite constant is
C,(0)=4||Co(a)|@ | + C1(0) [V | + C,(0)||[VVe |2l »
(4.11)
and C; (o) are given in (4.16) below.

Proof: The first stage of the proof is to obtain the follow-
ing integrated form of (4.7):

Y(-,t)=U(s)Y(",s) ———f dru(tr)g,.. (412)

Here the strong Riemann integral® of a continuous function

of r is used. Equation (4.12) is trivial if £ =5, and more

generally follows by integrating the identity

: ’T)] = - -li U(t)T)gr .
2m

4 [U,T)Y( (4.13)
dr

This identity (which is simple to obtain formally) is a conse-
quence of (4.7), the strong differentiability of U(t, - ) on
D, 2 Y( -,7), the backward equation of motion (3.3b),
and the strong continuity of U(s, - ). Since also 7+ g, is
strongly continuous, (4.13) may be integrated to yield

(4.12).
The exact solution (3.4) obeys a similar equation,

VY, =U(s)¥, = U(t,s)Y( - ,8), (4.14)

by (1.3) and (4.3). Upon subtracting (4.12) from (4.14),
taking the L ? norm of the result, and employing the unit
norm of U(¢,s), one has

1%, = YO nll<@v2mle—s| sup |-

This is essentially (4.10). Using the formula (4.8) for g, (x)
yields the estimate

llg:|l <fde(xtk,s)[ 1aD| + IV

et
+ {IIVf(x)IID“IVIDI + |Af(x) [} Ve (f(x))|

U0 HTV (Al (4.15)

The quantities in the three { - -- } in (4.15) all have x-inde-
pendent bounds. The bounds on D and its derivatives, and
the result |VAx)| = |6 — V,V,®||<1 + o, were obtained
in proving Lemma 5. Similarly, [|Vf(x)||,<Jd + 0. Using
the results of Lemma 2 it is easy to show
|8f(x)| < (K N2m)y(4,,1) -
Upon using these bounds, and changing integration vari-
ables in (4.15), one arrives at (4.11) with the constants
Coloy =1 —0) " ¥ [ (KN2m)y(4,, 1) (1 + )7 ']?
X d+Wd) +3(1—0) UK /\2m)

XY(As2)(1 + )~ Nd , (4.16a)

Ci (o) = (KN2m)y(A,, D [((1 + o)/ (1 —a))'Vd +1],

(4.16b)
Cy(0) = (Vd + 0)*. (4.16c)
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The y(A,,I) were defined in (2.21) and (2.22). |

According to (4.10), the error in the WKB state
Y( - ,t) is also small if the time displacement is small, or if
the mass is large. In the case of small |At |, one can choose o
to be close to 0. Since lim,_,C;(0) <6 2, one sees that the
error for short times is determined by the second partial de-
rivatives of the amplitude @. In the case of large mass, it
seems reasonable to expect that an m— « asymptotic ap-
proximation, simpler than (4.2), could be obtained by trun-
cating the series expansion (2.9) for S at an appropriate or-
der of m~'. A similar large mass asymptotic expansion for
the propagator [the integral kernel of U(z,s)] has recently
been derived in Ref. 27.

The result of Theorem 2 may be trivially extended to
estimating the error in the expectation value of any bounded
observable 4e % (F), in the state Y. A simple calculation
[assuming ||¥,|| = 1, and using the unitarity of U(z,s)] re-
sults in

(Y ,0),AY( - ,t))
W, AV,) —
oY) = ol

<4 - 1w, = Y-, - const,

for small enough |t — s|fi/m, and with the constant of
order 10.

V. CONCLUDING REMARKS

In order to evaluate the merits of the above result, it is
useful to compdre it with other available results in the litera-
ture, for similar problems.

(1) Maslov and Fedoriuk' have developed a very gen-
eral rigorous theory of the WKB approximation applicable
to a broad class of wave equations. The equations they con-
sider are in general defined in terms of pseudodifferential
operators, and might well be said to include the majority of
cases arising in physics. In its most general form, of course,
their theory is technically rather difficult.

It is of interest to compare with the results of their theo-
ry when it is specialized to the case of quantum time evolu-
tion. Such aresult is provided by Theorem 12.3 of Ref. 1. The
problem considered there is in one way more general in that
the phase function k- (x — y) in the initial data (1.3) is
replaced by a more general function S,eC *(R?). Their
Theorem 12.3 also obtains the higher-order asymptotics in
powers of #.

On the other hand, this is compensated by several rather
restrictive assumptions. First of all, the potential is assumed
to be time independent (this is not a limitation in their meth-
od), and a function of rapid decrease, v (R%R) (the
Schwartz space). The consequent decay of v(x) as |x|—
excludes the use of their result for many-body problems,
where typically the total potential v will not decay for large
|%].

Second, Maslov and Fedoriuk assume the initial ampli-
tude function @(x) in (1.3) has compact support. This as-
sumption, ubiquitous in their general theory, is needed be-
cause of the reliance of their method on an analysis of
classical trajectories. It allows them to establish the exis-
tence of a local diffeomorphism y(¢,x), Eq. (1.9). Finally, it
is worth mentioning that Theorem 12.3 requires # and
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|t — 5| to be “sufficiently small,” with no estimate given on
the size of the allowed regions of these parameters. (In a
pioneering paper, Maslov® gives an estimate for the allowed
time region, which is dimensionally incorrect, even after the
mass is restored from the value m = 1 he used.)

In contrast to these assumptions, note that for the pres-
ent results, it was neither assumed that v decay [for example,
class % contains potentials of the form sin(a - x) ], nor that
@eC =, nor that fi be “small enough.” Furthermore the size
of the allowed time region is known, as is the constant C,, in
the error estimate (4.10).

(2) In a series of interesting papers,”®—° Hagedorn has
rigorously studied the semiclassical limits #i—0, and m — oo,
of quantum evolution, using a particular kind of coherent
states. The quantum system he considered is similar to the
one here, except that v(x) was assumed time independent,
only to be C2, and was allowed to have a quadratic growth in
x. (Of course from a physical standpoint such behavior for
large |x| is rather artificial.) The class of initial states ¥, that
he employed were roughly of the form (1.3), but with @(x)
taken to be an #-dependent Gaussian. Notably, this Gaus-
sian amplitude becomes very sharply peaked as #i—0.

The method used by Hagedorn to obtain an approxi-
mate wave function at time ¢ is not the WKB method, but
might better be described as a “wave packet method.” *! In
this method the parameters appearing in the Gaussian wave
packet are evolved via a set of ordinary differential equa-
tions. This has the undesirable effect of forcing the wave
packet to keep the same “shape” as it evolves, i.e., it main-
tains the same form as a function of x—in this instance a
Gaussian form. On the other hand, from a practical stand-
point the wave packet approach is easier to implement, be-
cause it only involves integrating a system of ordinary differ-
ential equations, rather than computing a classical action
S(x,t;k,s) by some means.

Let us briefly consider the theoretical implications now.
With his approach, Hagedorn®® obtained a lowest-order er-
ror that only scales like #'/2, in contrast to #' in (4.10).
Apparently this is because the shape of the approximate
wave function was rather constrained, since in a later pa-
per,*® more general approximate wave functions were shown
to exist that would yield errors of order #'/2, for a fixed
choice of /eN. It was also shown that for more general #-
dependent initial amplitudes g€, an approximate wave
function with error & (#'/?) existed. It is important to note
that these initial amplitudes also become highly localized as
#i-0.

In these results there is again no explicit estimate given
of the constant C in the error estimate, nor for the allowed
time region of validity. Theorem 1.1 of Ref. 28 appears at
first sight to be valid for arbitrarily large times. However,
this can only be the case if # is assumed so small that the
initial state becomes so peaked that it will not spread signifi-
cantly (relative to distances over which the potential oscil-
lates) during the chosen long time interval. (Theorem 1.1in
Ref. 30 is formulated in a way which avoids giving this
impression. )

A recent extension of Hagedorn’s methods by Robin-
son>? has resulted in an & (%72~ €), € > 0, WKB approxima-
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tion valid for longer times (away from caustics). In this re-
sult, C is not known in detail, and it is required that # be
“small enough” and that the initial amplitude have compact
support.

(3) Recently, Klauder has been promoting*’ a so-called
“global, uniform, semiclassical” approximation to wave-
equation solutions. In the case of quantum mechanics, this
approach basically reduces to a study of the evolutuion of
Gaussian coherent states having the initial form

¥, (x) = (Q/mh)*"* exp[ — (Q/2%) (x — y)°]

xexp[(i/fiYk (x—p)], (5.1)
where >0 is a parameter, in addition to k,yeR®. These
states, like Hagedorn’s, are strongly peaked about x = y for
small #. Klauder’s approach is to apply a standard WKB
approximation to describe the evolution of (5.1). However,
because of the #i-dependent amplitude in (5.1), the initial
condition for the relevant action in this approximation is
seen to be complex: k- (x —y) +i(Q/2)(x —y)> The
method of characteristics then implies a need for complex-
valued trajectories.

Unfortunately, this leads to problems with this ap-
proach. One problem stems from the fact that for a general
real-analytic Hamiltonian H_: C* X R C, the trajectories
may fail to be defined for all reR. This can occur even when
the real-valued trajectories exist for all z. Hence with appro-
priate initial conditions a trajectory may “reach infinity” in
an arbitrarily short time. As a result, it may not be possible to
define the required action function for all the values of x,k,y
that are necessary, for any fixed #s. It is not appropriate to
delve further into these matters here, except to remark that it
seems many of the suggestive claims important to Klauder’s
theory have not been proved.

For the reasons discussed in (2) and (3), it was decided
to use an initial amplitude function @ in (1.3) that (as in
Maslov’s study) is fiindependent, and is further as general as
possible. It is hoped that the WK B derivation presented here
for this system is found to be relatively simple, self-con-
tained, and detailed in its result.

A few closing remarks about possible extensions of the
present work may be of interest. First of all, there is some
truth in the statement that the use of the constructive series
solution for S, with coefficient functions determined by a
sum over tree graphs, is a kind of “trick” valid only for Ham-
iltonians similar to (2.14). However, the following observa-
tion indicates a possible means for generalization. Series
(2.9) can be viewed as a perturbative series, in ‘“powers” of
the potential v, about the action associated with the free
Hamiltonian p?/2m. This suggests the modifications neces-
sary for a more general Hamiltonian, decomposable into a
solvable part plus a perturbation. The vector component of
linear path w(£) should be replaced by an unperturbed tra-
jectory, and the resulting analog of (2.13) should become a
recursive definition of the action’s expansion coefficients.
Their analytical properties must then be obtained by induc-
tion from these recurrence relations. In general, a closed
form expression like (2.5) will not be available.

The result of Theorem 2 just gives the lowest-order #—-0
asymptotics. It is evident, however, that in obtaining this
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result, all the ingredients necessary for constructing higher-
order corrections, by methods similar to those presented in
Ref. 1, have been constructed. The key item in these higher
corrections is the diffecomorphism f of (4.1). Only the low-
est-order asymptotics were derived here because this is by far
the most interesting result, and it avoids unnecessary com-
plications in the presentation.

Finally, let us notice where the classical trajectories are
lurking. As was mentioned in a remark following Lemma 5,
function S(x,t;k,s) is a complete integral of the Hamilton-
Jacobi equation, with independent parameters k€R?. Thus .S
induces classical trajectories via Jacobi’s theorem. They may
be shown to have initial momentum p(s) = k, and final con-
figuration g(¢) = x [cf. (1.11)]. Such an analysis is similar
to the one found in Sec. IV of Ref. 17 for trajectories having
two fixed end points.
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APPENDIX: ARBOREAL COMBINATORICS

In this Appendix, Egs. (2.13) will be proved. This proof
is in many respects similar to the corresponding proof that
arises in the study of Hamilton’s principal function.'” How-
ever, in the present proof there are several computational
differences, and a significant simplification, relative to the
analogous proof presented in Ref. 17. Moreover, (2.13) is of
fundamental importance in the construction of the solution
S to (HJ), soits derivation will be presented with an empha-
sis on the new features.

Let us begin with a few additional notations for trees and
their combinatorics. If »eN and /en, let J, be any of the
(") distinct /-element subsets of n + 1, and denote its
complement by J{= n+ 1\J;. The sum over all such
J; € n+1foragiven/is denoted X, .

Suppose Te.7 Vand BeET. If Bis deleted from ET, then
T is broken up into two disjoint subtrees T#%,T % satisfying

V=VTeUVT#?
ig€VT?, j,eVTh

ET=ETSUETSU{ B},

Finally, let F denote the set of all tree graphs whose vertex
sets are finite subsets of N. The following combinatoric iden-
tity is the key to proving (2.13).

Lemma 9 (tree grafting): Let neN and suppose f:
F?x N?- R is a function of an unordered pair of trees and an
unordered pair of vertex labels, i.e.,

AT rq)

=AT"Tirg) =fAT,T'q,r) .

Then
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% ; > Y >3 ATT g

Ji TeTJ, 17§ red, ged §

= Y ¥ ATE,TSigJs) - (A1)

Te7 n+ 1 BeET
Proof: See Lemma 10 of Ref. 17. ]
Turning now to the proof of (2.13), one sees (2.13a) is
just the definition of a,. Next, replace n by n + 1 throughout
(2.13b), where now neN. Let W, be the resulting integral on
the right-hand side,

1 & (n+1
W=—— ( )szlxl“
212 / i

=1
X(Via,*Via, . _ ) w(d)k,s). (A2)

Taking a,, a, ., _, to be defined by the tree sums (2.5), it
must then be shown that W, is the tree sum a, , ,. Using
(2.5), the gradients in (A2) may be computed as follows:

V.a,(x,t;k, =Jd’ [ b]
14, (X,5:k,8) , §TEZ/L_ ﬁ!-E[T B

XZVV,(X w(§p)

r=1
A similar expression can be written for Vi, . , _;(x,k,s),
but using integration variables &, ;,....£,, ;. When these
expressions are substituted in (A2) they must be evaluated
at (xt)=w(l). By use of the composition law
W(E) | x =wey = W(E,A) [see the equation after (2.16)],
this results in

— _ii( +1)J‘d4/12nJ- dn+1§
2 /< 1 T e+t
X3 3 Lt I b

1 T'e5 n+ INTBeET B'eET’

n+1
D v,.qun+,(p>__<lw(§p/1)). (A3)

VT geVT"

X

i

The factor (";*') may be replaced by a sum over all l-ele-

ment vertex sets J, C n + 1, which play the role of 7 in
(A3). Following this by a change of integration variables
&, —&,/A yields

1
Wn= _ dn+1§f dﬂﬂ"‘l
M

yn+1

1 & 53
LS55 s [n (& -1,
2 I=1J; Te7J, 77 J{LBEET A

<L G- )ve ]

n+1
X3 > V,-v ¥ ,,+1(>< w(§p))]~ (A4)
et gey =1
In (A4), I use the notation M=max{§,,...£,, }, and

£z Emax{g,.ﬁ,gjﬁ} arises from the Green’s function g, in b.
The{ --- }in (A4) may now be simplified by use of the tree
grafting identity (A1), which after a few manipulations re-
sults in
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el g ()

e ng 1 ET
n+1
X Vn+l(x w(gp))
r=1
1
x| (—=)" dA A—E2 ] AS)
[( ) B;TJ-M ﬁEH{ﬂ)( §Y) (

It remains to show that the [ :--] in (AS5) equals
g (€7 — 1), since this is the product of g(£, ,§; ) over
the edge set ET. Evaluating the A integral one finds

n—1 _Mn—y

1
e 1= __yetn
[} #go( ) —

(1)
X(Z 2 &im "'§A>(u))-' (A6)
BeET A C ET \{ 8}

The sum 3% requires explanation. First of all, when u = 0,
=@ = 1. Otherwise A={4(1),....4(u)} C ET\{B} de-
notes a set of u distinct edges in ET \1 B}, and ='® specifies
asum over all possible distinct sets 4 of this type. Performing
the summation in (A6) yields

n—1

[ 1=3 (=)*"(1—M"=#
pn=0

(n)
X 2 §:(1)"'§§(u)-
ACET
The upper limit of the z summation may now be replaced by
n, because the summand vanishes for ¢ = n. Doing this and

recalling that [ET | = n for Te7 n + 1 gives
(1=J[ €7 -D- [ € -m.

veET veET
The second product in (A7) vanishes: for suppose M = &,
le n + 1; since T is connected, /ey for some yeET, and
& = £ because §; = M>£, for all i. This proves the result
desired in (A5), which then becomes W, =a, , , as was to
be shown. m

(AT)

2267 J. Math. Phys., Vol. 29, No. 10, October 1988

'V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximation in Quan-
tum Mechanics (Reidel, Dordrecht, 1981).

2y, P. Maslov, USSR Comput. Math. Math. Phys. 1, 123 (1962).

*M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972).

4G. D. Birkhoff, Bull. Am. Math. Soc. 39, 681 (1933); Proc. Natl. Acad.
Sci. USA 19, 339 (1933).

5D. Bollé and D. Roekaerts, Phys. Rev. A 30, 2024 (1984).

SPh. Choquard, Helv. Phys. Acta 28, 89 (1955).

’C. DeWitt-Morette, Ann. Phys. (NY) 97, 367 (1976).

D. Elworthy, A. Truman, and K. Watling, J. Math. Phys. 26, 984 (1985);
A Truman, J. Math. Phys. 18, 2308 (1977).

?D. Fujiwara, J. Anal. Math. 35, 41 (1979); Duke Math. J. 47, 559 (1980).

%M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11,
1791 (1970); 12, 343 (1971).

'3, B. Keller, Ann. Phys. (NY) 4, 180 (1958).

12H. J. Korsch and R. Méhlenkamp, Phys. Lett. A 67, 110 (1978).

M. M. Mizrahi, J. Math. Phys. 22, 102 (1981).

4T. A. Osborn and F. H . Molzahn, Phys. Rev. A 34, 1696 (1986).

15L. S. Schulman, Techniques and Applications of Path Integration (Wiley,
New York, 1981).

1°A. Voros, Ann. Inst. H. Poincaré 24, 31 (1976).

F. H. Molzahn and T. A. Osborn, J. Math. Phys. 27, 88 (1986).

'*F. H. Molzahn and T. A. Osborn, J. Phys. A: Math. Gen. 20, 3073 (1987).

SR. J. Wilson, Introduction to Graph Theory (Academic, New York,
1975).

20L. H. Loomis and S. Sternberg, Advanced Calculus (Addison-Wesley,
Reading, MA, 1968).

21B. C. Carlson, Special Functions of Applied Mathematics ( Academic, New
York, 1977).

22T, Kato, Perturbation Theory for Linear Operators (Springer, Berlin,
1984), 2nd ed.

2T, Kato, Numer. Math. 2, 22 (1960).

2]. M. Gelfand and M. V. Fomin, Calculus of Variations (Prentice-Hall,
Englewood Cliffs, NJ, 1963).

8. G. Krein, Linear Differential Equations in Banach Space (Am. Math.
Soc., Providence, RI, 1971).

W, O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering Theory in Quan-
tum Mechanics (Benjamin, Reading, MA, 1977).

?7L. Papiez, T. A. Osborn, and F. H. Molzahn, J. Math. Phys. 29, 642
(1988).

28G. A. Hagedorn, Commun. Math. Phys. 71, 77 (1980).

G, A. Hagedorn, in Trends in Applications of Pure Mathematics to Me-
chanics, edited by R. T. Knops (Pitman, London, 1981), Vol. II1, p. 111.

30G. A. Hagedorn, Ann. Phys. (NY) 135, 58 (1981).

31R. G. Littlejohn, Phys. Rep. 138, 193 (1986).

328, L. Robinson, J. Math. Phys. 29, 412 (1988).

3], R. Klauder, “Global, uniform, asymptotic wave-equation solutions for
large wave numbers,” AT&T Bell Laboratory preprint, 1987; Phys. Rev.
Lett. 56, 897 (1986).

F. H. Molzahn 2267



The brachistochrone in almost flat space
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This paper is an extension, within the framework of general relativity, of the relativistic
brachistochrone discussed recently by Goldstein and Bender [J. Math. Phys. 27, 507 (1986)].
Assuming that the gravitational field due to a spherically symmetric source with mass M at
equilibrium is weak, it is found that the brachistochrone, for a falling particle of mass m,
described by ©(r), with © an angle and r a distance measured from the center of symmetry, is
in general a hyperelliptic integral. The latter integral can in one case be calculated exactly in
terms of the normal elliptic integrals of the first and third kinds and the elementary
transcendental functions. It is shown via a numerical computation using the sun’s gravitational

field as a reference that one can recast this exact version into a simple form, viz., Jr&@=aq,

where a is a constant.

1. INTRODUCTION

In a recent paper Goldstein and Bender' have presented
a relativistic generalization of the classic brachistochrone
problem for a particle falling from rest in a uniform gravita-
tional field. As is well known, the brachistochrone is the
trajectory joining an initial position 4 to a final position B
along which the time of transit of the falling particle is a
minimum. While the classical nonrelativistic trajectory is
known (with A4 as the origin of the coordinate system) tobe a
cycloid of the form x = b(1 — cos t), y = b(t — sin t), with
the parameter b determined by the end point B, Goldstein
and Bender (GB) show that in the relativistic case, this is
just one of three possible curves. In particular, the two new
solutions are very different from the nonrelativistic case in
that, for both of them, y(x) increases without bound as x
increases. It should be noted here that the motion of the
particle of rest mass m in Ref. 1 is still assumed to take place
in a uniform gravitational field with the force law F = g, g
being a constant, and (1 — v*/c?)V? = m.

In this paper we have relaxed the above-mentioned re-
striction to a uniform gravitational field. Specifically, we
consider the motion of the particle in a weak gravitational
field in the sense of general relativity. Asis well known in the
literature?? such a weak field will be represented by a metric
8.p that differs very little from the Minkowski metric 7,4.
Thus with 7,5 = 7% = diag(1, — 1, — 1, — 1), the gravi-
tational field is said to be weak when |g,s — 7,5| € 1. More
precisely, with the assumption that g, can be expanded as
an infinite series

8ap =Nap + 8 +8ag + (1)
we limit ourselves in the first (linear) approximation, writ-
ing g,z = 1,5 + &7 instead of Eq. (1). As described in
detail in Refs. 2 and 3, the linearized Einstein field equations
can then be solved for g4 once the source of the gravitation-
al field, viz., the energy momentum tensor 7,4, is given.

In this paper, we consider a distribution of matter at
equilibrium described by Ty, = pc?, T4 = 0 for a8 #00,
with the density p being time independent and spherically
symmetric, so that p = p(r), r being the distance from the
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center of symmetry. The resulting g,,5 is then represented®>
in the interval

ds* = (1 = 2®8/c*)? dt?
— (1 42®/c%) (dx? + dy* + d2?) . (2)

Here ® = GM /r, outside the material distribution, with
M = fp(r)d>x and G the familiar gravitational constant.

Since the problem is now posed within the framework of
general relativity, there will be two important qualitative
differences from the work of Ref. 1 which we shall merely
mention below, relegating the details to subsequent sections
in the paper.

First, the motion of a material particle of rest mass m in
the gravitational field whose metric is represented in Eq. (2)
will now be governed via Hamilton’s principle by the La-
grangian L = — mc ds/dt. This will replace the flat-space
Lagrangian discussed in GB and given there by L
= —mc*y '+ &, with y2=1-0/c & =mc’
X (exp(gx/c*) — 1), and v* = (dr/dt)*. Second, since we
are interested in the path of minimum time rather than the
geodesic (which is the path of extremal action ), there will be
one more point of departure from Ref. 1; namely, the ele-
ment of spatial distance will now be given, following Eq. (2),
by

dl = ((1 +2®/c¢%) (dx* + dy* + d2*))"?,

instead of the familiar d/ = (dx? + dy? + dz®)"/? as in Ref.
1. Thus the line integral representation for the time of fall
will be given by

B
4a U

with dl as given above, v being the particle velocity . In Eq.
(3), we shall regard A4 as lying outside the range of the weak
gravitational field, namely, at infinity, so that Eq. (3) can be
rewritten

B
T=J. "'1—1’ 3"
w U

with the form of v being obtained from the principle of con-
servation of energy. Because of the assumption of spherical
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symmetry, so that ® = ®(r) only in (2), the Lagrangian L
when written out in spherical polar coordinates should be
cyclic in one of the angles, so that the motion of the particle
can be taken, as in case of central force motion, to liein a
plane with its location specified by the coordinates (7,0), r
being measured as mentioned earlier, from the center of the
material distribution whose gravitational field is described
by the metric g,; represented in Eq. (2). The brachisto-
chrone will then be obtained by solving the Euler equation
associated with Eq. (3’) with the initial conditions © = 0,
u( = 1/r) = 0. This program is carried through in the sec-
tions detailed below.

The plan of this paper is as follows. In Sec. IT we obtain
the expression for the velocity v appearing in (3'). Then by
using this expression, we recover via the Euler equation in
Sec. ITI the equation of the brachistochrone in the form usual
to central force motion, viz., © = ©(«). This relation can-
not in general be written out in a closed form. More precise-
ly, it turns out, as we shall see in Sec. III, that one has to
evaluate a hyperelliptic integral of the form

Ou) = “ R(1)dt ’
b (P(1))"?

with P(t) being a fifth-degree polynomial in 7. As is well
known, for evaluating such hyperelliptic integrals* one
usually has to resort to direct numerical integration, or to the
use of complicated series expansions.

However, as we shall see in Sec. IV, it is possible to fudge
a certain constant £ (analogous to the constant & in Ref. 1)
s0 as to obtain an exact dependence of ©(u) on ; this is,
unfortunately, possible only for one value of k. Still, this
exact result given in Sec. IV is far too complicated, as it
contains a linear combination of the normal elliptic integral
of the first and third kinds, besides elementary functions like
the natural logarithm whose arguments involve the Jacobian
elliptic functions sn u, dn u. For our purposes it is useful to
resort to an approximation whereby the complicated terms
are rendered harmless by being extremely small, in fact, al-
most zero. The gravitational field outside the sun, which is
regarded in the literature® as weak, turns out to be handy in
this connection. As discussed in Sec. V it affords a more
accessible version of the brachistochrone given in Sec. IV.

Finally, in Sec. VI we conclude with some comments on
our results. Herein we offer, besides an exact analytic expres-
sion for the brachistochrone obtained by GB, a discussion of
the more difficult problem, technically speaking, of the bra-
chistochrone associated with the Schwarzschild metric. We
hope to return to the latter in a subsequent publication.

Il. ENERGY CONSIDERATIONS

Following the discussion in Sec. I, the Lagrangian for
the material particle of rest mass m in the gravitational field
is given by

ds 29 N2
L= —mc== —mc? "(1—-—— ) , 4
dt 4 c v )
with ¢ = ¥?(1 + v*/c?). It is easy to obtain the Hamiltonian
from (4). It is given by
H=m*l — 2d/F)y)~?g_, (5)
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with g_ defined below. As H in (5) is cyclic in time ¢ by the
principle of conservation of energy, we must also have
H=mc, 6)

since the particle is assumed to fall from rest. It is easy to
obtain an expression for v from Eqgs. (5) and (6) through
simple manipulations. We obtain

g.v'=2%_®, (7
where g, = (1 + (2/¢°)®). With & = GM /r, we see that
g_, for example, can be written as g_ = (1 — uR) with
ru =1 and ¢?R = 2GM, defining the Schwarzschild radius
R for the material distribution of mass M. Since for macro-
scopic bodies for which the gravitational field can be regard-
ed as weak (e.g., the sun) the Schwarzschild radius is very
small compared to their actual radius, and since we are
studying the motion of the material particle of rest mass m
outside the material distribution causing the gravitational
field, the case when r = R can be safely ignored in (7).

lil. THE EULER EQUATION

In terms of the polar coordinates (7,0) the element of
spatial distance, following (2), is given by

dl = g'*(dr* + * d6?) 1z
so that, using (7), Eq. (3') can be rewritten

B
T=f g+ (dr + 7 de*)'?p -2

B
=J g+dr(1 +r2(129)2)v21)—”2, (8)

r

with D = 2g_ ®. The time taken T'is a functional of the path
O(r)sothat T w_ill be minimum when the Euler equation

i(_ﬁ"’L)=o, o-99 ©)
dr\ 00’ dr

is satisfied. Here / denotes the integrand in Eq. (8); thus one
infers from (9) that

—=k, 9"

where k is a constant. Equation (9) is the analog of the Euler
equation in GB. Substituting for 7, it is easy to obtain

Pg . O'(D(1 +70)) 2=k, (9")
In terms of u, (9”) can be rewritten
g.,90'= —k(D(1 + u?0?))'/?, 9™

with ©’ being the first derivative of © with respect to u. Note
the negative sign in (9™). Since the particle of mass m is
assumed to fall from rest at infinity (where ¥ = 0) to the
point B where u > 0, it follows that, for k > O (this choice can
be made without loss of generality), the solution of (97),
namely, ©(u), will be a decreasing function of .

Equation (9”) immediately leads to the solution [with
6(0) =0]

O(u) =f di(g’, — Du*k*)~"*(Dk?*)V?, (10)

Q

which is the equation of the brachistochrone. Substituting
for g, and ® one can rework (10) as

S. G. Kamath 2269



O(u) =I drt(1 —tR)(P(1))~ "2, (109
0
with P(2) =t(1 —tR)((1 + tR)*> —a’t3*(1 — tR)) and
a® = k %c*R. Note that for the integral to be real we require
that (a) uR<! and (b) (1 +uR)*/(1 — uR)’>a®. The
former requirement is easily met since the particle of mass m
as mentioned in Sec. II is moving in the gravitational field
outside a macroscopic object whose Schwarzschild radius R
is very small compared to its actual radius. The latter bound,
however, is an upper limit on a® and hence on k 2 for fixed R.
The integral in the above equation is a hyperelliptic inte-
gral, which is further manipulated as follows. Using a
change of variable s = tu we obtain, with o = uR,

1
O(u) = aumf ds s(1 —so)(P(s))~"/2.
0

Although P(s) is a sixth-order polynomial in s, it can be
rewritten as a fifth-order polynomial through the use of
z=1/s, so that

O(u) =ﬂ"2Jw dz
1
z-—

2[ z— o) (z+0) —B(z—

0'))]”2 ’

where 8 = a*i>, and we have now displayed the polynomial
P(z) in full in (11). In the following two sections we shall
study the dependence of © on u.

IV. AN EXACT RESULT

We shall show Therein that the polynomial
P(z) = 2*(z + 0)* — B(z — o) has a double root at various
values of B. The utility of this double root lies in that the
hyperelliptic integral in (11) can be evaluated exactly with-
out recourse to approximation. Naturally, for general 3, Eq.
(11) will represent the brachistochrone associated with a
weak gravitational field. From P(z) we obtain

dapP

dz
Let z = z, denote the double root of P(z). Then P(z,) and

P

dz l.—,,
should be zero. This yields

B= 4z} + 602} + 22,07 . (12)

Clearly B is zero when z, = 0 and z, = — ¢. Ignoring these
cases, since S = 0 implies X = 0, we find the remaining solu-
tions for z, using (12) and P(z,) = 0. Thus

P(25) = ~ 328 + 50°22 + 22,0° =2,P(z,) . (13)

To obtain values of z, other than 0 and — o, we should
solve P(z,) = 0. This can be done by standard methods.> We
obtain with the notation ¢ = cos /3, s = sin u/3 the follow-
ing three real roots:

=42 + 60Z° + 2z0° — BB.

3250 = 20¢)5, (14a)
3282 = —o(ec + Y35, (14b)
328 = — o(c— 35, (14c)

with 9 tan u = 2//11.
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For each of these z, there is a corresponding 8. How-
ever, as can be easily checked, only z§{" leads to a positive
value of B, viz.,

38" =803(1 + 5¢% + 13¢/5/6); (1%

2§ and z§» lead to B? = O(10~%¢*) and B <0, respec-
tively. We are not reproducing these tedious though
straightforward calculations here. These latter values of z,
are therefore ignored, leading to a unique value for 8. Since
the double root for the polynomial P(z) is now given by
(14a), the remaining roots are easily found by standard
methods.® They are complex conjugates of each other and
denoted by

z, = —p+i(2z"p)'?, (16a)
with p = z{"" + ¢. Thus
ow =g [ detz— o)
1 z(z—-zo)((z—0)(Z-Z+)(Z—Z~))”2,
(16b)

where we have now dropped the superscript on z§" and V.
The integral in (16b) can be exactly evaluated in two steps
with the help of Ref. 6. Thus with Q(z) denoting the polyno-
mial under the square root in (16b) we find for the integral

I, = J.co dz(z — z,) N Q(z))~""?
]

the result
(™ 1—cnu
I, = lf — ' d
1= 81 o 1+gcnu “ (17a)
=L —ura-g
nq
X (7(.*/(¢" — 1), /) — g filu ], (17b)
where
g=A—l/2, 2=(b,—0')2+af,
2’A=A+b —0, 2b,=z, +z_,
4a%= -—(Z+——Z_)2, nq=(A—‘0'+zo)’ (18)

=F(4,)),
o, ol —o+A)=1—-—0-—-A4.

n=A+0—2z, u =cn '(cosd,j)

¢ =amu, =cos"!
In (17) it is understood that ¢°#1, and F(4, ) and
7(é,4°/(g* — 1), ) are the normal elliptic integrals* of the

first and third kinds, respectively. Both are zero when ¢ = 0.
The last term in (17b) is obtained from®

h arctan(sd u,/h), if /(¢ — 1) <f,
f(u ) =1_ - (193)
I 1n(d—““—13“—’.'?“—“-1), if /(g — 1)>7,
dnu, —hsnu,
(19b)

with a2+ (1 —A) ) =1—¢* h? = —h>

In (17a) and (19), cn u, sn 4, and dn u are the Jacobian
elliptic functions, with sd ¥ =sn u/dn u. It is of course
known that cn 0 = 1 = dn 0 and sn 0 = 0; thus the lower
limit in (17a) is not displayed in the various terms in (17b).
There is one more integral denoted by 7, below that we need
in order to evaluate (16b), and it is given by
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I,= fw dzz='(Q(z)) V2.
1

Clearly I, is just I, evaluated at z, = 0; it can be reached via
(17b) et seq. through appropriate replacements. Thus for
the value of B given by (15) we have the exact dependence of
©O(u) on u. It works out to

O(u) =B"*(1 — 0/z5)1, + B'*(0/2y)], .

(20)

(21)

V. NUMERICAL COMPUTATION

Equation (21) is clearly far too complicated to be of
immediate physical interest. It would be ideal if it could be
simplified considerably by application to a physical situation
so that the equation for the brachistochrone would be more
accessible. Happily, the gravitational field outside the sun,
which is generally considered® as weak (R /r = 107> at the
surface of the sun), comes in handy in this connection. It
needs to be pointed out here that it is our unfamiliarity with
astrophysics that prevents us from extending the consider-
ations of this section to other stellar objects whose gravita-
tional fields are also deemed to be weak. Still, we believe that
for such stellar objects the brachistochrone should not be
vastly different from the expression derived here.

For the sun, the Schwarzschild radius R and the actual
radius are about 3 km and 10° km, respectively (it is not
necessary to use precise numbers here). Thus, as the particle
of mass m falls from infinity in the sun’s gravitational field,
increases from zero to about 10™%, so that #R < 1 throughout
the motion of the particle.

We now turn to a numerical estimation of the various
entities in Eq. (18). With 9tanu =211 we obtain
4 = 36.39 deg. Thus (15) leads to B = 28.042 264¢°; clear-
ly,as o<1, B < 1. We shall choose a positive square root of 8
in our calculations below; clearly this corresponds toa k > 0.
Inserting the value of u into (14a) one can calculate z, in
units of o, and hence b,, a,, and A4 as defined by (18). We
obtained A°=19.116 8440°, 7 =3.914 8540, and 7q

= 4.829 7080. Thus ¢, and hence ¢, is obtained; we find
that ¢°/(¢* — 1) >;* as ¢* = 1.521 986 and j* = 0.104 62.
We therefore get the term in Eq. (21) denoted by ©, as

0, =0.164 576[ — u, — 4.279 218(7(4,2.915 76,0.323 45)

— 1.233 69f1(u)))] , (22a)

where fi(u,) will be reached via (19b) since ¢%/
(¢ — 1) > 2 It works out to

fitw) = lp ot esnin)
dnu, —csnu,/)’

with ¢ = 0.596 429.
The second term in (21) denoted below by ©, can also
be written down in an analogous fashion. We find

0, =0.515278[ — u, + 2.686 14

X(m (¢, — 0.650 249,0.323 45) — 0.627 719f,(u,))] ,
(23a)

where f)(u,) is now given by (19a) since ¢*/(¢* — 1) </

To reassure the reader, we find, for I,, 7 = (4 + 1)o,

7 = (4 — 1), with 4 ? quoted above and ¢* = 0.394 031.
For f,(u,) we thus obtain

(22b)
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Si(u;) = 1.150 971 arctan(0.868 832sd u,) .  (23b)

Equations (22) and (23) can now be examined in the light of
our observation that o € 1 throughout the motion of the par-
ticle. From (18) we note that, as 0,4<1, w~=1, or
@=cos™'1,0r ¢~0. Thus as u increases from zeroto 10~°, ¢
remains almost constant at zero.

Let us now estimate ©, as given by (22). The value of u,
is reached via ¥, = F(¢, j); since ¢ is nearly zero, and*

En(l)[F(:ﬁ,j)/sin =1,
we infer that u, ~¢. Again, as

lim{($,a j)/sin ] =1,
we infer that 7{4,¢*/(¢* — 1), j)=¢. The elliptic functions
work out as

snu, = (1 —cos?¢)!/?

=241 —))"*(1 —g+4)"'=24 "2

and

dnu, = (1 —fsin®¢)!?~1.

Thus the logarithm in (22b) becomes

1+csnu,

¢ log( )z262 snu,.
1—csnu,

We thus obtain
O, = —0.868 832¢ + 0.618 136 sn u, . (24a)

Similar remarks apply to ©, given by (23). We get, with
b=0.868 831,

O, = b — arctan(bsn u,) . (24b)
Thus, adding (24a) and (24b), we get
© =0.618 136 sn 4, — arctan(bsn u,) . (25)

We note that the term proportional to ¢ has now canceled
almost exactly. Since the argument of the arctan function is
very small, we now replace the last term by its argument and
get

40 = —snu, = —4.1820"2. (26)
Equation (26) leads (with R = 3 km) to
0= —1.816, (27)

as the equation for the brachistochrone with reference to the
gravitational field outside the sun. More importantly, we
note that as u increases from zero, © decreases from zero and
remains negative. This is just a reflection [as mentioned in
connection with (9”)] of the decrease of O(u) with u. As
the reader will have noticed, the considerations of this sec-
tion depend on the smallness of the variable denoted by o.
Being infinitesimally different from zero, the doubly period-
ic property of the Jacobian elliptic functions sn u,, for exam-
ple [see Eq. (26)], has not found any place in our calcula-
tion. Indeed, with /> = 0.104 62, the standard definitions® of
the symbols K,K' contained in the periods (4K,2iK’) of
sn(u, j) lead to K~ 1.612 and K’ ~2.578. Clearly the value
of K is too large to be of interest as far as «, is concerned.
It is appropriate before concluding this paper to recall
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for the reader’s benefit the equation for the brachistochrone
obtained by GB; this will be taken up in the following sec-
tion.

VI. SOME COMMENTS

There are two parts to this section. First, we obtain an
exact analytic form for the brachistochrone obtained by GB.
This has been done in Ref. 1 for the case k> = 1 only; for
k2 < 1and k2> 1onlyagraphical plot of the brachistochrone
has been given. Second, we comment (quite concisely, how-
ever) on the task of obtaining the brachistochrone for the
full Schwarzschild metric.>® Naturally this means that,
while retaining therein the assumption of spherical symme-
try, we are giving up the restriction to weak gravitational
fields used in Secs. ITI-V.

To take up the GB calculation first, we consider the
integral [Eq. (19) in Ref. 1]

k(1 — exp( — 2at)) ]”2
= | dt . (28)
y(x) J;) [1 — k% + k2exp( —2at)
For k2> 1 this can be reworked as
exp(Rat) — 1 112 ,
s 28
yix) = §f [§2 — exp(2at) (28

with £2(k? — 1) = k? and ?a = g. Using the substitution
exp at = u we obtain from (28’), with ¢ = exp ax,

ay(x) = §J _‘du[;_l] ,

u?

which can now be easily evaluated in terms of elementary
functions. We obtain

2ap(x) = Esin ' (1 —w})"? +sin™'[ — (1 —w})"?],
(29)
where (£2—Dw,=£2+1-2¢%, and (£2—Duw,

=£24 1 —2£% 2 Notethatin (28') wemust have £ *> ¢
for the integral to be real; in terms of k2 this is rewritten
k2<y?(¢* — 1)~ '. We recall here that Eq. (10') requires
that k2<(1 4+ Ru)*/Rc*u®(1 — Ru) for the integral to be
real. The counterpart of (29) when k%<1 can also be ob-
tained easily. We shall merely quote the result below:
2ay(x) = £In R(x) +sin™'[ — (1 —w})'?],
with
(62 + DR(x)

=207 +£7— 1+ 20¢* + (£ - DY - £7'2,

(30)

and

(2 +Dws=§2—1-26%77.

As mentioned earlier, a graphical plot of (29) and (30)
has been given in Ref. 1, but the numerical values given
therein to @, defined by c®a =g, are in fact too large
(@~ 1)—perhaps so large (in fact by several orders of mag-
nitude) as to render invalid the Newtonian approximation
for the gravitational field used in Ref. 1. It seems to us that
had Goldstein and Bender used values of  that are consis-
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tent with the Newtonian approximation, typically a ~ 10~
or even less, they would then have obtained, with the range
of values for x used in their calculation, a plot for y(x) that
was quite insensitive to changes in x. In particular, the cy-
cloidlike (periodic) behavior of the k? > 1 brachistochrone
would not have been uncovered (see Figs. 7 and 8 in GB).
We remind the reader here that we were also faced with a
parallel situation of not finding a suitable role for the period-
ic behavior of the Jacobian elliptic functions sn(x, ) in
Sec. V.

We shall now conclude this paper with a brief comment
on the Schwarzschild brachistochrone. Our objective herein
is merely to highlight for the reader the utility, technicaily
speaking, of the weak-field approximation given by
8ap ="ap + &7 that was used in the calculations in this
paper. For the Schwarzschild metric,>? the analog of Eq.
(2) is given by

ds® = gooc* dt* + g, dx'dx’

with goo =g_,8; = —8; — o(1 — o)x,x;/P.
Correspondingly, the Hamiltonian for the material par-
ticle of mass m, following Sec. II, will work out to

(31)

H=mdg_(g_ +gxx)~'2.

However, because g; now has off-diagonal components, the
counterpart of Eq. (7) for the velocity will have the form

v =20g* (g_ + cr(l + uz(%S—)z) B l) - ,

thus making v* a function of the differential of © with respect
to u; this feature is, however, absent in Eq. (7) and makes the
problem more tractable there. But with v” as given by (32),
one finds that the counterpart of (9”) is now a fifth-order
polynomial in (d©/du)?, thus making for a numerical, rath-
er than exact, solution for (d0/du)?. The possibility of an
exact solution for (dO/du) using the simple quadratic in
(9”) is thus an attractive feature of the weak gravitational
field approximation.

(32)
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The study of higher-dimensional Kaluza—-Klein universes constructed from the unitary groups
Uy is continued. They form Bergmann manifolds of dimension N ? with Finslerian geometry
induced by their hyperspin structure. In this paper Lagrangians for relativistic wave equations,

which are generalizations of the Klein-Gordan, Dirac, and Weyl neutrino equations, are
formulated. The wave equations are in general of differential order N. The hyperneutrino
equation is examined in detail as the simplest example and its discrete symmetries are
discussed. It is found that for N = 3 and N> 4 TCP and all its constituent symmetries are
violated. The boson calculus is used to solve the linear neutrino equation exactly on U, and
the energy spectra of the neutrino and antineutrino are presented. It is found that the density
ratio of negative to positive energy states is unity only for N = 2, producing asymmetry for all
higher-dimensional U, . The neutrino acquires a negligible rest mass of 0(107 3! eV) due to

the global curvature of our manifold.

I. INTRODUCTION

In an earlier paper' we provided the unitary groups
U(N,C): = Uy, with a hyperspin structure, turning them
into N 2-dimensional Bergmann manifolds B,. A B, with
N> 2 leads to a Kaluza-Klein space with Finsler geometry
and an underlying SL,, tangent space group. The Bergmann
manifolds are an alternative road to a Kaluza—Klein type of
approach to unification.

A reason for considering U, is its great symmetry,
which makes calculations easier, and also the fact that we
have unitary subgroups acting on the internal dimensions,
which could account for the unitary gauge groups. We also
found that all U,, with N>2 turned out to be cosmological
solutions to the hypergravity equations.>

In this paper we examine in detail the simplest general-
ized wave equation for B, which is the linear hyperneutrino
equation. We assume the reader to be familiar with the nota-
tion and content of Ref. 1.

Section II introduces the generalized relativistic wave
equations of Ref. 3 and presents the Lagrangians they can be
derived from. We also take a look at the discrete symmetries
T, C, P and their products for the flat space hyperneutrino
equation and show that it has a TCP invariance only for
N=2and N=4.

Section 11 discusses the hyperneutrino equation on U,
in detail. The solutions are irreducible representations of U,
that are obtained by means of the boson calculus. The solu-
tions lead to an energy spectrum, which has a particle-anti-
particle asymmetry for N> 2.

Section IV concludes the work with a summary and dis-
cussion of the results.

Ii. WAVE EQUATIONS IN HYPERSPIN MANIFOLDS
A. Lagrangians

In Ref. 3 relativistic wave equations in B, and their
plane wave spectrum were introduced. We recapitulate the
important points here and present in addition the Lagran-

® Present address: Institut fiir Theoretische Physik, TU Clausthal, D-3392
Clausthal-Zellerfeld, West Germany.
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gians they can be derived from. Relativistic invariance
means for the N-ary theory an invariance under SL,, which
contains the Lorentz group as a subgroup. Except for N = 2
SL,, does not respect any quadratic form. The only invariant
is the N-ic determinantal formg,...,, so that the scalar wave
equation is of N th differential order, although only second
order in the external coordinates due to the determinantal
constraint.

The equations under consideration here are the Klein—
Gordon, the Dirac, and the Weyl neutrino equation, which
were each generalized such that for N = 2 the original ones
emerge. For notational convenience we will write dy5 for
0*ss J,, where o is the Hermitian spin vector, and define the
dual 3 ® to the derivative operator via the metric as

(a D)AI = g{“'}’l(?{#,} .

We make use of a collective index notation here, where {u}
stands for & antisymmetrized indices 4,,..., ¢ . The number
of primes indicate the number of omitted indices. For details
of this notation see Ref. 1.

The dual to d is of differential order N — 1. For what
follows we omit the D for dual and understand it implicitly
there whenever we write superscripts on d. We observe also
one important property of dss and d*%, the following
lemma.

Lemma:

33532 =g 3y, (855 /N). 2.1

Proof: Write the left-hand side out with explicit spinor
indices:

335, 8™ = [(N = 1)1] '™ Engt i
Xaiz,a}';zxz...ai

(1) For 3 = 3 the assertion is obviously true.

) (2) If 3'#2Z2, then in any nonzero term we must have
3’ =2 y. for some N'#1. Interchange = . with X,. This
gives a sign change from the €, whereas the product of the d’s
is symmetric. ]

Because we are dealing with higher derivative theories,
we recall the relevant Euler-Lagrange equations.® For

NEN®
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L(@g,p V@ ?,....p M), where @ ) means 3, p(x*), etc., we
obtain

oL JdL oL
E;—a” g™ +00, 39 @ (- 1)”8(,\,)—(;(—”—):0.

We have assumed here a convention that the indices in
terms like g*'@, @, have a definite order, say u <4, for ex-
ample. This ensures that no terms are counted more than
once and we do not have to worry about extra correction
factors.

The essentially unique scalar wave equation of least dif-
ferential order has determinantal form. Equating it to a mass
term M gives

Ndet(ds5 )p(u) = g3y, 9(u) = (— iM)Yp(u),
(2.2)

where g is a real or complex valued scalar field on the mani-
fold and the Nth power of M is necessary on dimensional
grounds. This is the natural generalization of the Klein—
Gordon equation (N = 2). The case of M = 0 corresponds
to the generalized d’Alembert equation. The Lagrangian
which gives (2.2) is

L= ()"p(u)g" 3y, @(u) — M p(u)p(u) + cc.,
(2.3)

dL

where the bar stands for complex conjugation.
The generalized Weyl neutrino obeys the linear first-
order equation

aizlﬁx(u) =0. (2.4)

Here ¢ is an N-component spinor field depending on the
time space variable u. The Lagrangian is

L =if* 355 ¥* + c.c.

Equating the neutrino spinor to a multiple of a dual
antispinor fis and closing the system with a second equation
for the dual equation leads to the generalized Dirac equation
dss ¥ = — iMz, NI>3fs = (—iM)V Y% (2.5)
The system is chosen such that every component of the

two spinors obeys the scalar wave equation (2.2). The proof
is a straightforward application of (2.1). The Lagrangian is

L = +ig? sz ¥ + LIN/GMYY 2 us 33 iis
— 2MyFu; + c.c.

The two equations (2.5) are of differential order 1 and
N — 1, respectively. The system is symmetric only for
N =2, which leads to the familiar chiral symmetry of the
Dirac equation, that is, that the Weyl spinors are eigenvalues
of 5. For N> 2 we therefore expect a parity violation. At
first it seems that the mass term for N > 2 enters in two differ-
ent ways into the Lagrangian, which gives us the choice to
use two different mass parameters. But this is only apparent
due to the freedom to rescale u.

The Dirac system can also be written as a system of N
coupled first-order equations for polyspinors as well as spin-
ors. Take as an example N = 3, where the Dirac equation
(2.5) can be written as the three equations
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Ossz '/’2 = —iMps,

1M dpoliy = — iMP*,,

%GEQA aI\A¢An = - iM'/":-
Here ¢*, has the index structure not of a vector but of a
tensor product of a dotted spinor with an undotted cospinor.

The minimal-coupling generalization of the wave equa-
tions to curved time space is simply done by replacing the
ordinary derivative d by the covariant derivative D. Due to
the noncommutativity of D the scalar wave equation is no
longer the root of the Dirac equation.

B. Symmetries of the neutrino equation

We examine now the discrete symmetries: T: = time re-
versal; C: = particle-antiparticle conjugation; and P: = par-
ity of the flat space neutrino equation (2.4). Here C for the
neutrino is defined as usual by C¢(x,2) = :J(x,t). We first
look at the case N = 2.

Taking the standard Pauli matrices o* = (0°0'),
i=1,2,3and 0° = — 1as basis for the spin vector and mak-
ing the usual operator associations E=id, =id, and
p; = — i d,, we obtain

io*ss a'u'pz = (iao}':z ao+ ioj)':z ai)'/’z
=(1E+d"p)y=0. (2.6)

The above equation is invariant under the discrete sym-
metries 7 and PC, but not under P and C alone. To examine
Tin detail take T9(t,x) = U, 9( — t,x), where Uy is a uni-
tary operator. The time reversed and complex conjugated
equation (2.6) appears now as

(1E — & p,)¥( — t,x) =0.

Multiplying this equation on the left by U and requir-
ing that Ury satisfies (2.6) gives the condition that
U0'Ur= —0d (Up:=U7';). This is achieved by
U, = 0%, because it anticommutes with the real o' and &>,
and 0> = — . By similar kinds of calculations one can also
show that PC, and therefore PCT, is conserved.

The existence of the operator U, is ensured by the fact
that there is only one inequivalent two-dimensional repre-
sentation of d SU,, which implies that the respresentation
R (u) is equivalent to the complex conjugate representation
ﬁ( u).

For N> 2 this is no longer true because SU,, has two
inequivalent N-dimensional representations, and R (u) can-
not be transformed into () by an inner automorphism.’
Therefore an operator U, with the desired properties does
not exist. The same arguments hold for PC, where we define
the parity operator P as Py(x%x',t): = ¢ — x°,x't). The x°
are the three spatial external coordinates and x' stands for
the extra internal dimensions. This definition of Pis justified
because the x' are regarded as internal degrees of freedom
and are therefore left invariant.

With this most natural definition of P even PCT is vio-
lated. This can be seen as follows.

Under 6: = PCT of (2.4) we get

(~0°8,— 03, + 0 I)P( —t, — x°.x") = 0.

To have invariance under 8 we need
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80°9 =1 = o,
006 ~' = o,
600~ = — o

For flat space 0* and ¢’ form a basis for d SU,, so that 8
is an involutive automorphism of d SU, with three fixed
points given by o°. A theorem in Ref. 6 states that & is an
inner automorphism if and only if the rank of d SU,, is equal
to the rank of the set of fixed points. This is the case for
N = 4, which is the only other case besides N = 2 where the
PCT theorem holds. The emergence of SU, as a special case
is peculiar because of the homomorphism of SU, onto
SO(6), so that PCT is only conserved in those cases where
we have the group isomorphisms SU, = Spin(3) and SU,

= Spin(6), and therefore a direct relation to the orthogonal
groups. This, of course, may be purely accidental.

The violation of PCT fits well into the scheme of second
quantization of the hyperspin theory. Due to the SU,, sym-
metry, one would quantize all hyperspinor components with
Fermi statistics so that N = 3, for example, describes a Fer-
mi spin-} field and a Fermi spin-0 field. We therefore have a
forced breakdown of the spin-statistics connection for N > 2.

We note that the statement of the usual PCT theorem is
still valid. A symmetry in accordance with the PCT theorem
can be generated if one defines a P*P(xxt):

= ¢( — x%, — x't). Obviously P*CT remains a good sym-
metry of (2.4) for all N. We argue that P is a more physical
symmetry than P *, because the parity transformation should
not affect the inner gauge degrees of freedom.

In all our discussions about the discrete symmetries we
stress that we still work in first quantization and that we only
consider inner automorphisms of the underlying algebra.
The adherence to inner automorphisms is due to the fact that
we copy simply the usual treatment of the Weyl neutrino
equation.

One should note that there exists involutive outer auto-
morphisms which conserve PCT for all N and relate R (u)
and ﬁ( u) for N> 2. An outer automorphism is defined as an
automorphism which is not an inner one. It consists of a
rotation of the weight diagram which is not an element of the
Weyl group. The significance of these outer automorphisms
for the discussion of time space symmetries of the neutrino
equation is not clear, because the neutrino appears in only
one helicity state, so there is no room for a natural outer
automorphism as is in the Dirac equation (2.5), where one
can interchange the ¢* and u; fields. But even this is only
possible for N = 2, because only there does a quadratic
spinor metric exist that is induced by the Levi-Civita €
spinor.

ill. THE NEUTRINO EQUATIONON U,

We first formulate the neutrino equation with a right
invariant spin map. This switch from using the left invariant
spin map of Ref. 1 to using a right invariant o in the present
work is done merely for convenience, because the resulting
equation has a nicer form. The physics is of course unaffect-
ed. We recall from Ref. 1 that the right invariant spin vector
o and the spin connection I' are given by
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1% 0'ss =i8: sz uT o
and
éﬂ'n’n r"{ 22' = k {520 an’z' - ( l/N)&zz- ﬂn'n} >

where k= —] for the torsion-free case. The e, % (u)
are a Hermitian basis for the Lie algebra of U, at
u [ =:dUy(u)],and us5 is the nondegenerate group met-
ric on U,. By minimal coupling of (2.6) to the curvature of
Uy we obtain

33D * =0 = u¥o Vs = my”,
defined m:= — k(N—1/N)

3.1

where  we and
0%5.:=0/0u* 5.

Every element u€U,, can be written as exp( — i(z /N)]s,
where seSU, . We therefore have that

t=1iIn(det u)

and
4, =(—i/N)ud,.

Here the colon stands for product and trace. The operator
u-d, decomposes into its trace id,, and s*d,, which is a trace-
less operator. In this way we separate the spatial derivatives
from the time derivative. The neutrino equation now looks
like a Schrédinger equation:

id,p=myp—s3,¢

This equation has the obvious solution e~ "¥(0),
where #(0) is a spatially constant spinor, or viewed in mo-
mentum space, a neutrino at rest. The neutrino has a rest
mass given by m due to the compactness of the space, which
admits standing waves. The only relevant length scale for
Uy is the present radius p of the universe, which we take to
be of the order 10® cm. We get that m is of
O(p~ ') =107 eV, which is negligible.

Tosolve this equation in general, we analytically contin-
ue the equation to GL,, and let zeéGL,. (compare Ref. 1).
What actually has to be solved is the eigenvalue spectrum of
the operator ®: =z-d,, which is the Dirac operator in the
theory. We write this as

Dy = Ay 3.2)

Because of the aforementioned decomposition in time
and space derivatives, a time phase factor e ~** of ¢ will
change A to A + w. By choosing e ~ /™ ~ ) a5 the phase fac-
tor for the solutions of (3.2), we obtain solutions which will
satisfy (3.1).

Next we examine the invariance properties of the neu-
trino equation. We can act on z by left or right multiplication
with GeGL, and require form invariance of the equation.
Under left multiplication z and d, transform contragradient-
ly as

=Gz
and

3, =9,G.

The neutrino equation changes into

D-G¢(G-2) = my/ (G-2).

Using infinitesimals G= 1 + g we obtain to first order

Y (z+g2) =9(2) +gyY(2).
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A Taylor expansion of ¢ gives to first order the change
of ¥ as

8y = (g —Tr(z:9,°8)) ¢

Because gis an element of d GL , a basis for g is given by
the matrix units E,*; = §,8’ ;. We use now the notation
that small Latin letters run from 1,...,n = N 2and capital Lat-
in letters go from 1,... V. Inserting this in the above equation
leads to the following ¥ infinitesimal generators:

g:=8 [ =846"5 —2''53%6%. (3.3)

As is easily checked, they obey the commutation rela-
tions for d GL,.

Next we consider the invariance under right multiplica-
tionby G.

The Dirac operator ® was already constructed to be
right invariant, therefore, not surprisingly, we find that
¥'(2') = ¢(z), which by similar calculations leads to the
generators g’; of the right invariance group:

g’i: =gl1'IAB = — (zs, 31'5)6'43. (3'4)

These N generators form also a GL, Lie algebra, and
moreover, g and g’ commute. The number of diagonal opera-
tors that simultaneously commute with the spin Hamilto-
nian is therefore at least 2V — 1, the minus one stemming
from the fact that

1218111 =1+ Izlgrl-

For N = 2 the constants of the motion are the energy,
the total angular momentum (including spin), and the “lin-
ear” momentum. The last has the form of an angular mo-
mentum, because the space part of U, is §°.

For the representations of U, we follow the approach of
Bargmann and Schwinger in Ref. 7. By considering homoge-
neous polynomials in N? = n complex variables and using
boson creation and annihilation operator methods, we will
find the irreducible representations (irreps) of U,. This
method is called the boson calculus in the literature® and is
based on the Jordan map.® The following notation is mainly
due to Bargmann.’

Consider ¥, , the space of entire analytic functions f(z),
where z = z/;, I, J = 1,...,N. Here z can be thought of as a
point in C*. §,, is made into a Hilbert space by defining the
following scalar product:

I = ﬁ’(Z)f "(2)du, (2),

where
du,(z) = 7~ "exp( — z:2) [[ dx, dy,
k=1

(@, =x'; + i, = x4+ iv).

With this definition of a Hilbert space z and d, are ad-
joint operators on g, with respect to the Hilbert space met-
ric. Moreover, they satisfy the usual boson commutation re-
lations for creation and annihilation operators:

(2,2 ] =[3,07, 1 =0, [£,,0%,]=8,.6",.
As is well known, '° from these operators one can obtain
all the totally symmetric irreps of U,,, all of the irreps of Uy
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and representations for U, ® U, for which the Gelfand in-
variants of the two U, algebras are identical.'!
The simplest orthonormal set in ¥, is given by

¢"; =z{n}/ Hn” - lnllynlz’--"nNN),
where  z% = (2',)"(2')"+ (2%)"  and
i=n"n')---nV ! The ¢, obey

<¢n |¢n’) = (S,,,,' .

The action of the operators z’, and 3”7, on this set is of
course the same as in the standard boson calculus of creation
and annihilation operators,

Zynt et Y Ut T, 1,0

and

a7 |ntysnly) =ty 0ty — 1,0) .
We will solve the neutrino equation for N=2 as a

warm-up exercise. In component form the neutrino equation
is

{n}

zls aSl'ﬁll + zls as2¢12 = itpl]’

zzs asl'pll + zzs asﬂ/’]z = /111’12-

Assume ¢, =v'(n,)|0,n',,0,n%,), ¥ =v*(n,)|0,
n', — 1,0,n*, + 1). The v* are functions of the occupation

numbers n’’; = :n,. Using the boson calculus leads to the
following consistency requirement:

DY) -a(t)

2
n22+1 v v

nl,
(\}nlz(nzz +1)

We abbreviate this equation as B-v = Av. This is an
eigenvalue equation for B, which we call the dynamical ma-
trix. Solving it in the normal fashion gives two distinct eigen-
values:

A_=n'y+n+1, A,=0. 3.5)

The corresponding eigenvectors v are
= ()
- n,+1

~(_ o)

SN |

Multiplying ¥, by a phase factor e =™~ gives us a
solution to (3.1). Defining the energy operator as usual as
i d, we obtain the following eigenvalue spectrum for E:
where s is defined as

5= >n,.
i

This s describes mathematically the degree of the poly-
nomial in z or more physically the total number of elemen-
tary bosonic “spins.” It is clearly integer valued. Inserting
(3.5) gives a positive and negative energy spectrum. Ac-
cording to our definition in (3.1), we have m = } for N =2,

E, =3+, E_=j—{(s+2).

Uy
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Due to our assumption of the form of the state vector ¥,,
we have to treat n', = 0 as a special case. We find that for
E_,s=0,1,.., while s = 0 is excluded for E_. This restric-
tion gives an energy spectrum where the positive and nega-
tive ground state is of equal magnitude. Moreover, Ref. 12
showed by a different method that the number of positive
energy states equals the number of negative energy states for
a given energy. We also observe that the introduction of tor-
sion would have destroyed this symmetry.

We turn now to the question of the completeness of the
solution set. We first note that we can repeat the same calcu-
lations with  ¢,' =v,"(n)|n',0,n*,0) and ¢,°

= v,%(n)|n'; — 1,0,n*, 4+ 1,0) and obtain the same result.
By applying the raising and lowering operators (3.3) and
(3.4) of the invariance group, we can obtain even more solu-
tions. We note that these operators form two commuting U,
algebras as follows. Define

L' :=—g' L',:=—g%;
L= —4i(g" —g%);
L:=—-g'y L:=—-gy; L.:= —%(gll"gzz);

Ly =4(z"s3%); L'e=14(2"s35 — 1,
Here L 'yand L, are the U, generators. The other genera-

tors satisfy the usual angular momentum commutation rela-
tions:

[LoL.]=L.;
[L'., L' ]=L",;
[L',,.L'_]1=2L";
and

[L'\L]=0.

Let us call the eigenvalues of L', and L, m, and m,,
respectively. The eigenvalues of our two solutions

J

[L,L_]=—L_; [L,L_]=2L;
[LIZ,LI_] — _LI_;

n's Jn's(nZs + 1)

Y= (w:l) and ¢,: = (ﬁgl) under these operators are

Ly =}(n'y—n’— D¢y L', = —J(n's+ m*)¢,

L., =4(n', - n?— 1Dy L= j(n'y +n%) ¢,
Moreover one can show that

¢ =y ( |1:0’n21’0> )
™7 7\|0,0,n2, + 1,0)

satisfies the requirement for the highest weight state, name-
ly,

L.¢,=L ,+'/’m =0.

Applyingtheloweringoperators L _ and L ' _ will gener-
ate a whole ladder of states. One expects this to produce a
complete set, but the completeness proof is not available.
Sen'? proved a completeness relation for his solutions, based
on the completeness of SU, scalar functions. Our operator
methods do not seem to work that easily, and already in Ref.
7 Bargmann stated that the operator methods do not seem to
help in proving completeness of the representations.

We generalize now our approach to the case of arbitrary
N. We work with the convention that the occupation
numbers in ¥* which are not written out are assumed to be
zero. There are N solutions ¢ which can be found immediate-
ly by generalization of the U, solutions. They are labeled by
the subscript S. The components of ¥ written out in ket
form look like

Y's = v's(n)|n' 05, n3,..,n"),

Vs =05 (n)|n's — Ln’s + Lin’s,....n"),
Vs =0v3g(n)|n's — Ln’g,...n%g + 1,
srests)y T =3,..N.

As can be easily checked, the dynamical matrix for the
general case is symmetric and has the form

n2+l

Jn's(nVs + 1)

B Jn's (7% + 1) n’s +1
Jnlg(n™s + 1) nNs +1
r

Here B can be thought of as a dyadic product bb of a vector b
with itself, where b4 = \/n*s + 1 — §4,. In dyadic notation
B-v can be written as b(5-v). Because b spans a one-dimen-
sional subspace of an N-dimensional space, there are N — 1
other eigenvectors v that are perpendicular to b with eigen-
value 0. Thus v = b is the only eigenvector of B with a non-
zero eigenvalue, which is b'b or equivalently Tr(B). The
two eigenvalues, 0 and Tr(B), give rise to the two energy
spectra,

E, =(N?>—1)/2N+ (1/N)s, s=0,1,..,
E =(N’ -1/ 2N—-[(N—1)/N]1(s+N),
s=12,..,
where we make use of the definition of m in (3.1). Here

again s = O is not possible for E__. Once more this makes the

2277 J. Math. Phys., Vol. 29, No. 10, October 1988

lowest positive and highest negative energy state have equal
magnitude. The positive and negative energies are linear in s,
but they have different slopes, depending on the value of N
(see Fig. 1). This means that the negative energy spectrum is
less dense, some positive energy modes do not have a corre-
sponding antipartner. The density ratio is N — 1, which is
unity for N= 2.

The question arises if the asymmetry in the behavior of
positive and negative energy solutions is real or just an arti-
fact of an incomplete solution set. As before for N = 2 wecan
use the shift operators of our invariance group to construct
new solutions, but do we get all the solutions? Due to the
complexity of the higher U, groups it is even harder to get a
handle on this problem and the question is still unsolved.

A possible way to improve the calculations is to use the
Gelfand states |(m)) (Ref. 10) of U, ® Uy, which are gen-
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FIG. 1. Energy spectrum of the neutrino (upper graph) and antineutrino
(lower graph) for N = 3. The cosmological rest mass is § in natural units.

erated by the scalar parts of our generators in (3.3) and
(3.4),1ie,

' =2 35, and gly:=250"s

As remarked earlier, ‘g and ‘g generate all the irreps of
U, ® Uy, but with the restriction that the Gelfand labels
(m) of each state in the product are identical.

The | (m)}) are orthonormal and the transformations in-
duced by 'g and ‘g are in principal well known. In fact, ‘g are
just the matrix elements of ®, and by using the Gelfand
states as components of 3 one should be able to find the
general solution. The problem is that the induced transfor-
mations on |(m)) consist of linear superpositions of differ-
ent states, which makes this approach algebraically difficult.
Using a computer with an algebraic programming language
could solve this problem.

IV. CONCLUSIONS

We gave the Lagrangians for the generalized Klein—
Gordon, Dirac, and Weyl-neutrino equations and discussed
the symmetry properties of the flat space neutrino equation.
We showed that for N = 3 and N> 4 all the discrete symme-
tries are broken, and even PCT is violated.

The hyperneutrino equation on U, was solved by means
of the boson calculus. The solutions gave rise to an energy
spectrum that has symmetry between the negative and posi-
tive energy solutions only for N = 2. We found that the den-
sity ratio of positive to negative energy states was N — 1. The
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hyperneutrino acquired a negligible rest mass (of the order
103" €V) due to the global constant curvature of U,,.

So far only the hyperneutrino equation was studied on
Uy . Finding solutions to the generalized Dirac (or Klein—
Gordon) equation is another task. The application of index
theory"? to the group manifold is possible and will give im-
portant information about the behavior of the solutions to ©.
This would resolve any doubts about the neutrino spectrum.

The difference in density of positive and negative energy
solutions for N > 2 is quite surprising for a maximal symmet-
ric group like U . If one assumes that the very early universe
can be approximated by an U, then the result could explain
the matter-antimatter asymmetry in our universe.

A good dimensional reduction procedure has to be
found in order to make the model more physical and to study
the behavior of the energy spectrum.

What is the relevance of supersymmetry to hyperspin-
ors? For example, in the N = 3 theory a three-component
hyperspinor can be thought of as a supermultiplet consisting
of a spin-} ¥/* and a scalar ¢’. Nevertheless we have assumed
that the transformation group is SL, and not one of the su-
pergroups. From symmetry arguments (¢ is a spinor) we
would treat all three components of ¢ as fermions and sec-
ond quantize them with anticommuting operators. But be-
cause ¥ is a scalar under the Lorentz group, the spin-statis-
tics theorem is violated.

If we wish to respect the usual spin-statistics connec-
tion, we should treat the external components as fermions
and the internal components as bosons. It is even possible
that all components are elements of an underlying Grass-
mann algebra, and then fermions are the odd elements and
bosons are the even ones. The different treatment of external
and internal spin components would have important conse-
quences for the spin vector. The components o’z and o,
would result in commuting manifold coordinates, while the
mixed components 0°;; and ¢’ give Grassmann (anticom-
muting) coordinates. Is this a possible link to supermani-
folds? Accidentally a B, with five commuting coordinates
would be much closer to the spirit of the original five-dimen-
sional Kaluza—Klein theory.
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Three theorems dealing with transfer matrices in statistical mechanical systems are proved.
The theorems state that the nonzero eigenvalues of transfer matrices formed through various
prescriptions are identical. Hence it is possible to ascribe a physical meaning to all the
eigenvalues of a transfer matrix, not just to the few largest eigenvalues. The first theorem states
that the transfer matrix formed by building a system M layers at a time has as its only nonzero

eigenvalues the eigenvalues of the transfer matrix formed by building the M layers of the
system one at a time. This theorem relates the product of two n™ X n™ M-layer transfer
matrices to the product of M one-layer M X M transfer matrices. The second theorem states
that one of the n™ X n™ M-layer transfer matrices (for M > 1) has only one nonzero
eigenvalue. A procedure for finding this eigenvalue and all eigenvectors is given. The third
theorem generalizes the first to the case where the chosen layering is not an integer multiple of

the interaction length.

1. INTRODUCTION

The transfer matrix formalism may be used to obtain the
partition function of any statistical mechanical system when
it has short-range interactions in at least one direction.'™
This allows the system to be built one layer at a time in a
direction with short-range interactions. The size of the trans-
fer matrix must be chosen to be equal to or greater than the
size required to make separate layers, i.e., layers that interact
only with at most two other layers. This property allows the
analysis of the system in terms of a Markov process, since the
interaction of one layer depends only on the preceding and
following layers. For a statistical mechanical system, the
partition function is given by

Z=TI’(AlA2A3"‘ANB) (1)

when the system has N layers. Here A, is a one-layer transfer
matrix, i.e., a matrix that adds the single layer i to the system.
The matrix B describes the interactions at the boundary.
The question that naturally arises is the relationship
between the eigenvalues of the different transfer matrices
formed when the transfer matrix is built up with more than
one layer at a time. In particular, if each layer has » states,
the one-layer transfer matrices that enter Eq. (1) are of size
n X n. If one decides to build up the transfer matrix using M
of these layers at a time, the M-layer transfer matrices one
then uses are n™ X n™. Physically, one would expect that at
least the largest eigenvalue of the different ways of forming
the transfer matrices must be invariant. This is because the
largest eigenvalue is related to the partition function Z of the
system, and physical quantities such as the free energy can be
derived from the partition function. In the thermodynamic
limit, N— o in Eq. (1), only the largest eigenvalue comes
into the calculation of the partition function if all A; are
identical. Similarly, in this limit a correlation length is relat-
ed to the ratio of the largest and next-largest eigenvalues of
the transfer matrix. Thus this ratio must also be invariant
using various prescriptions to build the transfer matrices.
But what about the other eigenvalues? This paper will relate
the eigenvalues of the 7 X n one-layer transfer matrix to the
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n™ xn™ M-layer transfer matrix. In fact, it will be shown
that quite generally the M-layer transfer matrix has at least
n™ — n zero eigenvalues, and the remaining n eigenvalues
are just the eigenvalues of the product of M one-layer trans-
fer matrices.

The next section contains a number of lemmas and three
theorems. The first theorem relates the eigenvalues of the
system when it is built up M layers at a time (an M-layer
transfer matrix) to the eigenvalues of a product of M one-
layer transfer matrices. The second theorem describes the
structure of a portion of the M-layer transfer matrix. The
third theorem generalizes the first to the case when the cho-
sen layering is not an integer multiple of the interaction
length. Finally, Sec. I1I contains a discussion of the physical
importance of the theorems. All discussion of the physical
and calculational properties of the three theorems and asso-
ciated lemmas of Sec. II will be deferred to Sec. III. Conse-
quently, the reader may initially skip over the proofs in Sec.
I1 and concentrate on the discussion in Sec. III.

Il. THEOREMS AND PROOFS

Throughout the manuscript, the mathematical proper-
ties of the row and column matrix products introduced in
Ref. 5 will be used—the notation 5(x.x) will be used to refer
to Eq. (x.x) of Ref. 5. In particular, the reader should note
that curly brackets, { }, denote the row and column prod-
ucts while parentheses, ( ), denote a regular matrix. The
Hadamard (element-by-element) product will be denoted
by (), and the regular matrix product will be denoted by the
juxtaposition of the matrices. In most instances, the dimen-
sion of the matrices will not be explicitly given—they are
assumed to be such that the matrix products are defined
(this assumption can always be met by having all matrices
square of size n X n). All matrices are assumed to have ele-
ments from the field of complex numbers. The matrix | will
be reserved for the identity matrix for regular matrix multi-
plication, and the matrix J will always stand for the identity
for Hadamard matrix multiplication (hence J has all ele-
ments equal to 1).
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Assume each of the N one-layers is numbered with the
numbering performed to minimize the difference between
the numbers of interacting one-layers. Then the range of in-
teraction is taken to be the largest difference between any
two interacting one-layers.

A. Interaction range 1

The first two theorems deal with the trace of a matrix
with N one-layers, with one-layer / interacting only with one-
layers i — 1 and i/ + 1. The general matrix has the form®

(1A, J 4 d )

J 1A, J o J

J J | . J J
Z=Tr} { . . . . b

J J J I Ay_,

(ay 4 U Jo ]

(2)

and from 5(3.13) [without loss of generality set D, =1 in
5(3.13)]

Z=Tr (AA,-Ay). (3)

Call A, a one-layer transfer matrix, i.e., it is the transfer
matrix that adds layer / (and includes all interactions within
layer i and between one-layers / and i+ 1). From 5(4.3)
(with all D = | and B = J) it is possible (when ¥ /2 is an
integer) to also write

w4112 36 1R ),

Equation (4) gives a transfer matrix that adds two layers,
e.g., layers 1 and 2, at a time. This transfer matrix has two
parts. A diagonal matrix, an intra-two-layer matrix, adds the
interactions within an added two-layer; e.g., the matrix con-
taining A,. The inter-two-layer matrix also has a special
form. For example, the inter-two-layer matrix containing A,
takes into account the interactions between the two-layer
formed from one-layers 1 and 2 and the two-layer formed
from one-layers 3 and 4. The question that will be addressed
in this subsection is the relationship between the eigenvalues
of the component one-layer transfer matrices and an M-layer
transfer matrix. First, two lemmas that deal with the two-
layer transfer matrix are proved.

Lemma I: An inter-M-layer transfer matrix has the two
equivalent forms

Jovy  d J,
el B Pung LSRR

mxp mxgq mXxp
where the subscripts are used to show the size of the matri-
ces.

Proof: The proof follows immediately from 5(3.8) and

use of the associative law [5(3.3)]. [ |
Lemma 2: The two-layer transfer matrix
| B} [J J]
{J e J (6)

has the same nonzero eigenvalues as the matrix BC.
Proof: Using Lemma 1, the associative law for the row
and column products [5(3.3) ], and 5(3.6) gives
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b ile d-U e »
=E£[]3]J)®(m P

However, for any two complex matricesK,,,, and L., the
nonzero eigenvalues of KL and LK are the same.® Thus the
two-layer transfer matrix given by Eq. (6) has the same non-
zero eigenvalues as

! [E"} C = ((IB)®WN)C = BC, (8)

where 5(3.6) has been used. |
If both B and C are nXn, then the two-layer n*>X n®
transfer matrix given by Eq. (6) has at least n> — n zero
eigenvalues, with the remaining » eigenvalues the same as
the product of the two one-layer transfer matrices BC.
Theorem 1 generalizes Lemma 2 to the case of M-layer trans-
fer matrices. The form of the M-layer transfer matrix given
by Eq. (9) follows directly from the use of the associative
laws for the row and column products and 5(3.13).
Theorem 1: The M-layer transfer matrix

rl A] J e J JW
J A J
J J | . J J
£, oo »
J J b Ay,
J oJoJdoe I
(J J - J N
J J J J
J J - JJ
X1 : LN : :} 9)
J J - JJd
LAM J e J JJ

has the same nonzero eigenvalues as A\A,- A, Ay,

Proof: For any diagonal matrices D, and D, the relation-
ship D,D, = D,(9D, holds. Thus the intra-M-layer transfer
matrix in Eq. (9) can be decomposed into M — 1 diagonal
matrices; one for each A;. First multiply the diagonal matrix
with A,,_, by the inter-M-layer transfer matrix, after using
Lemma 1 to rewrite the inter-M-layer transfer matrix. This
gives

I J J J J

J | J J J

: - : {rJ J}

J J I Ay J

J J - J I Ay

J
={ J YA, {l J J} (10)
AM 1
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where use has been made of 5(3.6) and the fact that the
regular matrix product of a J matrix and a row product made
up of one | and the rest J matrices gives back a J matrix. Next
multiply both sides of Eq. (10) with the diagonal matrix
containing A,,_ , to give

(1 J - J J JW [ J )
J o J J J J

N T S

JJ - J g Ao
J J -0 0 L
XAM{I J J}
()
J
=4 AM ) }AM—IAM{| J e J}- (ll)
|
L )

Repeating this procedure for each of the other diagonal ma-
trices in turn finally shows that the product of the two matri-
ces in Eq. (9) is equal to

A

AA; Ay Al J - J) (12)

|
Using 5(3.6) gives

{aJ (13)

Since the nonzero eigenvalues of any two matrices
Koscm Lmxn are the same as L., K, ., the product of the
M-layer transfer matrices in Eq. (9) has the same nonzero

eigenvalues as A A, A,,. |
Theorem 2: The inter-M-layer transfer matrix
J J]
14
[c J (4

has the same rank as the matrix C. If both C and the matrix
of Eq. (14) are square, then the matrix of Eq. (14) has at
most one nonzero eigenvalue.

Proof: For any nonsingular P, the rank of any matrix A
satisfies® p(PA) = p(A). Multiply the inter-M-layer trans-
fer matrix of Eq. (14) by a particular permutation matrix
(which is nonsingular) to give

([J J})
PAlCrs, e
_ ({Jm lmm]{dw J])
TP\ s ) oy o
J

Al )
Jnxp Jan '

The last matrix in Eq. (15) is just the Kronecker (direct)

(15)
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productof C,,, , andJ,, ., [see 5(3.9)]. Use the well-known
relationship® for the rank of a Kronecker product,
(t o)
P =p(mep)p(Jnxq) =p(Cm><p)’
JnXp
(16)
together with p(J,..,) = 1 to complete the proof of the first
part of the theorem.
Use Lemma 1 and 5(3.6) to find that the nonzero eigen-
values of a square inter-M-layer matrix of Eq. (14) (with C

also square) are the same as the nonzero eigenvalues of the
matrix

Jmxn
{lmxm Jan} [C % ] = (Imemen)Q(JanCnxn)
nXn

Jmxg

Jan

(17)

= JanCan'
However,®
P mxnCoscn ) KMiN( p(J,n 0 1,0(Cri )<,

since p(J,,«,) = 1. Thus the square inter-M-layer matrix
has at most one nonzero eigenvalue, since it has the same
nonzero eigenvalues as a matrix that has a rank of at most
1. n

The structure of the inter-M-layer square transfer ma-
trix of size n™ X n™ of Eq. (14) (for the case whereC,, ,, is
also square) can be easily illustrated. Use Lemma 1 and the
properties 5(3.6) and 5(3.8) to show that the product of the
matrix of Eq. (14) times itself is a matrix that has a rank
equal to 1 [except in the trivial case where p(CJ) =0].
Thus the inter-M-layer transfer matrix has a null space of
dimension n™ — n, and has n — 1 generalized eigenvectors
of rank 2 associated with the eigenvalue 0. To find the eigen-
vector associated with the nonzero eigenvalue, let ¢ be a col-
umn vector with all n elements equal to 1, and define the
vector u = Ce. Then since J =ee 7, clearly Je = ne and
Ju = ee “Ce = se, withs = 3 ;c; the sum of all the elements
of C. Use Lemma 1 to give

J

J

{09 - J J}

J e

C
J
J

=4{:YesnM T=spM—2 (18)

J e
C u

Hence the n™-dimensional vector in Eq. (18) is an unnor-
malized right eigenvector of the n™ Xn™ inter-M-layer
transfer matrix with eigenvalue sn™ — 2. Similarly, if one de-
fines the vector v7 = e TC, then the left eigenvector asso-
ciated with the eigenvalue sn™ — 2 is given by

{vT T e’} (19)
The generalized left eigenvectors of rank 2 are given by
{e7 - e7 w} (20)

for the n — 1 orthogonal vectors w,” that have w,/Ce = 0.
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The generalized right eigenvectors of rank 2 are given by B. Longer-range interactions

X, This section deals with the case where layer / can inter-
e act with more than layers/ — 1 and / + 1. However, it will be
, (21)  necessary to concentrate on the case of only pairwise interac-

: tions between the layers. If the system has N one-layers with
e

one-layer i/ interacting with the 2R one-layers j with
where the n — 1 orthogonal vectors x; satisfy e "Cx; = 0. i — R< j<i + R, the partition function Z is given by
J
(| A, A, - Az J J SRR\
J | A, 0 Ajr_, A, J e d

- J J l AS,R -2 A3,R -1 A3,R J
Z=Tr| { y . (22)

LAN,I AN,2 AN,3 M AN,R J e J |J N,N

The notation {-- -}, ; will be used to show that the matrix product has / columns of matrices and j rows of matrices. If some
A, ; = J, then one-layer k& does not interact with one-layer /. Partition the row and column product in Eq. (22) into blocks
with R matrices (when N /R is an integer and R > 1) to produce

Ay A o Aro, A r J J e J
J i Ay 0 Ajr_s Ar_ Ao r J J
Z=Tr J J | Asp_s Asr—z Asr_ Asx J
J J J cee | rRr | Agri Az, Ars " Arr)rr
! AK+1,1 Ax+1,2 AK+1,R—1 AK+1,R J J J
J I Ax+2,1 AK+2,R—2 AK+2,R—-1 AK+2,R J
X ed J | Agisr_3 Agisr—2 Axisrot Axisr J s
J J J | R.R Ax, Ay, Ays o+ AnrJrr
(23)
where K = N — R.
Lemma 3: If all the A, ;, |, and J are nX n square matrices, then
I AL A, o Aro A r J J J
J I A2.l ot AZ,R -2 Az,R -1 AZ,R J Tt J
J J | Asr_s Asr_> Asr_1 Asx J
J J J e | R,R AR,l AR.2 AR,3 e AR,R R,R
= Sg [Al,l A1,2 o 'Al,R ]SR [A2,l Az,z ot 'Az,k ] --Sg [AR,l AR,Z o 'AR,R ]9 (24)
with the special matrix product defined by
Ai,l Ai.2 e Ai,R -1 Ai,R
] J oo J J
Sr[AnA "Ar] =4 J ] J J . 25
J J | J Jrr

Proof: The left-hand matrix on the Ihs of Eq. (24) is a diagonal matrix, and hence may be written as a product of R — 1 di-
agonal matrices with diagonal matrix / made from a product of the A, ; with 1< j<R — i. The right-hand matrix on the lhs of
Eq. (24) can be decomposed into a product of R — 1 diagonal matrices and R Kronecker products, which can then be
multiplied together using 5(3.5). The equivalence of this decomposition follows directly from Appendix A of Ref. 7. Com-
muting each of the R — 1 diagonal matrices from the decomposition of the left-hand matrix on the lhs of Eq. (24) as far as
possible into the matrices from the decomposition of the right-hand matrix on the lhs of Eq. (24) gives R terms of the form
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(I J J J J ( I J J J N\

J | J J J J I J J J

A Ay o Ago } ARt 0 Aoy A Jr o (26)
J J - d i J J J - J |

J J o d I Jrer \ J J - J J 1) &R

Each of the R products of two matrices with the form of Eq. (26) can be multiplied together to obtain R matrices with a form
given in Eq. (27). This yields that the Ths of Eq. (24) is equal to

AI.R Al,l Al,z o Al,R —1 i J J te J
J | J - J Aor—r Aar Ay o A
J J | J J J I J
J J J I R.R J J J ! R.R
| J J J 1 J J J
J 1 J J J | J J
X : : . (27)
AR—l,Z AR— 1,3 AR—I,R AR—I,I ‘J J I J
J J e J | rRe Art Ar2 " Agr_1 Arr)rr
Define the permutation matrix P, which permutes matrices within the Kronecker product, i.e., which has the form
J J o d
N R N |
P=4J | J J . (28)
J J I JJrr

This type of permutation matrix has been extensively studied in the mathematical literature.®® Insert the identity in the form
PP~! (with P~! = P T) between each of the R matrices in Eq. (27). The leftmost matrix of Eq. (27) multiplied by P gives
Si[Ay1 A, g ], while P~ ! multiplied by the rightmost matrix of Eq. (27) gives Sg [Ag ; - *Ag & ]- Similarly, P~ ' times the
matrix in the middle of Eq. (27) formed from A;; - - A, ; times P gives Sg [A;; A ]. [ |
Lemma 4: If D,/ is a diagonal matrix, and the matrices A, B, and C are general matrices of the indicated size, then

[Aqxf Bqu} . [Aqxf Bqu] [Dfxf Cfxq] (29)
Df><f Cqu |f><f foq quf Iq><q
Proof: The last matrix on the rhs of Eq. (29) is a diagonal matrix. Use 5(3.3) and 5(3.6) to show that
D C
{Drs Cruot=1lrns Jrxg} [fof lfxq] . (30)
axf axq

Then use the transpose of 5(3.7) (with Q = |) and the fact that D, . is a diagonal matrix to produce the rhs of Eq. (29). ]

Lemma 5: If A, ;, |, and J are all square matrices of the same size, then the matrix

1 A, AL o A r J J s J
J | Ay A2,R—l AZ:R J T J
J J I Aygs Asr_1 Asg J (31)
J J J | R+tr+t Pretn 7" Arsir JJriiren
has the same nonzero eigenvalues as
Sk [A1,1 v 'Al,R ]SR [A2,1 o 'Az,R ] ++Sg [AR+ IR 'AR+ LR ] . (32)

Proof: Use 5(3.3) and 5(3.6), and the fact that the product of the leftmost column of the left-hand matrix product of Eq.
(31) times the top row of the right-hand matrix product of Eq. (31) gives a J matrix, to show that this row and column may be
eliminated from the products. Then use 5(3.8) to make the rightmost matrix in Eq. (31) into a matrix formed from a product
of A, ; matrices and one formed from the product of only | and J matrices. Finally, use the transpose of 5(3.7) on the rightmost
matrix of Eq. (31) (with Q =) to show that the product of the two matrices in Eq. (31) is equal to
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fA,,, A, Al,R—l A r I A, Avr_r Asr_i
b o Jo Aon—s Asr—s
1 ’ 4 -
N
J J | J J J I Ar,
L J J J | Jri1r J J J ! R.R
A J J
. IJ J J
Asr_1  Asg J 3o 1y
x{ i S : . ) : (33)
Ara Aes ! JoJ o1 Mrra
Agr +1,1 Ag +1,2 7 Ag +LRJRR

From Lemma 3 the middle two matrices in Eq. (33) can be written as the product of the R matrices Sy [A,, ***Ayr]"*"

SrlAz 11 *Ari1.r ] Use 5(3.6) to see that the rightmost matrix in Eq. (33) times the leftmost matrix in Eq. (33) gives

Sk[A,; A, r]. To complete the proof, use the fact that for any two matrices that have appropriate sizes, the nonzero

eigenvalues of AB are the same as the nonzero eigenvalues of BA. |
Next Lemma 5 is generalized to allow for the length of layering of the transfer matrix to be any integer greater than R.
Theorem 3: If all A, ;, |, and J are square n X n matrices, then the matrix

r' A A o 3
J I Az,
J J |
4 JoJ J I As, Asr_1 Asr
J o J e d I Asiir-2 Asiir-1
J oJ J e d Al | Ag_ 14
v J J - JdJ J I Jkk
[ J J J J J 9\
J J J J J J
J J J J J J
X« J J “es J J J ces J } (34)
As, 1 J J J J - 4
Ag_ 12 Ax_13 " Ax_ir J J - d
L Axs Ax. o+ Agr-1 Axr J J ) kx

has the same nonzero eigenvalues as
Sr [Al,l ° 'Al,R ]SR [Az,l ot 'Az,k ] ot 'SR [AK,I o 'AK,R ]» (35)
where K = S + R, with $>0 and R > 1. The remaining n* — n® eigenvalues are equal to zero.

Proof: When S = 0 this is Lemma 3, and when S = 1 this is Lemma 5. Thus assume that S>2. As done in the proof of
Lemma 5, eliminate the leftmost column of the matrix on the lhs of Eq. (34) and the top row of the matrix on the rhs of Eq.
(34). Next use the fact that the matrices in Eq. (31) equal those in Eq. (33) to break the two matrices into four matrices with

the form given in Eq. (33) [with the range in Lemma 5 set to K — 1, and some of the arbitrary A;, matrices in Eq. (33) are
equal to J matrices]. Define these four matrices to be

{C}K,K—I{D}K— l,K—l{E}K— 1,x—1{F}x— 1L,K> (36)

where the forms of the four matrices are the same as the matrices in the corresponding positions in Eq. (33). For example, this
has made the definition (with j> i)
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1 J J J - J
J | J J - J

{F}i-f= : . : : (37)
J J i J JJij

The product {D}¢ _, x_ ;{E}x_1 x_ again has the same form as Eq. (31) (with the range equal to K — 2), so Lemma 5 can
be applied, and these two matrices can be broken into the product of four matrices with the form of Eq. (33). This process can
be iterated until the center matrices are {D} g g {E} g x . This means that Eq. (34) is equal to

{C}K,K—- 1 {C}h LKk-2"" {C}x +LR {D}R.R {E}R,R {F}R,R +1 {F}z +LR+2"" {Flx_ 1L,K* (38)
Use of 5(3.6) and noting which matrices are equal to J matrices shows that {F}, ;{F},, = {F}.,, so
{Frers 1 {Flasires {Fle_1x = {Flrx- (39

Use Lemma 3 on the matrices {D} z x {E} s r , and the fact that the nonzero eigenvalues of KL for any two compatible matrices
are the same as LK, to find that the nonzero eigenvalues of Eq. (34) are equal to the nonzero eigenvalues of

{F}ex{Clox 1 {Cls _1k—2 " {Clrs 1rSr[Ass 11" Ast1r ]S [Ass21" "Ass2r] "Sr[Ax1 " Axr] - (40)
Make use of 5(3.3) and 5(3.6) to give (for /> R)
{F}R,I{C}I,I—l = Sx [AK—-I+ T T 'AK—1+ LR ]{F}R,l—l’ (41)

where {F} x = |. Finally, use Eq. (41) S times to perform the multiplication between the {F} x matrix and the {C},,_,
matrices to complete the proof. ]

Lemma 3, Lemma 5, and Theorem 3 all require that the sizes of all the matrices in the product be the same. This was done
to avoid too clumsy a notation in the proofs presented. However, the results can be generalized to remove this restriction. This
generalization can be done in two ways. One way is to “‘pad” the A; ; matrices with zeros so that they are all square and of the
same size. This procedure will leave the physically important quantities such as the partition function invariant. The other
way of generalizing the result when the matrices may have different dimensions is to use rectangular transfer matrices. In this
case, Lemmas 3 and 5 and Theorem 3 can be generalized, but with the notation becoming slightly more cumbersome. For

example, if layer i has n; states and interacts with R other layers, then the corresponding matrix to Eq. (25) is

L (1,2) (LR—1) (LR)
rAn.)(rl; An.)(n3 An.an_| An.an
ln,)(n2 Jn;xn3 anxn,(,, anXnR
‘ J"sx"z I"JX”J Jn,xnk_l Jn,XnR }’
LJ"RX”Z J"RX"J I"RX"va J"RX"RJ

where subscripts denote the matrix size and superscripts de-
note the matrix of pairwise interactions.

A more serious restriction is the restriction to pairwise
interactions between the layers. However, in one of the most
studied models in statistical mechanics, the Ising model, this
restriction does not enter. This is because it has been shown
by Wegner'® that for the Ising model, multispin interactions
can be rewritten into single-spin and pairwise interactions by
adding additional spins.Thus if all matrices are 2 X2 and
symmetric (the Ising model), the restriction to pairwise in-
teractions is not important. Unfortunately, for other models
there is no general argument to overcome this restriction.

ill. DISCUSSION AND CONCLUSIONS

The main result of this paper is Theorem 3, which has
Theorem 1 as a special case. Theorem 3 shows that all the
eigenvalues of transfer matrices formed by different layering
prescriptions are the same, except that different prescrip-
tions have different numbers of zero eigenvalues. This is im-
portant because it shows that assigning a physical signifi-
cance to ‘“‘constrained” free energies (which are
proportional to the natural logarithm of nonzero eigenval-
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(42)

r

ues) is a mathematically well-defined procedure. For exam-
ple, the spinodal behavior of long-range Ising models was
seen to correspond to the behavior of some of the smallest
eigenvalues of the transfer matrix in Ref. 7. In addition, since
the expectation values of operators are given by equations of
the form

(O) =TI‘(OA1A2"'AN )/Z, (43)

Theorem 3 also shows that the spectra for such operators is
independent of the layering prescription used. These results
hold for all models, but may be of particular importance for
models that are conformally invariant.!" It is worthwhile to
note that Theorem 3 is easily generalized to the case where
the layers have different numbers of states. Also, the restric-
tion in Theorem 3 to layers that interact pairwise is not nec-
essary if each layer has only two states. Thus if one regards a
layer as a single spin, the restriction to pairwise interactions
between the spins is not necessary for the Ising model.
Theorem 2 concerns an interesting result that may be
useful in numerically computing the partition function for
various models. In particular, if one uses a layering with
more than one layer, then the spectral decomposition of the
inter-M-layer transfer matrix is easy to perform. There is
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only one nonzero eigenvalue, and its associated eigenvectors
are easy to calculate [see Egs. (18) and (19)]. The general-
ized eigenvectors of rank 2 used can be any vectors given by
Eqgs. (20) and (21), i.e., any set of vectors in n — 1 dimen-
sions that are orthogonal to the single eigenvector that has
nonzero eigenvalue. Thus to compute the spectral decompo-
sition of the inter-M-layer matrix it is necessary only to get
an orthogonal basis that includes the single eigenvector cor-
responding to the nonzero eigenvalue. This is to be com-
pared with the case where the spectral decomposition would
have to contain a unique orthonormal basis if the matrix
were to have all eigenvalues nondegenerate.

The matrix defined by Eq. (25) adds a single layer at a
time when there are longer-range pairwise interactions.
When this is implemented with each layer used for a single
spin, this gives the statistical mechanical model with
“screw” boundary conditions. For example, when all
A, ; = J except for j = 1 and j = R, multiplying N such ma-
trices gives a square lattice of size R X N. Such boundary
conditions were introduced by Kramers and Wannier* in
1941, and were used initially in the calculation of the exact
partition function of the two-dimensional Ising model.'>"*
Screw boundary conditions in two and more dimensions
have been used also in numerical calculations for finite strip
widths for the two- and three-dimensional uniform Ising
model,'*'® as well as for the random Ising model in two and
three dimensions.'” Equation (25) gives this sparse matrix
in the general case. If all layers are of size #, then the n® X n®
matrix of Eq. (25) has only n® +! nonzero elements. This is
aproperty that is extremely useful in numerical calculations,
where the sizes of finite strips that can be studied are limited
by the storage of the digital computer. Use of the properties
of the row and column products also allows various relation-
ships of the matrix of Eq. (25) to be seen. For example, it is
easy to break this matrix into the product of the permutation
matrix defined in Eq. (28) times the product of a diagonal
matrix times the product of a direct product matrix. (For the
two-dimensional Ising model, this was done in Ref. 4.) An-
other property that can be utilized in numerical calculations
of transfer matrices comes from the relation

A J BlI(I J J I J JI(A J B

I d Jdigd R Jp=qd | Jpit 4 J

JoLJjuy o oJ J J RIW 1 J
(44)

Equation (44) ilustrates a property of the single-particle
transfer matrix [Eq. (25)] for a square lattice with screw
boundary conditions. (The property can be easily general-
ized to systems in different dimensions.) Equation (44)
shows that whenever a layer is not interacting with an inter-
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mediate layer j, it is possible for any matrix R to find two
matrices formed from Kronecker products of | and R that
multiply the single-layer transfer matrix S to give back the
same matrix S. That is, ST = TS. Here T is a Kronecker
product containing R in position j, and T is a Kronecker
product containing R in positionj + 1. The other matrices in
the Kronecker products are identity matrices, |. Multiply
Eq. (44) by the right eigenvector of T, Tv; = 4,v,, to give
TSv; = A,Sv,. Thus Sy, is a right eigenvector of T with
eigenvalue 4,. If it is easy to calculate the eigenvectors and
eigenvalues of the matrices T and T, one computational ad-
vantage that can be used in numerical calculations is to start
with a complete set of eigenvectors of T, and then multiply
by S to transfer to the complete set of eigenvectors of T. In
most cases, it is possible to make both of these sets the same.
Then program the “easy’’ rules to multiply v, by S, since if A
has n states, then Sy, is a linear combination of at most >
vectors. This property should be particularly useful in a ran-
dom system. For example, in the random Ising model stud-
ied in Ref. 17, it is possible to multiply S by a/l v, with
approximately the same computational effort and memory
requirements that it takes to multiply S by a single arbitrary
vector. Of course this result is trivial if R = |, but the numeri-
cal advantage that should be utilized is that Eq. (44) holds
for any R.
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Translating the spin-boson model into a classical system
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It is shown rigorously how to translate the ground state energy problem for some quantum
systems into an equilibrium problem for an associated one-dimensional classical system. The
case of the spin-boson model for which the connection is established with a previously obtained

Ising model over R is explicitly treated.

1. INTRODUCTION

In order to study the ground state of some specific quan-
tum systems it can be useful to translate this problem into the
computation of the partition function of an associated classi-
cal system. '~ The ground state is approached as a low-tem-
perature limit of equilibrium states for the quantum system
and it is this limit that is turned into a thermodynamic limit
of a one-dimensional classical system at a fixed temperature.

Our contribution consists in a rigorous study of the
translation to the classical system. For this purpose we start
from a convergent series expansion of the free energy of the
quantum system. This expansion is in terms of multitime
correlation functions up to imaginary time i and is based on
a general stability result for equilibrium states. Such a meth-
od is an alternative for the usual transformations based on
path-integral techniques.'~® In the case of the spin-boson
model the latter techniques yielded an Ising model over R. In
this paper the spin-boson model will be treated by the pertur-
bation series approach by which we will get a classical parti-
cle model on R. Furthermore, we will prove that this model
can be transformed into a continuous Ising model as found in
the stochastic approach.

In the following sections we consider successively the
following points. First, in Sec. II, we study the series expan-
sion for the free energy based on the perturbation theory for
cyclic vectors representing equilibrium states. Section III is
devoted to the spin-boson model. We use earlier results to
compute explicitly the multitime correlation functions ap-
pearing in the series expansion of Sec. II; their properties will
enable us to construct an associated classical particle model.
Finally, we connect in Sec. I'V this classical particle model to
the Ising model over R which was obtained in Ref. 4.

il. APERTURBATION EXPANSION FOR THE PARTITION
FUNCTION

We describe here a quantum mechanical model asa W *-
dynamical system. A general reference for such a description
is Refs. 5 and 6. The observables of the system form a von
Neumann algebra .# with normalized cyclic and separating
vector 02°. The free dynamics {a?|t€R} is the modular auto-
morphism group associated with the pair (.#,0°%). This

) Bevoegdverklaard Navorser N.F.W.0., Belgium.
® Onderzoeker 1.1.K.W., Belgium.
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means that the state xe #+—(Q°xQ°) of # is a KMS state
(i.e., a state satisfying the Kubo—Martin—Schwinger equilib-
rium condition, see Ref. 6) at inverse temperature 5 = 1 for
the time evolution {a?|s€R}.

Any self-adjoint element P in .# defines a perturbed
dynamics {af|tcR} of .# with generator 6,(-) + i[P,],
where &, is the generator of {af|scR}. It is an important
stability result in the study of equilibrium states that any
such perturbed dynamics allows for a perturbed KMS state.
To state the result we first introduce some notation: for n>1
the vectors

O (Xpye0X, ) =02, (P)- - (PYQ°, xR, (1)
have an analytic extension Y (z,,...,2,,) to the domain
D, ={(z4..,2,)|0<Imz, < - <Im 2,4},
which is continuous and bounded on D, with bound”®
197 zyseesz ) I P (2)

The perturbed KMS state is now given by the cyclic vector
QF where (Ref. 6, Theorem 5.4.4)

QP=Q0+Z(_1)n

nz1
XJ fds,--'dsn QF (isyynnis, ).
0<s <" <5,<1/2
(3)

In general, 7 will not be normalized; in fact it can easily
be seen for finite systems that — log||2°||? is the correction
to the free energy due to the perturbation P. The aim of this
section is to prove a simple expansion for |72

Lemma 2.1: For n>»2, let

oL {(xyx, _1)|0<x, < <x, _ <1hdx, - vdx, _ )

then

AEJ T J.dsl”'dsnf(sl’"')sn—l)
0<s < <5,< 1
[ L
0y, <" &v,<1/2

n—1
+ZJ ...J‘du,.-.duk

k=1J0<u < - quy<l/2

«[ oy,
Oy, < g, _ <172

NSy — Up g yeeeslly =~ Ul 4 Upgeensty + Uy _ i)
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+ ...J-dul...du”
Ou < <u,<1/2

XUy — Uy yeesliy, — Uy)

= 2 B,.
k=0

Proof: Define the following subsets of R” ~!:

A® = {(5y500s8, _ 1) }<51<7 <5, <1}, (4)
A" = {(53,e0s8, _1)]0<5,< <8, <3}, (5)
A= {(51yes80_ 1 )08, < <8y <4<y 4 <00 <S5,y <1

for 1<i<n — 1. (6)

By an obvious substitution we get

B0=f fds,---ds,,_,(—;———s,,_l)f(sp---,sn_n),
A"

@)
1
B, =f fdsl"'dsn_l(—'_s"—l)f(sl"“’s""])’
A 2
(3)
and for 1<k<n — 1,
B, =f -~fds,--~ds,,_l(min(—l—,sk)
k 2
—max(sn—-l —%,Sk_l))f(sl,...,s,,_l), (9)

where

Mk= {(sl’--'ys,,_l)|0<51<"'<5k_1<% ’
Sk_l<Sk<"'<Sn_l<l},

and with the convention that s, = 0. Clearly all the M * can
be decomposed as unions of domains of the type A’ There-
fore

n

S B, = Ef ---fdsl---dsn_11,(sl,...,sn_,)
k=0 =0 JA!

XSS ypeeesSn —1)s

where I,(s,,...,S, _, ) is a bounded non-negative measurable
function on A’ independent of . On the other hand,

A= z J ---J.ds,-'-ds,,_l(l — 81 W(S15ees8n 1 );
I=oJA!

hence the proof will be finished if we show that

L(syeeSpy_1)=1—s,_,, foralll=0,.,n. (10)

We will now prove (10) /by /. From the expressions (4)—(9)
it is clear that, for a given /, the only contributions to 7, come
from B, with k</+ 1. From (7) it is obvious that k=0
contributes only to / = n. From (8) and (9) it can also be
seen that for 0</<n — 1all B, with 1<k</ + 1contribute to
I,

We first treat the case / = 0 which by the remarks made
above consists of the single term & = 1. On M 'N A° one has

Iy =min(},s,) —max(s,_, —4,8) =1—s,_,.
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Now fix /, 1</<n — 1, and define for 0<j</ (still with the
convention s, = 0)

AY = {(5150s8_ 1 JEA|5;<50_ 1 — 1<8;, 1 }

then we have to consider contributions to I, from M¥,
1<k<! + 1. With {M*NAY|0<j<k — 1} being a partition
of M*N A, we have on M *NAY,

min(},s, ) —max(s,_; — L8 _)

Sk — Sk_ 15 if k</and j<k — 2, (11)
Sy =8, +4 ifk<landj=k—1, (12)
b —s_ 1 ifk=17/+1andj<k—2, (13)
1—s,_,, ifk=I+1landj=k—1. (14)
Hence for 0<j</,

1 i+ . (1
y= min| —,§

o=, 3 (min(55)

e~ )

which by (11)-(14) can be computed as follows: (i) for
j =1k only takes the value / 4+ 1 and by (14)

b
MENAN

II’A’J= 1 —Sn_1;5

(ii) for 0<j</ — 1 we have to consider the cases k =j+1,
J+ 2<k<l k =1+ 1whichlead by (11), (12), and (13) to

Llpw = (5541

—Sn_1 +%)
(s, —s )+(l—s)

k k—1 2 7
=1_sn—l' (15)

Finally for / = n an analogous computation as in (15) can be
made; however, the last term § — 5, (with / = n) is absent,
but on the other hand there is an additional term arising
from B, which precisely equals { —s, _,. So

for all 0</<n. n

We will now apply Lemma 2.1 to compute ||Q|?%
where QF is the cyclic vector of a perturbed equilibrium
state. Using the notation introduced in (1), the functions

(Zy5erZy YEC (O (ZpseiZ) ) [ _ 4 (Zie o 190e0rZn))
for 0<k<n, are analytic on

I(sysSy_)=1—5,_4,

—i<Imz < <Imz <0,
O0<KImz, ., < -<Imz, <4

Furthermore for z;€R, j = 1,...,n, we have by time transla-
tion invariance

(OF (ZiseerZi | OF i (Zhy 15002, ))
=(Q°a;, (P): a5, (P)al, | (P):--a} (P)Q°)
=(Q°|Pa _, (P)---al _, (P)Q°).

Therefore by the edge of the wedge theorem® all these analyt-
ic functions have a common analytic extension to the do-
main
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—i<Imz < - <Imz, <}

and

G "(tyseestty, _ 1) ={(Q°| QL (0,iuy,..pint, _ 1)) (16)

has an analytic extension to O<Reu; < - <Rewu,_, <1,
which is continuous and bounded on the closure of this do-

main and satisfies by (2),
|G "(uyyenntt, _ |\ P (17

Proposition 2.2: Using the notations (3) and (16) one
has

||QP|I2=1+Z(—1)”J ---fdu,---du,,
O<u, < - <u, <l

n>1

XG"(Uyyeesthy 1) (18)
Proof:
”‘QP”2=1+Z(_1)"2 f '”J‘dsl'”dsk
n>1 k=0J0<s < <5y <172

XJ dt,---dt, ,
0<4,< <,y _ 4 <1/2

XG (S — Sk _15eerSk — S1p8k F LpyeensSi + 8, _ 1),
and the series is absolutely convergent by (17). For n>2 we
can now apply Lemma 2.1 to each order, the case n =1
being trivial. [ ]

The explicit temperature dependence can be introduced
by scaling appropriately the time parameter; an explicit ex-
pansion parameter i can also be introduced by replacing P
by uP. By doing so (18) becomes

05 =1+ 3 (—w [ o [ auau,
nx>1 O<u < " <u,<f

X G2 Uppotly 1 )» (19)

where

Gi(uy.ou,_,), O<Reu,<-"<Reu, ,<B, (20)

is the analytic extension of
(Q3|Pal, (P)--af,  (P)QR).

iu,

Proposition 2.2 will be used to approach the ground
state as a limit of temperature states for S o . If the func-
tions G 5 (u,...,u, _ ) are suitable, formula (19) can be in-
terpreted as the grand-canonical partition function of a one-
dimensional classical system of size S and so the low
temperature limit of the quantum system corresponds to an
infinite volume limit of an associated classical system. Not
all quantum systems will allow for such an interpretation;
indeed a minimal requirement is that the G 3 should be posi-
tive. We will now explicitly carry out this program for the
spin-boson model.

ill. ACLASSICAL PARTICLE MODEL FOR THE GROUND
STATE OF THE SPIN-BOSON MODEL

We first introduce the spin-boson model that describes a
two-level system interacting with a scalar Bose field. The
formal Hamiltonian H is given by®'®

2290 J. Math. Phys., Vol. 29, No. 10, October 1988

H=J‘ dk e(k)ata, +J dk A(k)(a, + at)o” + po*,
R R
(2n

where a,, a} are boson annihilation and creation operators
and (07,0%0%) are the Pauli spin matrices. The parameters
K, € A will be assumed to satisfy the following properties:
ueR; e R—-R* is piecewise continuous and V¢>0 and
VB3>0,

1
dk < o0;
J|‘k|>c eﬁe—l %

A: R-R is measurable and satisfies

(22)

2
fdk12<w and fdkL<w.
R R €

The W *-dynamical system (.#, (0} ,a) corresponding
to the unperturbed Hamiltonian (u = 0) will be defined on
the Gel’fand-Naimark—Segal (GNS) representation of a
state wg on an appropriate C * algebra. For more details on
this contruction and for a proof of the uniqueness of the
equilibrium state we refer to Ref. 9.

We consider the C * algebra &/ ® M,, where M, are the
complex 2 X 2 matrices and where .« is the canonical com-
mutation relation (CCR) algebra generated by the Weyl op-
erators

{W(P)|9eL*R, (1 + 1/€)dk) },

satisfying
W()W(¢) = exp — io (¢, 1) W(d + ¢), (23)
W()y*=W(—¢), o) =Im{s|¥),

where

(/v =Ldka¢.

Writing the algebra &/ @ M, as M,(.&/) we represent in the
basis of C” that diagonalizes o * the equilibrium state o} as

oy = 1 (wﬁ‘ + 0 ),
2 0 g
where wj; , are quasifree states of . given by
g, (W($))

= exp{ + i Im(2id /€|¢) — 1($|coth(Be/2)$)}.
(25)

In the GNS representation of (M, (.2 ),w) we can identify
M, (/') with its representation because M,(.&') is simple.
Then .# is M,(«/)" and

wg (x) = (QF|xQ3), xeM,().

Finally, setting 0* = {(0* + i0”), the unperturbed dynam-
ics {a?|rR} is a strongly continuous group of automor-
phisms of .# determined by the following relations:

al(ot) =ar W(+ (2id/€)(1 —e™)), (26)
a(o?) =07, Q7N

(W () = explio? Im(2iA /€| (1 — ") @) } W(e"“P).
(28)

(24)

M. Fannes and B. Nachtergaele 2290



It can be checked that Qf is a cyclic and separating vector for
A and that {a?|tcR} is the modular automorphism group
corresponding to 3. We will now apply the perturbation
theory for equilibrium states of Sec. II for a perturbation
P=uo™

Proposition 3.1: The functions G 3 defined in (16) and
(20) are given by
if n is odd,
G (Uyystyy_ 1) =eXp BT (0uy,.itiy, ), n=12,.,
where for 0<s,< " <8,,<B,

B} (5)ye052,)

2
=8f dk_/l__ 2 (_1)f|+jz
R € 1< <)a<2n

v sinh((8 —s;, + 5;,) (€/2))sinh((s,
sinh(Be/2)

G;(u,,...,u,, —1 ) = 0,

—5;, ) (€/2))

(29)
1

a; (0%):a} (0¥) =0 o™ I:[ [W(z_"i (1 __e"‘zj_le))W(
j=1 €

1 [

j=1

. — 2
+0 0 H p

Observe now that  is invariant under the automorphism
ye W(¢)__,el1r¢7x ma"@ W(

- ¢), yEM29

of .# . Hence

(o=
1

[exp i Im(—zi(l — )
€

:l:

an(tl""9t2n) = a)B,+ (

J

=mﬁ,+(
j

—s

(1—e"- ")) (g’i(l

— 2id
€

Proof: We start by computing

wglal (0% ‘@) (D) =F"(t},t,)

and then obtain G ; by analytic extension and application of
time translation invariance.

We first note that g is diagonal in the basis of C* which
diagonalizes o7 furthermore the automorphism

y—-oyo*

of # commutes with {a?|feR} and maps o* into — o*;
therefore F" vanishes for # odd.

We must now compute F?", Aso* = o* 4 o, we ob-
tain by (26) that

—2id
€

(1 _ eitzjc))]

1-))

_2-4_(1 _ eilzf)> W(_zi./l_(eitzf . ei!zj~ |f))}) — epr 2n(t],...,t2n )’
€

=1 €
30)
where by (23) and (25),
A(ty,.. ,tz,,)-tz Im<—(1——e’ ') 2'1(1—e"‘v‘)>
j=1 €
—i z Im <2M (e:!zjs euz/»._le) 2_1/1 (eiﬁizf_eﬂllz—-ls)) +l zlm <£ _2i (eitzﬁ__eitzj_,e))
1<y <h<n € € j=1 €| €
1 & d <?J{ ity € l'lj_e‘ (BG) ity € it, __c)
_— —(e ¥ —e *~")|coth eV —e¥!
2 ; zl € ( € ( )
SIS s %) |
= —4 | dk —=|n coth| — — 1Y+ 23isin{(t;, —¢t; )€} 4 cothl = |cos((r, — ¢, Ye)}|.
[ s 3) T (0 hisinits, — )@ +coth( B Jeositr, — 1))
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By the conditions (22) the function
(Liseortyn WA 2 (Lyyenty,)

can be analytically extended to the domain
{(z}pes23,)|0<Im 2z, <+ - - <Im 2,, < B}

and for ¢; = is;, j = 1,...,2n

2
A8y, 0852, )

—SJdk (_1)j|+fz
€2 l<1.,)2<2n

y sinh((B + s;, — 5,,) (€/2))sinh((s;, —
sinh(Be/2)

5;, ) (€/2))

a3n

In order to get G 3" we use time translation invariance and
putin (30) 5, =0,s, ., =u;,j=1,..2n— 1. [ |

Propositions 2.2 and 3.1 show already that ||Q£]|> can be
interpreted as the grand canonical partition function at fuga-
city |u| of a continuous one-dimensional classical system of
size 3 at inverse temperature 1 and with Hamiltonian

2n—1
Hg = (uytiyy _ 1)

2n-—1
= ¥ (—1YVsw)
i=1
B 1< Zz 1(_l)jl+j2V5(ufz_uj.)’ (32)
| <Jak2n —

where

iz_ sinh((B — u) (€/2))sinh(ue/2)

vy =3 | dk
o (1) L p sinh(Be/2)
(33)

It is possible to translate this classical “particle” model to an
Ising model on R. Such a model was obtained in Ref. 4 by a
path integral representation of the partition function of the
full spin-boson model.

IV. THE ISING MODEL OVER R

The configuration space 2, of a continuous Ising model
on the interval [0,L) is the space of all functions

x€[0,M) -»S(x)ef{ — 1,1}

that are continuous from the right and take the value 1 at
x = 0. The a priori measure on this space is determined by
the jump process with transition time 1/8. The jump process
is a Markov process defined by the transition probability

P(S(x) =1|S(0) = 1) =1(1 + €~ %).
On the configuration space of the Ising model this process

2292 J. Math. Phys., Vol. 29, No. 10, October 1988

induces up to normalization a unique measure v, on the
configurations with exactly » jumps at the points
O<u,< " <u, <L,

v,(du, - du,) =6"du, --du,. (34)

We will now consider Hamiltonians of the following type:

L L
H, (S) =f dsJ. dt U, (t —5)S5(s)S(1) (35)
0 (o]
and compute their partition function at inverse
temperature 1
Z(L,U,) =J' v(dS)e ™ ", (36)
aQ

where ;" is the space of configurations consisting of the
paths with an even number of jumps and where v is the (un-
normalized) measure equal to v,, on the paths with exactly
n jumps. We establish now the connection between such
models and the classical models described in Sec. I1I.

Proposition 4.1: Let te] — L,L]-G,(t)eR be twice
continuously differentiable such that

G.()=G.(—0),

G (L —1t) =G (), [0,L],
GL (0) =0,

then

Z(L,G})

— zaznj. ...Jdul...duzn
n=0 O<u, <" "<uy, <L

(= 1Y 4G, (u, — ,,)}
(37)

Xexp[ -8

1<, < <20

Proof: By (33)-(35) we have

Z(L,GZ)= iaan ...fdul...duzn
O<u, < "<up,<L

n=0

Xexp — H, (S,),

where u = (u,,...,14,, ) and where S, is the configuration
Su (x) = — qu_‘<x<u2k, k—_- 1,.'.,n,
= 41, elsewhere.

We now compute H, (S, ) taking into account the conven-
tion u, =0 and u,, . , = L. Let I;, 0<j<2n be the interval
[uysuy; 1) and let X1, be the characteristic function of 7,
then

2n .
ji=o0
and so
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2n 2n
HL(Su)=f ds dtG"(t—s)z S (= 1y (), (1)

Hh=0jip=0
2n 2n
= z Z (—1)"*’2{—GL(ujz+,—u +1)+GL(14/+1 —ujl)+GL(ujz'—u +l)_GL(ujz'—ujl)}
j|=0j=O
2n 2n 2n+ 1

=4S S (DG — )+ S (~ DG (L—u)+ 3 (— VG, (L—u)

hi=1h=1 j=1
2n

Jj=1

2n+ 1

+ z (-‘l)jGL(L'—uj)"" Z (—l)jGL(u,') - z (_l)jGL(uj)
/=0 '

ji=1
2n

j=1
2n+ 1

2n
+ Z (_l)jGL(L“uj)—’ Z (—l)jGL(uj)_ z (_l)jGL(uj)

j=1 j=1

+ 3 (—I)IGL(L—u)—z (— 1), (4) —

j=1

= — 8 Z (—

1<j; < jr<2n

1)/‘. +szL (ujz —u ),

where we have used the symmetry properties of G, . |
The symmetry properties of G, are satisfied by the
choice

Gy (1) =4V, ([t]), el —BBIl

The KMS property of the equilibrium state w} of the origi-
nal unperturbed spin-boson model ensures that G, satisfies
Gﬁ(ﬁ—t)=Gﬁ(t)s tE[O,B].
It is now clear by Proposition 4.1 that the classical model of
Sec. III is equivalent to a continuous Ising model of size
[0,3] with interaction potential
1 d?

UB(I) =“‘_t_1— Vg( )

—Et+e—E(B-~I)
~ 1 [ararfete T
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j=1

~21 ( - l)jGL(uj)

l
and with 6 = p.
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The derivation of the regularized chiral Jacobian using the zeta function

method
Rong-tai Wang®
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Using the zeta function method, a general formula for the regularized chiral Jacobian to
theories including non-Hermitian Dirac operators . defined in arbitrary even-dimensional
Euclidean space is derived. The agreement of this formula with the results obtained in the

differential geometric approach is also clarified.

1. INTRODUCTION

Since Fujikawa made an important observation that the
path integral measure is not invariant under chiral transfor-
mation,! it has been clear that the associated Jacobian factor
is responsible for the anomalous term in the corresponding
Ward-Takahashi identities in the quantum field theory of
the path integral formalism. Meanwhile, the importance of a
suitable choice of the regularization scheme was also noticed
by many authors. One of the regularization methods that
proved to be useful is the £-function method®” based on tech-
niques developed by Seeley from his definition of the com-
plex power of pseudodifferential operators,* and examples in
some special cases and low dimensions have been worked out
in Refs. § and 6.

In this paper, by using the {-function method described
in Refs. 2 and 3, the derivation of an explicit formula for the
chiral Jacobian in arbitrary even-dimensional Euclidean
space-time is made, and the emphasis of the discussion is laid
on the coincidence between this formula and the results of
anomalies in the differential geometric approach (see, for
example, Refs. 7-9).

The Dirac operator & considered in the generating
function for the fermion including ¥,,, , coupling defined
in 2n-dimensional Euclidean space is

17 =l(£+ V+A7’2,.+1)

=iy,(0, +V, + A4, Y20 1) (1.1

with Clifford algebra {y,,7,}=25,,, and y,,.,
= i"¥, ** *¥an, Where the anti-Hermitian background fields
V. or A4, take the value in the Lie algebra of some gauge
group. Under an infinitesimal chiral transformation
Q =1+ By,, . specified by 8(x), which also may be Lie
algebra valued, the chiral Jacobian, which we derived in this
paper, can be expressed as

= On leave of absence from Physics Department, Modern Physics Institute,
Fudan University, Shanghai, China.

2204 J. Math. Phys. 28 (10}, October 1988

0022-2488/88/102294-06$02.50

—logd = 2 jdz"x
(4m)"n!
th’{B’)’zn+1 ﬁ:oB(m +Ln+1)
1 9% L AL
(2m)! g™ L+bL=m+n % QI_ ]u:O] ’
(1.2)
where
Q, =F,0, +Fi0, +2udy,,,, (1.3)
Fl =d,v, -0V, +[V.,V,]+[4,4,], (14a)
Fi, =d,4,—9d,4, + (4. V., ]+ [Vad, ], (1.4b)
and
Bim+1in+1)=mn/(m+n+1), o, =}i[7..7.]
(1.5)

In Sec. I, the {-function regularization scheme for eval-
uating the chiral Jacobian is briefly reviewed. In Sec. III,
some simplification is made for Seeley’s formula of kernel
K,(x,x) in the case of the Dirac operator. Section IV is the
detail derivation of the formula (1.2). The applications and
discussions of this formula are made in Sec. V.

Il. THE £-FUNCTION METHOD

According to the description in Refs. 2 and 3 and the
results of Seeley,* let A be an elliptic invertible operator of
order m > 0, defined on some compact manifold M without
boundary of dimension d; then the complex power of opera-
tor 4 is defined as

= asar—a-1aa, 2.1)
2 Jr

where I' is a curve beginning at «, passing along the ray of
minimal growth'® to a small circle about the origin, then
clockwise about the circle, and back to o along the ray. The
generalized § function formed from the eigenvalues 4; of A is
§(s,4) = 3,4 . Denoting K(x,,0) as the kernel of opera-
tor O, one can write
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Cisd) = f d K, (x,A) (22)
M

with K, (x,x,4) = K(x,x,4 *).? Seeley’s results show that the
series 2,4~ *converges only for Re s > d /m, and can be ana-
lytically extended to a meromorphic function of s in the
whole complex plane; in particular, it is regular at s = 0.*
Since the derivation of the £ function at s =0 is formally
equal to — Z; log 4;, one defines the regularized determi-
nant of the operator to be exp( — d¢ /ds) |, - ¢ - In the appli-
cation of this method to the path integral approach of fer-
mions in the presence of background fields, the generating
function is regularized from the beginning,

Z., =fDZD¢rexp( ——J‘dngzﬁ)

= det & =exp { _ D) ] . (2.3)
ds $=0
If the Dirac operator & is invertible, this yields a natural
definition for Jacobian J associated with a fermion transfor-
mation ¢ = ¢/, =79,
Jl=det(N Z0)/det Z. (24)

In the case of the infinitesimal chiral transformation
Q=1+ By, ,onecan apply the differentiability result of
the ¢ function® and obtain

logJ = —2{_‘_1. [sTr(.@”deﬁ)]} (2.5)
ds s=0
This yields
J= exp[ - 2f du trly, . ,BKo(xJ,Q))] . (2.6)
Sd

Thus we can evaluate the chiral Jacobian by use of Seeley’s
formula for K,(x,x,2 ),*

— f dé‘Jw b_,_ 4 (xéiu)du
1€1=1 o

Ky(xx2) =

(2m)?

2.7)
and the relation of Seeley’s coefficients b,’s becomes
b_(a,—A) =1,

1—-1 (Dx )aa
b-—lﬁl(al—‘l)'*' z (ag)ab_,+|a'—_—o— (2-8)
(@r=0 al

=0 (I>0).
Here 0(Z ) = a, + a, is the symbol of the Dirac operator,
a = (ay,..,a,) is a multi-index, |a| =24_, a, is of the
orderof a,

4 g\ 20 _ g\
3,)% = , D=
@)= 11 (ag,,) ,L[.(ax,, )

p=1

(2.9)

For noninvertible Dirac operator &, one introduces the
definition

det'? = lim det(Z + al)/a”.

a—-0*
It has been proved thatdet'Z = det(<Z + P,., ), where Nis
the dimension of the null set of &, P,., is the projection onto
the null set of &, and a similar treatment to that of the
invertible leads to formula (2.6).""
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l. THE KERNEL OF DIRAC OPERATOR K(x,x,2)

The direct evaluation of the chiral Jacobian based on the
relations of Seeley’s coefficients (2.8) appears rather com-
plicated and tedious when the dimension of the manifold M
is more than 2. But, in the case of the Dirac operator, the
principle symbol a, = £ is independent of x, the relation of
b’s (2.8) can be greatly simplified.

Proposition: If the symbol of the Dirac operator defined
in a D-dimensional manifold M without boundary is
o(2) = a, + ay, in which a, = — £, a, = ay(x), then

b_,=(—§—AD"", (3.1)

b_l_l ={[ “b_1( -‘Dx +ao)]lb.—.1}(0) (/>0),
3.2)

where D, =y, ( —id/dx,); {F(D,)}'” denotes only the
terms in F(D, ) with homogeneous degree / in D, being pre-
served.

One obtains (3.1) from the first relation of (2.8). In
order to prove (3.2) satisfies the second relation of (2.8),
one should notice the following derivative property of b_,:

a; b_y=b_y.b_,, (3.3)
b-D)b = 5 5. Di;"’ (i>0), (3.4)
{[6_ (=D, +a5)]/b_,} "
o _iag{[—b_,(—Dx+ao)]f-'“'b,l}‘°>£§2
k}>0, J»i>0). (3.5)

Hence
b_,_, ={[ —b_(-D, +ao)]lb—1}(0}

I—1

= = S [ —b_i (=D, +a)]"""b_}aph_,,

i=0
(3.6)
with the aid of (3.5), one can write

b_,_(—&—AD
I—-1
=— 3 3{[—b_,
la] =0
D3a,

X ( _Dx +ao)]l—[a|— lb_l}(O)
al

11 Daao
= - agb—l+la| - >
lal =0

; (3.7
al

this is just the second relation in (2.8).
Using expression (3.2), Seeley’s
Ky(x,x,2) in (2.7) can be written as

formula for

Rong-tai Wang 2295



Ky(xx,9) = _if d
o($%7) (2m)9 Jig1 =1 ¢
xr [—b_.(—D, +a,)]%_,duy,
0
(3.8)

with b_, = ( — & — iu) ~'. We thus come to the following
theorem.

Theorem: If the symbol of a Dirac operator defined in
the d-dimensional manifold without boundary is 0(Z)
= — & + ay(x), then the kernel K (x,x,Z) can be ex-
pressed as

K(xx@):-.___l__ é_iJ’ d
o Q2md! Lag? Jig =1

xfwdu(—g—iu-l); +a{,)“] ,
0 7=0

(3.9)

in which D = 9D_, a}, = na,, 1 is a real parameter.

IV. THE EVALUATION OF THE CHIRAL JACOBIAN

In the case of the Dirac operator as shown in (1.1), we
compactify R>" to S*" by stereographic projection. Denot-
ing L= —D, +ay,=iV+ idvs,,.,, L' =nL, one can
write

(—€é+L' —iw)™*
=(—é+LT+i)[(—€+ L' —iu)
X(—€+L"+iw)]™!
=(—¢+LT+u)(E +u'—R)™

—(—£+L"+iw) 3 (E2+u) VPR, (A1)
=0

in which R = R(x,£,u,7) is defined as
R(xgum) = —L'L" +iu(L""~ L")+ ({L"+L'#)

= 712(F:v - F:v72n+ 1 )Upv
+ 2undys, o +2MELLYL + R, (42)
Here R, is the terms with ¥’s contracted and F},, F7,, and

0, are shown in (1.4) and (1.5). The kernel Ky(x,x, D)
shown in (3.9) can be written as

3
Ko(xx,2) =Y K (xx,9)

i=1

with

K(x‘) , ’g _ -1 f d
o 5%2) Q@my*" Jigi=1 5

xf dub®,_, (xEiw),  (43)
0

in which
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bDy . (x,&,iu)

-{ 1 aZn
(2m)! It
X ﬁ: iu(§2+u2)—(n+m+l)Rn+m]] ,
m=0 n=0
(4.42)
b (3)] —2n (x,é-’iu)
_{ 19
(2n)! an*
% n L,T( 2+u2)—-(n+m+1)Rn+m]] ,
mgo § n=0
(4.4b)

b (_3)1 —2n (x,é',iu)
_ [ 1 aZn
(2m)! Ip*"

X mgo(_g)(§2+u2)—(n+m+l)Rn+m” ,

7=0

(4.4c)

other terms related with the expansion of (4.1) vanished
under (3*/37°") |, —o-

Now, in evaluating the chiral Jacobian as shown in
(2.6), further simplification can be made under the combi-
nation of tr By,,, . | (*), the £ integral, and (3 *"/37°") |, _ .
If wedenote b {? asthetermsind _, _,, that have no contri-
bution under this combined operation, we can write (4.4a),
(4.4b), and (4.4¢) as

n 2a,2m + 1
1 . u
b (—)1 —~2n (x9§ylu) = 2

o (§2+ uZ)n+m+1

1 3% im
[(Zm)! auzmQ‘ ]

+bh,

u=0

(4.5a)

b (—2)1 —2n (x’é-:iu)

n Zm+ 1

u
- et (§2+u2)n+m+l
1 aZm
[(2m+ 1! gum+!

+ b (2)’

u=0

L TQ n_+ m]
(4.5b)

b (3)[ —2n (xygyiu)
nowmrI(=2E,) [ 1 ar
e (§2+u2)n+m+1 (2m+1)| au2m+1
X ¥ Q’;L*Q‘*_]

L+bh=m+n

+b:,

=0

(4.5¢)
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where @, is shownin (1.3). In deriving these expressions,
we have noticed the following two facts: (a) upon using the
properties of Dirac ¥ matrices, the terms survived under
tr BYam + 1 (*) must be of the form tr By, 1 (¥, " Va,,)
with g, 54,5 #U,,; (b) upon using the symmetric
property of integration, all the terms without power of £,
can be discarded. For example, in deriving (4.5a), the terms
with one or more factor of £, L, of R_ in the expansion of
R"*™ do not contribute to trBy,, , K"’ (xx,2). So
£,L, and R_ in the expression of R in (4.2) can be deleted
and R(x,£iump=1)=0_(xu)+ '--. Now, the terms
with factor #*" in the expansion of R"*™ are accompanied
with a factor #*™, thus we can make the replacement of
[8*/(2n)1 30" )| ,~0 Wwith [>"/(2m)! 3™ ]|, _o as
shown in (4.5a). In deriving (4.5b), £,L, and R, in R can
also be deleted, the terms with the factor *” in the expan-
sion of L 'R "* ™ are now accompanied with #>*"* !, From
(4.4¢) to (4.5¢c), we first collect the terms with an even pow-
er of £, in the expansion of — §(R)"*™ that contribute to
tr 872, 1 K as

S (—HR"Q2¢,LHR*:

L+ bL=m+n

= Y  (—2%)R'L'RY

L+bL=m+n

(4.6)

where
R(x&ium) = (F), + Fi V2 1)0,,

+ 2undyy, 0+ s

and
Rip=D=0. +
then make a similar replacement as above, and we come to
the result of (4.5¢).
After integrating over § and , the nonvanishing part of
K’ (x,x,9 ) under tr By,, , | (*) becomes, respectively,
1 iB(M+1,n+1)(m+n+1)
(4m)"n! =0
1 a 2m
2m)! AP

(4.7a)

Q"f"‘(u)] ,
u=0

—_ 3 Bim+Ln+ D(m+n+1
(4ﬂ')"n! m=0

a?.m+1

1
><[(2m+ 1)1 gy2m+!
i -]
Bm+1,n+1
1 52m+1
(2m + 1)} g2 +?
X Y @4 wL'gh (u)] .
u=20

L+4lb=m4n

Lo+ "'(u)] R (4.7b)
u=0

(4.7¢)

On the other hand, in the sense of neglecting the terms
with ¥ matrices contracted, one can easily check

lQ_ = Q. (¥ —idys. 1)
— (V= ily2 Q- +iu(Qy — Q) +
(4.8)
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this leads to

L'Q' =Q' (iV—idy,,,,)

+u(Q, —Q )+ . (4.9)

With the aid of the above relation, the summation over
(4.7a), (4.7b), and (4.7c) can be simplified, the final result
of tr By, 1 Ko(x,x, 2 ) can be written as

trByZn “+ lKo(x’x;v@ )

1 [ z
= — t n B(m+1n+1)
(4m)"n! S mzzo

2m
x[ 1 4
2m)! P

X ¥ Q’;(u)Q’:(u)] =0]. (4.10)

L+bL=m+n

We thus derive the general expression of the chiral Jacobian
as shown in (1.2).

V. APPLICATIONS AND DISCUSSIONS

(1) An example. In practical applications, the formula
(1.2) appears rather convenient. As an exmaple, one can
easily obtain the Bardeen anomaly'? in four-dimensional
Euclidean space with the Dirac operator shown in (1.1) as

XU B pupo [ (FUF oo +1F o F o) ]
—§(F) A4, +A,F A, + A4,4,F))
+%4,4,4,4,1} (5.1

Here (F, F), +F1 F4,) is simply read out from the
terms in tr BysB(1,3)(Q% + @,Q_ + Q2 ) with factor
u, —§(F)AA,+A,F! A4, +A4,4,F},) is read out
from the terms in tr{By;B(2,3)(Q°, + Q0% Q_+Q,0%
+ @ )} with factor »? while $4,4,4,4, is from the
terms in  tr{By:B(3,3)(Q% +Q° Q_+ Q% Q0%
+Q.0° +Q* )} with factor «*.

(2) The case of 4 = 0. In this case, the Dirac operator
9 =id + iV is Hermitian, and @, = F), is independent
of z, and the formula (1.2) yields

—logJ =———2-——fd2"x
(47)"(n 4+ 1)!

Xtr{B(xX)e, .. i Fuvs Fu 3s (5.2)
this result coincides with that based on Fujikawa’s regular-
ization scheme.'

(3) The case of chiral gauge coupling. The Dirac opera-
tor in the case of chiral gauge coupling is
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D =i+ id V1 +¥y,,0). (5.3) by (1—@Q,)"'(1—Q) . By using the formulas of chiral
Sinced, =V, =14, @, becomes expansions
Q. =FE:)”MP¢ +ud yy (1 —F,waﬂ,,/l\’ﬂg + Ay )7t
[P, =40 +7m. 0], (54) =P_+ (1~ &)1 ~F,0,, +44)"4P_
where + (1~ —F, 0, +44)"'P,, (5.52)
F{’=3,4"—3,49 + [44]. (1—F0,,P_+ 4y, )"
In the sense of preserving terms with 2n ¥ matrices, we can =P .+ P A(1 —F, 0, +44)7'(1 - 4)
replace +P_(1—F, 0, +40)"'(1 - b), (5.5b)
I,+12=m+an‘I'- Q" we can expand (1 —Q,) (1~ Q_) 'as
i |
(1-0)'1-Q ) '=0=Fi}Pa,, +u?d 4!
— AP = F 0, + BADAD) A1 = F g, +utd DAy~
— (1= F$P0,, + @A PA) T ADN ~F o, + 24 FA )14
+ (terms with odd number of ¥’s). (5.6)

Thus tr By,, ., (++*) in (4.10) becomes

- 1
tr[ﬂyz,,+1 zoB(m + l,n + 1) EnT)!—a

m=
n—1
—u? E
I=0
n—1
—u? z
I=0

(+) (+) 2 f() H(INTE (C+) (+)
Y| (F,, a,w—uA A4 (F, o,

(F( + )0.” — uzA (+)A(+))IA (+)(F,(4+')0',‘ _ uZA (+)A (+))n—l— 1A “
;J‘V v Vv 2

aZm 2 4 (+) 4 (+)
(P 0, — A Ay

ey LY CN T

u=0

1 - n—1t - -
-_—tr{ﬂyz,,+l J; dt [(tFLj)a#V)" —t(1—1) Z A(H(IF,(J)O“,,)IAH)UFLJ )a.,w)n—l—l

I=0
n—1

—t(1—=1) IZO (tf‘,“;“ )UW)IA(H(J;WUW)'._I_1A(+)

where the integral expression for the beta function,
1

Bm+1n+1) =f t"(1 — )" dt,

(4

is used and F{ ;" is defined as

FiP =FP—1-n[d,4]. (5.8)
Now, with the aid of the notation of the exterior differential
formA =4, dx*, F=\F,, dx*Adx", A, = t4, F, = dA,
+ A2, we can express the chiral Jacobian in the case of
gauge coupling as

1 1
— lo, J=2—-———Trf dt{B(F{+
g (27i)"-n! o (

—nt(l —1) [A(+),P(A(+)’F§+)n—l)])}’
5.9

or in more compact form’

1 f‘
—log =2 ———ow— | dt(1 —¢
°8 QRm)"(n~1) Jo ¢ )

XTr[Bdp(A ™ FH"-H],  (5.10)
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I

I

in which P(A,,...,A,, ) is a symmetrized product.

(4) Gauge anomalies. The {-function regularization
scheme can also be applied to derive the gauge anomaly.
Rewrite the Dirac operator in gauge coupling as
D = (id+id P, +id_P_ under gauge transforma-
tion AW g (A +d)g,, g, =expuv,(x), the
Dirac transforms as D-D(g) =D +86% with
89 =[P, v, ]. Here v, (x) is an infinitesimal quantity
related to some gauge group G+, In the path integral for-
malism, the Jacobian factor is related to the following equa-
lity:

det & = Jdet Z (g). (5.11)

Within the {-function regularization scheme, we can express
log J as

logJ=¢'(0,2(g)) - ¢£'(0,9). (5.12)
By applying the {-function differentiability results,” we have
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logJ = —-i [ST!'(.@_S—ICS-@)]:=O
ds

i

_4 [s Tr(v,j’#@ -9
ds
—STI‘(U+$_=@ _s)]s=0

D], 0 (5.13)

Compare the expression above with that of (2.5), a factor 2
has disappeared. So we can easily obtain a formula in exteri-
or differential forms for gauge anomaly from (4.10) as
1

Q@m)"(n— 1)!

d
= - “E [sTr(v ¥2m 41

logJ =

1
Xf dt(1 = OTr[BdP(A D F{+ " h].
0

(5.14)
(5) The chiral Jacobian in differential forms. In the

form of chiral projection, the Dirac operator (1.1) can also
be written as

D = (id+id"HP, + (id+id')P_, (5.15)

with 4%’ = V' + A. Using a similar treatment as exhibited
in the case of chiral gauge coupling, the formula shown in
(1.2) can recast into exterior differential forms of 4‘*’ as

—log J(4'+,47)
1 1 (+) 4(—)
= (A , 5.16
(217')"’“‘(n+1)!J.;2nw2 (47547 (3.16)
where
1
@3 (AT AT =(n+1) J det str{28,F"(1)}
0
1
—n(n+ l)f dee(l1—1)
0
XStI’{[Zﬂ,A"H—A(_)],
AP — A F =Y} (5.17)
with
Fty=tF, + (1 =)F_ —t(1 —)(4"P' =42,
(5.18)

Furthermore, by solving the equation dw;, = 850,, , , un-
der condition 8%w,, , , = 0 we obtain

1

(02’.+1(A(+)»A(_)) =(n+ l)f dt{A(H—A(—),F"(t)}.
0

(5.19)
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This is in agreement with the result of Lott using cohomo-
logy,'* and therefore the topological invariant associated
with the Dirac operator (5.15) must be

[Qm)y "t i (n+ D] e FOOm+t —qr FOomt Ty,

(5.20)

it is related to the Atiyah-Singer index density in 2(n + 1)-
dimensional space.'’

As indicated in our previous paper,'® we may conclude
that all the differential geometric objects in the approach of
anomalies, both Abelian or non-Abelian, can be traced out
oppositely under the properly selected regularization
scheme in the path integral formalism.
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The scattering transform for the Kadomtsev—Petviashvili equation (KPII) is a local
symplectomorphism. Pulling back the Hamiltonians for the linear evolutions of scattering data
gives Hamiltonians for the KPII hierarchy: they are values of the associated scattering data at
distinguished points. This method yields simple proofs that KPII has infinitely many
commuting flows and simplifies their calculation. It also provides a Plancherel-type theorem.

I. INTRODUCTION

Fadeev and Zakharov'? have observed that the scatter-
ing map that underlies the inverse scattering method is a
canonical transformation to “action-angle variables” for a
number of (1 + 1)-dimensional nonlinear evolution equa-
tions: sine-Gordon, nonlinear Schridinger, Korteweg—de
Vries, and the Toda lattice. Without dwelling on the analy-
sis, they discovered the appropriate symplectic structures,
Hamiltonian functions, and Poisson brackets for these equa-
tions. The intention in this paper is to present similar results
for the (2 + 1)-dimensional Kadomtsev—Petviashvili
(KPII) equation d,(i¢+d3u+udu)+3d3u=0, and
other equations in its hierarchy. An application of some pre-
vious work will, in addition, describe the underlying sym-
plectic manifolds in a neighborhood of their distinguished
point 0. This analytic information will be used to prove that
the canonical transformation is in fact a (local) symplecto-
morphism.

Earlier,> we observed that certain values of the scatter-
ing data associated to a function # were constants of all KP-
type motions of u. In this paper we will show that these
constants of the motion may be used as Hamiltonian func-
tionals which, together with a natural symplectic structure
on the manifold of solutions, put the KP evolution into an
obvious Hamiltonian form. Such a structure has been found
for certain one-dimensional evolutions by similar means.*

The advantages of putting the KP equation in Hamilto-
nian form are that symmetries and constants of motion may
be very easily calculated. In particular, new quantities that
are preserved under the KP flow may be explicitly written as
integrals of polynomials in the potential and its derivatives
with no more sophisticated a mathematical tool than the
multiplication of power series. It may be of interest to con-
sider what physical meaning may be assigned to these con-
stants of the motion, as they are composed of polynomials in
the terms of the KP equation itself.

Results cited in this paper answer a question of Lipov-
skii® who has independently discovered the Poisson bracket
for the KP Hamiltonian system under the assumption that
the scattering data satisfy certain boundedness properties.

These results reproduce the construction of the
Korteweg—de Vries (KdV) Hamiltonian system? under the
restriction du/dy = 0. This implies that both dm/dy =0
and dim/dy = 0, resulting in the simplification 71 = m. One
well-known but important consequence of this last equation

2300 J. Math. Phys. 28 (10), October 1988

0022-2488/88/102300-03%$02.50

is that the scattering problem for the KdV equation is self-
adjoint, and that the recursion operator which generates the
KdV hierarchy has m? as an eigenfunction—it is the so-
called square-eigenfunction operator. Zakharov and Kono-
pelchenko have shown that no single recursion operator ex-
ists for the (2 + 1)- or higher-dimensional examples.® Here,
their obstruction is overcome by introducing an only slightly
more complicated formula for elements of the hierarchy.

Much of the novelty of the KPII equation develops from
its non-self-adjoint scattering problem, and the resulting dif-
ficulty in the physical interpretation of eigenvalues. The
method used in this paper departs from classical S-matrix
scattering theory in that no explicit physical meaning is as-
signed to the function a. It is merely called scattering data
for historical reasons and by analogy with the KdV and oth-
er (1 + 1)-dimensional equations. It has been shown by
Beals, Coifman, and others that the classical S matrix de-
pends upon too many variables to be in one-to-one corre-
spondence with potentials for any example equation depend-
ing upon two or more space variables. As a consequence,
there must be constraints upon S, which are in general non-
linear, and which it is difficult to show are preserved under
linear evolutions. Without these constraints, the inverse map
does not exist. Hence the classical scattering transform is not
a symplectomorphism. It is necessary to use the “unphysi-
cal” scattering data of this paper to linearize the KP equa-
tion and write it in Hamiltonian form.

Il. KP HAMILTONIANS

Let B={ucL'NL%(R®)|f= . u(x;,x,)dx, =0 a.e.
x,}. Then B is a closed subspace of L 'NL 2. We shall be
concerned with an open neighborhood of 0 in B: this will
contain the integral curves of all KP-type evolutions from
small initial conditions.

Since B is a Banach space, we can identify it with its
tangent spaces at each point: for all beB, T, B=B. Also, its
tangent bundle is trivial and may be identified as 7B=B X B.
Hence for convenience we shall define our two-forms on
B X B=(TB /B) X (TB /B),suppressing the dependenceon
base points in 7B. We shall do likewise for the (linear Ban-
ach) manifold of scattering data and its (trivial) tangent
bundle.

Introduce the bilinear form €2: B X B—C by

Quw) = (3 'uv), (n

where
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(37 'u)(x,x;) = f ‘ u(y,x,)dy

and

@M=Lw.

It is a simple exercise to show that € is both skew symmetric
and weakly nondegenerate, and hence is a “symplectic”
form on the linear Banach manifold B.

Recall (see, for example, Ref. 3) that the KP evolution
may be linearized by mapping a solution # to scattering data
associated to the perturbed heat operator

32 +229,~ 3 —u=L, —u. (2)

After finding m = m(x,z), the solution to L, m = um with
m—1 as |x| - oo, the scattering data may be written as

a(z) = f u(x)m(x,z)exp{x,(Z — z) + x,(zZ* — %) }dx .
RZ

(3)

Then KP-type evolutions of « correspond to evolutions of &
of the form

a(z,t) = a(z)exp t(¢(2) — $(2)), 4)

where ¢: C— Cis suitably chosen. For example, the KP equa-
tion itself arises from ¢(z) = 2°.
Observe that if z is real, then

‘%a(z,t) = [4(Z) — d(2)]a(z,t) =0. (5)

Hence a(z,t), zeR, is a constant of every KP-type motion of
U. Fixing zeR, we can use a(z,t) as a Hamiltonian function
on B: Let

Hw) =a(z) = f u(x)ym(x,z)dx. (6)

R
HereZ — z = 0 and 22 — 2% = 0, simplifying Eq. (3), and m
solves Eq. (2). Notice that we can take

m(xz) =(I—-GM,)"'1, (7N

where G, is convolution with the Green’s function of L, [in
Eq. (2)] and M,, is multiplication by #(x). Such solutions m
are normalized, in the sense that lim,, . , m(x,z) = 1. The
existence and uniqueness of m in L= (IR?) is guaranteed for u
near 0 in B (see Ref. 3). Thus

H(u) = J- u(l—-G,M,) 'ldx. (8)
R2

It is evident what the corresponding Hamiltonian vector
field is. First, we calculate the gradient of H,

(dH(u),r)_=_-é— H(u + er)
de

e=0
= f (r(x)ym(x,z) +u(x)(I —~G,M,)!
R?

X G r(x)m(x,z))dx; €))

then combining terms,
= | d-M,G,) 'r(x)m(x,z2)dx;
R2
and transposing,
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= f [(—G M) "1]r(x)m(x,z)dx .
RT

Here we make the definition

mxz)=U—-G:M,)'l. (10)
This yields
(dH(u),r) = f m(x,z)r(x)m(x,z)dx,
R2
and (by the nondegeneracy of the inner product)
dH(u) = m(x,z)m(x,z) . (1)

Second, we calculate the Hamiltonian vector field asso-
ciated to H,

Q(XH’r) = (dH9r> s

Xy (u) =3d(m(x,2)m(x,z)).

These natural choices for the symplectic structure and
for the functional have led us directly to the fundamental
evolution as Hamilton’s equation of motion:

% u=X,(u) =0d,(m(x,z)ym(x,z)).

(12)

(13)

1li. COMMUTING FLOWS

Let H, K be two functionals on B. Define the Poisson
bracket as usual:

{HK} = Q(X,,X¢) . (14)

Theorem: If z, w are distinct reals, and we set H(u)
= a(z), K(u) = a(w), then {H,K} =0.

Proof:

{HK} = f m(x,z)m(x,z)d,(m(x,w)m(x,w))dx .
RZ
Now
aim(x,wym(xw)) = i u
1 ’ 1 dt ?
and for this fundamental evolution of ¥ one has
g;a(g) = (G—w = (¢ —w) )

as in Eq. (5).
But also, this integral is the tangent map for the scatter-
ing transform,

da(z) _
dt
So since z is real,

{HK}=[G—-w)"'—(z—w) ']a(z) =0. a

Remark: If z = w, then H = K and the antisymmetry of
() guarantees that {H,K} = 0.

This provides a simple proof that there are infinitely
many commuting flows: there is a different one for each
choice of zeR. To obtain the Hamiltonian for the & th evolu-
tion in the KPII hierarchy, one takes the appropriate combi-
nation of these fundamental flows. The fundamental evolu-
tion whose Hamiltonian function is given by H, (z) = a(z)
can be written

f m(x,z) [—‘i u(x) ]m(x,z)dx .
R dt
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U =9d\(m(xz)m(x,2)) = Y E%E(i)- ,

k=1
where M, (x) is a moment of mi# and gives the k th evolution
in the KPII hierarchy. We can exploit the smooth depen-
dence of H, on z to pick out the k th moment. Writing X, (z)
for the Hamiltonian vector field given by the functional
u—a(z), then the k th moment is extracted by

1 d* ( 1 )
% x (=
k ! dz K H z z=0
Alternatively, one can think of this as the Hamiltonian vec-
tor field corresponding to the functional

1 d* (1)
U»——a|—
k'dz: \z

since operations in zcommute with everything in sight. The
KPII equation corresponds to k = 3.

z=0

IV. SYMPLECTOMORPHISM

There is also a symplectic structure on the (linear)
manifold of scattering data that puts all KP-type evolutions
into (linear) Hamiltonian form.

Let C= L*(C; dz dz).

Define w: C X C—C by

o(a,B) = f sgn(Im z)a(2)B(zZ)dZ dz . (15)

C
Evidently w is skew-symmetric bilinear and weakly nonde-
generate. By setting 4 equal to multiplication by
¢(Z) — ¢(z), which is @ skew, one has by a familiar argu-
ment (Ref. 7, p. 459) that 4 satisfies the following proposi-
tion.

Proposition: A is Hamiltonian on some domain in C, and
the equation @ = Aa = [¢(Z) — ¢(2) ]a is the equation of
motion for the functional H, (a) =} w(4a,a).

These Hamiltonian systems on (B,{)) and (C,w) are
related by the forward and inverse scattering maps. Denote
these by S: B~ Cand S ~!: C— B. Then as derived in Ref. 3,

S(u)(z) = ksgn(Im z) f u(x)m(x,z)exp x'v(z)dx,
R2

(16)
S Ya)(x) =k’ 9 sgn(Im z)a(z)m(x,2)
axl C
X exp x-v(2)d z dz, (1n

where v(2) = (z — 2, 22 — 22)eR?, zeC, and k, k' are con-
stants, k = 1/27and k' = 1/27°.

Using the relationship between u and m, or between a
and m, it is a simple matter to compute the gradients dS(«)
and dS ~!(a),

dsS(u) (x) = k sgn(Im z)m(x,2)m(x,z)exp x-v(z), (18)
ds Ya)(2) =k’ 36— (m(x,2)m(x,z)expx-v(Z)), (19)
X1

where /7 is defined at u by Eq. (10) and ata by mat S ~'(a).
Extending both (2 and w to the tangent bundles 7B and TC
in the natural way yields the following Plancherel-type re-
sult.

Proposition: If a« = S(u), then
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QdS (@) -@,i) = cola,dS(u) i),

wherec= —k'/k=i/m.
Proof:

QdS ~(a) i)
=J' 37 (dS ~\(a)- &) (x)i(x)dx
R

=f 8,“[k'3,fm(x,2)ﬁ1(x,z)
R? C

X exp x-v(Z)a(z)dzdz|u(x)dx

= k'J d(z)[f m(x,z)ym(x,z)
C R?

X exp x-v(E)d(x)dx]d'z’dz
= — —I%f sgn(Im z)a(z)(dS(u)-i4)(Z)dz dz
C

= — -’%— wla,dS(u)-u).

Theorem: The scattering and inverse scattering maps
are symplectomorphisms between (B,{}) and (C,w).

Proof: That Sand S ~! arelocal isomorphisms between B
and C follows from Ref. 3. Both.Sand S ! arereal analyticin
the sense of Coifman and Meyer,® being expressible as power
series in a functional variable. Hence they are both local
diffeomorphisms.

It remains to show that co = S *(}, where ¢ is some con-
stant, in fact the same one as above. But this follows from the
last proposition. If weB, p,geT,B, aeC, £7eT,C, and
everything is related by a=S(u), £€=d4dS(u)p, 7

=dS(u)-q, then

o(5,1) = wldS(u) p,dS(u)-q)
=c'QdS ' (a)odS(u)-pg) =c 'Q(pyg). O
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Liouville theorem for the Yang-Mills self-duality equations
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It is shown that under certain conditions one may associatively matrix-multiply Lie-algebra-
valued matrices with a componentwise Lie bracket. Using this, a simple algebraic constraint on
a Lie-algebra-valued antisymmetric 7 X » matrix F, which in n = 4 is essentially self-duality or
anti-self-duality, is described. Somewhat in analogy with Liouville’s theorem for the Cauchy-
Riemann equations in n = 2, it is shown that, for n > 4, the constraint implies that the Lie
subalgebra generated by the matrix elements {F,w} decomposes into copies of SO(n) plus a
few degenerate cases. The result may be relevant to the structure of the quantum

chromodynamic vacuum.

I. INTRODUCTION

The results in this paper, Theorem 1 and Theorem 2, are
purely linear algebra concerning matrix multiplication with
a Lie bracket of matrices A4,BeM(n,G) = nXn matrices
with values in a Lie algebra G, possibly infinite dimensional.
By matrix multiplication we shall always mean

A-B,"=[4,%8,"]
where [ , ] denotes the Lie bracket. Namely, we will show
that if an antisymmetric Lie-algebra-valued matrix F obeys
W(F,F ) =0 in the expression (1.5) below, and if n> 4,
then all higher matrix products-with-commutators F™ are
antisymmetric and obey (1.8). This result complements a
standard product encountered in Yang-Mills gauge theory,
namely, the exterior product-with-commutators of Lie-alge-
bra-valued forms.

It is remarkable that the proof of this little fact will take
several pages of tensor algebra, albeit index manipulations of
a sort with which theoretical physicists are surely familiar.
The author has not been able to come up with an abstract
proof as more usual methods (for analyzing the decomposi-
tion of tensor products) do not seem to be applicable in a
useful way to the case of multiplication-with-commutators.
Therefore a few motivating remarks are perhaps in order.
The first two have to do with the geometrical setting con-
cerning Yang-Mills connections of high symmetry, while
the third is algebraic. These remarks are not used in the pa-
per, which will be entirely taken up with the proof of the
above statement.

Remark 1 (Liouville theorem for the self-duality equa-
tions): On a Riemannian manifold of dimension n, (M,g,V),
the derivative of vector field £ can always be decomposed
under the action of O(n) as

Vi =(VE N +1 VAL, + 8u/m)V-E,  (LD)

where ((V£)) denotes the symmetric traceless part,
VA& =dA{§ is the curl, and V-¢£ is the divergence. The
equation

((VE) =0 (1.2)
says that £ is a conformal Killing vector. The Lie bracket of

two conformal Killing vectors is again one; so these generate
a group, the conformal group (diffeomorphisms of M that
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preserve g up to scale). In n = 2 on R? with the flat metric
and standard coordinates x, (1.2) is just the Cauchy-Rei-
mann equations for £, + ¢£, as a function of z = x, + ¢x,,

—0%1_9%: % _ 15 95
((V”—o@ax, ox, and ax, 235 8xz

& £(2) analytic (for n=2), (1.3)

and Liouville’s theorem’ asserts that
(for n>2). (1.4)

For a general Riemannian manifold the corresponding as-
sertion is

dim{£: (V€)) = 0}<dim O(n + 1,1) (for n>2) .

Similarly, let F be an antisymmetric Lie-algebra matrix
[or, more generally, let F be the curvature two-form of a
connection on a principal bundle P over M with structure
group G, FeQ*(M) ® ad P;]. Such a matrix can be decom-
posed under the action of O(n) as

SW(FF ) g + [1/(n = 2)1(80aF2p — 8uaF s

—85F e +8.,5F3) (1.5)
which defines the tensor W(F.F ), where F?=FF multi-
plied as a matrix (using g), and with commutators in the Lie
algebra G. A similar decomposition is well known for the
Riemann tensor, where it proved very interesting to study
the case when the Weyl tensor vanishes. Therefore consider
F, antisymmetric, for which

W(FF)=0,

conformal group (R") = O(n + 1,1)

(1.6)

which turns out in » = 4 as essentially the self-duality or
anti-self-duality equations
W(FF)=0& [FyF _o5] =0

G =SU(2),S8U(3),U(2)

= F,_ =0o0r F_ =0 or Abelian

(for n=4), (1.7)

where F, are the self-dual and anti-self-dual parts of F. The
proof of this is essentially given in Lemma 4.6 and Proposi-
tions 7.1 and 7.2 of Ref. 2, and also below in Eq. (2.18). For
n>4 our Theorem 1(ii) asserts that higher-matrix prod-
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ucts-with-Lie-bracket F ™ are also of this type, and indeed
W(F,F)=0 = F™ antisymmetric, Vm>1,
[FrFl =[1/(n =) (8aF g™ ™ — 8uaFrp ™™
_gVBF;Tc;+ ™+ g#BF\':; N mz)
(forn>4). (1.8)
So matrix multiplication generates a ring whose elements
F™ span as a vector space the Lie algebra of the primitive
holonomy group of F (which is by definition at each point in
M the Lie subalgebra generated by the matrix elements
{F,,}C G). Theorem 2 asserts that generically, for > 4, the
primitive holonomy group Lie algebra is equal to

{Fuv}= _%l_S_Q(n)c , (1.9)

for some integer g. Here “generically” means that the roots
of a certain characteristic polynomial should be nondegener-
ate, typical exceptions being when F is nilpotent under ma-
trix multiplication. This is a completely local theorem and
applies at each point in M independently.

A study of connections whose curvature obeys con-
straints such as (1.6), i.e, differential geometric aspects
aiming at a structure theorem (cf. that of locally symmetric
spaces®), has been undertaken and may be reported else-
where. Examples of W(F,F ) =0 in n = 4 are provided in
Ref. 2 by the curvature of connections on S * that are minima
of the Yang-Mills action (i.e., for which the Hessian of sec-
ond derivatives is >0). The authors thereby show that all
such connections for G = SU(2), SU(3), or U(2) are either
self-dual or anti-self-dual. An example in n>4 is provided by
the one-quasi-instanton/anti-instanton whose O(n) sym-
metry was exploited in Ref. 4. According to our Theorem 2,
this is the prototypical example. This is recalled in the Ap-
pendix along with an estimate of how hard it is in general for
matrices to obey (1.6).

Remark 2 (Significance for the quantum chromodyna-
mic vacuum): With regard to the physics literature, many
authors have previously studied generalizations of the self-
duality equations® to higher dimensions.® These have all
been concerned with algebraic constraints on the curvature
such that the Yang-Mills equations or some related equa-
tion follows automatically. The present work has also been
motivated by physics. In the background field method to the
quantum field theory of gauge fields,” one wishes to mini-
mize the effective action due to all particles in the theory
moving in background 4. This effective action—not at all
the Yang-Mills action—is impossible to evaluate in general.
However, the minimum, the expectation value of the quan-
tized gauge field in the quantum chromodynamic (QCD)
vacuum configuration, is expected to be highly symmetric.
One may therefore try to guess or classify the connections
with high symmetry and look for the vacuum connection by
minimizing only among these. Unfortunately our Theorem
2, which would be highly restrictive, is not directly applica-
ble to n = 4, but one may note that the pole in our proof,
1/(n — 4), is quite reminiscent of the uv divergences of
QCD when parametrized by dimensional regularization as,
for example, in Ref. 4, already referred to in remark 1. What
is needed is a structure theorem for connections of high sym-
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metry. For example, in the G = U(1) case, the only Poin-
caré-invariant connections have F =0,

Remark 3 [Kac-Moody algebra S‘B(n)]: It is perhaps
worth pointing out that Kac-Moody loop-group algebras
(which were recently connected with the Yang-Mills self-
duality equation®) provide an example of Theorem 1(ii).
This is also given in the Appendix.

Returning to the paper, in order to prove Theorem 2 we
shall actually be forced to prove a more general theorem to
the effect that antisymmetric matrices A, B, C obeying cer-
tain conditions including W(A4, B) =0 are closed under a
matrix multiplication similar to that above which becomes
commutative and associative up to certain scale terms in-
volving g,,,.. This will be the main theorem, Theorem 1. For
various reasons we refer to this algebra as “conformal” alge-
bra.

Il. ON THE MULTIPLICATION OF LIE-ALGEBRA-
VALUED MATRICES

In the rest of this paper we work entirely locally, mostly
with antisymmetric matrices with values in G, a Lie algebra
over R, possibly infinite dimensional. In fact Theorem 1, the
main theorem, applies whenever there is an anticommuta-
tive bilinear bracket obeying the Jacobi identity on G, a vec-
tor space over a field of suitable characteristic:

[a’[b’C]] = [[a’b]9c] + [b: [a,c]] s

[a5] = — [bal, abceG. 2

For convenience one can also consider all matrices as two-
forms with one index raised by a metric g a symmetric posi-
tive definite matrix. There is a natural operator generating
the action of SO(n) preserving this g, the spin operator

S (V) =(80) e = 8o ¥y — ualy » (2.2)

which will play the role of an identity. On the space M(n,G)
we will always denote by - or by omission the product
t M(n,G) e M(n,G)-M(n,G): 4,,8B,,
—[4,..B%], 2.3)
which is of course nonassociative in general. The definitions
A’® G = {4eM(n,G)|4 antisymmetric},
C?® G ={4eM(n,G)|4 symmetric traceless},
A°eG=G, (2.4)

will always hold, and Tr will always denote trace in M(n)
(never in some enveloping algebra of G),

TrA =A”"=A’wg”v. (2.5)

To start with, ® means over R, but very soon, at Eq. (2.11),
we introduce ® to mean “with commutators.”
Lemma 1 (Projections and inclusions): Corresponding to
the essentially unique contractions provided by the metric g,
Tr
i A8 =X w8 ) & A
(2.6)

g Tr g
A’@ A = M(n) = A% X, 5

"

there exist unique spin-invariant inclusions
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Iz i
A= M(n) = A’e A?

Q.7
such that gi=1, Tri' = 1. Indeed, explicitly,
" B oy
&— " &, va'_"(lx)yvaﬁ
- (ngXpﬁ _ngXpa +gpﬂXv¢z _ganvB)
n—2
- (—-———g”“g"” —EuaBis )X",, , (2.8)
(n—-2)(n-1)
which implies
J
Tr
A = 1] & (1], A~
) ®
_ Tr
A2 = A(ATeA?), 0 <
® o
~ Tr
C? = C?*A?eAY), 0 <

To see this one has only to check the symmetry properties of
(2.6) and (2.8). The space [1] is just A° with the inclusion
understood to give a tensor of appropriate rank as the identi-

ty.
Finally, with these inclusions understood, g itself is a
projection operator. So

w=ker g|z:arenr
dimw=[(n—-3)/81n(n* +n+2),
o=ker gz (azea
dimo=[(n—3)/81(n—1)n(n+2),
W=kerg=0woo,
dim W= [(n—-3)/41n*(n+ 1),
giving (“spin” decomposition)
AN’ =weaoA’eC oA’
[In components this reads
vaaﬂ = Ouvap (X) +5;4vaﬂ (X)

+ (gvaXyB - ngXpa - gponB + g;tBXva

n—2

_ (gvagyﬁ '—gyang)TrX
(n=2)(n-1)

and

X =X."26=Xus1+ Xsy + (Tt X /n)g,z .

For example, X,z =R, .05
= Ricei, @ related to torsion. ]

(2.10)

)

X

o = Weyl tensor, X,,
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1

-]

A2

®

C2

¢ "_’; (gvagyﬂ - guagvﬂ) ¢ .
n(n—1)

These are clearly unique given only the metric g [which is
invariant under (2.2)].

With these inclusions understood g and Tr are projec-

tions g> = g and Tr? = Tr, and thus have eigenvalues O or 1.
Thus

M) =[1]o kerTr=[1]16 A?

antisym

c? .
sym. traceless
Similarly, thinking of SO(n) = A? and of A ® A? as tensors
of rank 2 associated to 7, SO(n) we have

A’@A?=[1])eker Tr

<]

=[11® A*(A’®A?) @ C*(A’®A?)
antisym [uvl«s(uB ]  sym. traceless [uv]«—{ug]

Indeed

[

1 - (11,

®

-]

A2(A2e A?), (2.9)

53]

o

CHA® AY).

r
Now consider M(n,G) and define @ ¢, which is not asso-
ciative, by (equality for G semisimple)

M(n,G) @ M(n,G)

def G def
= {A;w @B} = {[4,0Ba51}

CM(n)egM(n))eG. (2.11)
Then, with product (2.3) and 4,BeA”® G, (2.10) becomes
in this case

def
A®%B= w(A,B) +@(A4,B) + [AB] + ((4B)) + Tr AB.
(2.12)

Then
[AB]=[BA], ((4B))= —((BA)), TrAB= —TrBA,
®(4,B) = —w(B,A4), @(A,B)=w(BA). (2.13)
Here the projectors w: A ® °B—w(A4,B), etc., are just the
projections onto the respective spaces in (2.10) and
W=o0+a.

Examples (low dimensions, A,BeAze(_'i, ® ¢ under-
stood):

n=2:

A® B=Tr AB (by inspection) , (2.14)
ie., w=0,0=0, [4B]=0, {(4B)}=0in (2.12). Some inter-
mediate inclusion maps are singular, which could lead to
infinite-dimensional algebras if limits such as [4B] -0,

n—2 are taken suitably. (Compare the conformal group in
n=2.)
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n=3:

A®@B=[AB] +((4B))+ Tr 4B (dim W=0).
(2.15)

n=»4:
A,®B, =w(4, B, )+ [4,B, 1+Trd, B,

[4,B,1eA’ oG (2.16)
[cf. spin decomposition

(1,0) ® (1,0) = (2,0) ® (1,0) ® (0,0)

(*0cTr W =Trd,.B,)],

A, 8B_=w(4,,B_) +(4,B_) (2.17)

[cf. (1,00 ® (0,1) = (1,1) (@~W" =((4,B_)) over-
counts)] .

Proof: Equation (2.17) is essentially Proposition 7.16 of
Ref. 2, and Eq. (2.16) is Lemma 4.6 of Ref. 2, so I shall be
brief. One may choose a basis 7° for the Lie algebra with
structure constants f°, ; then 4 = 4 °7*, etc. The ordinary
tensor product of matrices 4 °® B® may then be decom-
posed according to the ordinary representation theory of
SO(4), which was indicated below (2.16) and (2.17). (One
can only lose representations when one antisymmetrizes
[4,B]°=A°B°f°,..) Now

((4B)e(1,1), [4Ble(1,0)® (0,1),
W(A4,B)e(2,0)® (0,2) ® (1,1) .

So comparing with (2.12) we deduce W(4,,B,)e(2,0),
W(A_ ,B_)~((4,.B_)e(1,1), and (0,0) and (1,0) terms
vanishing or as included in (2.16) and (2.17). Here ~ de-
notes the identification through

W W =} €008 anaB ,

which is symmetric as W is contractionless, and for which
the contribution from @ in W is traceless in view of the sym-
metries of the totally antisymmetric tensor €. This much
does not use the bracket; it applies for ordinary tensor prod-
ucts also. Next We(2,0) @ (0,2) is equivalent to saying that
W vag = Wag,, (as with the Weyl tensor), which, bearing
in mind the anticommutativity, is equivalent to
W(A, B, )= — W(B,A,), ie, o vanishes in (2.16).
Similarly W(A4,,B_)=W(B_,A,) =we(1,1), which
completes the proof.
From this we see that
W(FF)=2W(F F_)~(F,F))=05F, 8 F_=0,
(2.18)

where we have to check that the ~ is nonsingular in the
present context, i.e.,, W" = 0< ((F,.F_))=0. One can in
fact show by applying the Hodge operator * to (2.12) that

(4B))={4,.B_)) +({(4_B.)),
W*(4,B) =TrAB + ((4.B_)) — (4_B.)).

For G =SU(2), SU(3), U(2) one may easily see that the
right-hand side is equivalent to F, = 0 or F_ = 0, which is
Lemma 7.2 of Ref. 2. A final point in n = 4, also from (2.16)
and (2.17), is that the product (2.13) acts naturally on qua-
ternions ® G= (A%, #A%) ®G.
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So far the only difference with ordinary matrix multipli-
cation has been anticommutativity in G. The real problem
comes when we consider higher products.

Theorem 1 [“conformal algebra,” with the decomposi-
tion (2.10), (2.12) understood and with ® ¢ understood]:
(i) If4, B, C, [4] @ [B], [Bl & [C], [C] ® [4]e(A’® A”)

® G, with n> 3 and
0:4@B—[4]'[B]: (A’0A%) G

8 (A’oA) G-~ (A’0A”) @G, (2.19)
then

AoB — BoA =2 Tr A°B, (2.20)

Ao (BoC) — (4°B)°C = [4 |Tr BoC + [C] Tr A°B

+[B] Tr Cod —Tr Bo(CoA),
" 221)

and, for n> 4 only,
[A)@[BoCle(A’0A) 06,

closing the algebra.
(ii) if 4, A® A€A’ @ G [i.e., W(A4,4) =0, 4eA’ 8 G]
and n > 4, then

AmoAm'=Am_Am'=Am+m’
=A"8A4"eA’®G, VYmm'>1. (2.23)

To prove this we shall prove a sequence of lemmas. Our
proof will be computational since a number of basic algebra-
ic properties need to be verified.

The Jacobi identity is

N
A®(BeC)=(A®B)®eC+ A9 (Be (), (2.24)

where AC indicates that the Lie bracket acts between these
two first. Otherwise the order will be denoted by brackets or

(2.22)

by emphasizing the “-”.
Lemma 2:
(i) TrA-BC+TrB-CA+TrC-AB=0, (2.25)
and for 4,B,CeA’® G,
TrA-BC=Tr A-CB. (2.26)
(ii) (associativity) For 4,B,CeA’ ® G with
B:W(A,C),,=[B*W,.p(4,0)],
A-BC — AB-C
= _BWUC) ———2 __Trac
(n—=2)(n—-1)
+—L (B-AC—AC-B) ——"_TrB-AC.
n—2 n—
(2.27)

Proof: (1) With A°eM(n,R), {7} = G, directly

S Tr4-BC=Tr4°B’C* ¥ [~ [#]]1=0,

cyclic cyclic

since Tr is cyclically invariant and
TrA-BC=TrA-[BC]=TrA-CB

onA’eG.
(ii) Contract (2.24) to obtain (2.27) and again to ob-
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tain (2.26). This is straightforward and is left as a simple
exercise in tensor calculus. Use (2.12) and (2.13). If ¢ de-
notes the twist map as in (2.30) below, the first step is

A®BC=(A4eB)-C—(181)(48C)-B. (2.28)
From this lemma we see that on projection to C2,
((4-BC)) — ((4B-C)) = —((B:W(4,0)))

+ [2/(n —2)]((B-AC)).

Thus under the hypotheses of the theorem now with
[B],[C]leA? ® G as in the lemma,

BoC=[B]-[C]=[[B]IC]]+ Tr BoC (by hypothesis);
hence
(42 (BoC))) + ((Co(4oB))) = [2/(n — 2) ]((Bo(Co4))).

Subtracting cyclic permutations this implies ((4°(B°C)))
= 0 for n#3. Note in passing that

1(AB+ BA) =4([A][B]+TrA-TrB+ (Tr4)-[B]
+ (TrB)-[4] + BoA)=[A°B],
and with
[B]-[4][C]1—-[4]1[C]-[B]
=2 Tr Bo(A°C) + (2/n)[B ]Tr AoC

in the lemma and with W[A4] ® [ C] = 0, by hypothesis, we
obtain (2.19)-(2.21).

To prove (2.22) with 4,B,CeA’ @ G (the scale parts are
consistently projected out) from (2.28),

A®BC=(AeB)-C— (18t)(A®C) B,
A8 [BC]=(18A%*) (A4 B) C+ B-C.

Here A’=[(1 — t)/2] projects onto A? and - denotes con-
traction of adjacent indices with [ , ]. Inserting (2.12),

A®[BC]= (18 A*)(WA®B)-C
+ (18 A?)(idB)-C + B«C. (2.29)

In A’® A2~ A?® A ® A>— A? ® A” the possible positions of
the contraction and inclusion maps do not commute; in this
one equation we have to write the inclusion maps explicitly.
We find

2(1e A (iX) Y

i'n

—iXY) + Tr XY
n—
_ T Xy, In TrY)+RX®Y,
n— 1\ n—2

where R is defined in the following lemma.
Lemma 3: Define

RM(n)eM(n)—A2e A% Xy
H(Xr;wv —Xo;n"v _erau +Xav-ry Y (n—2),

T:M(n)eM(n)-M(n)eM(n): X,,,,—~X,,.,,, (2.30)
AP AL X, —X,,,
Q: M(n) ®M(n)—»A2®M(n):X‘WV—>me —Xpprs
soR=0Q(1 4+ T)/(n—2). Then

(i) TR = Rt o1, (2.31)
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R:C%28C?*-u, (2.32)
R: A0 A255%(A?@A?), R:A*-0, (2.33)
Rilex-tx+ % g1, =21 (34
n n— n—2
(inclusions understood);
. 2+ Q, on A’eM(n),
2 __
(i) 7= —Q, on S’eM(n) (2.35)

(where §2=C? + Tr = symmetric matrices),

R2=(—25)2(1+T)(1+t@t)

n—

( 2
n—2

=40, on A?®S52% or S%2@ A%

)2(1 + 7 +-——2—2-R, on AZ@ A2,
n—-

(2.36)

R, on S%8S2
n—2
Proof: (i) By inspection and
(gRX)alAv = (Xlﬂ.av - Xal/lv
- X/lvwl + Xovlrl )/(” - 2)

and comparison with (2.6)-(2.8)=>i=nRle® — i Tt/
(n—2),1«<R1®1 and use (ii) for R %

(ii) Q% Xuvaﬁ' P Aveug — ) VAN 'HXaMVB -X

vual
- Xawtﬂ + vaaﬁ'

Then
R2=( Q )(1+T)R
n—2
Q Q?
= R(1 =—x__(1 1 .
o (I1+t01) (n—2)2( +D(14+tet)
Lemma 4 (4,B,CeA’® G):

(i) WA®[BCl=W(1eA*)(WAaC)B
— W(R /2)B&((AC))
— (R/2)WB®[AC] + BoC,
(2.37)

where, from the definition, W' =1 —g. So

W(le A?)(WA&C) B
= (19 A?)(WA®C)'B+1B: WA C,
WRBg((AC)) = RB3((AC)) + 2[B-((4C))/(n — 2)em.

(2.38)
(i) {@4®B =0 BeC=0 aCo®A4 =0}
= WA®[BC)+ WBe[CA]
+ WCe[4B] =0. (2.39)

Proof: Applying the previous lemma to (2.29) we have
A®[BC]=2(1eA*)(WA®B) C+ABC
+ [n/(n—2)] TrAB-C
—[1/(n—1)(TrAB)C + RAB®C,
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with averaging of B<>C left understood in this proof. We have
from Lemma 2

(a) TrB-AC=} (Tr B-AC+ Tr C-4B)

= —{Tr4:BC=TrC-AB= —Tr4B-C
and
B-AC— AC-B=2[B((AC)}] + 2B Tr AC + 2((B [AC])).

Thus Lemma 2 (ii) becomes
I

B

(b) AB-C=A4-[BC]—}Tr4-BC— ———
n(n—1)

XTr AC — —2_[B((AC))]
n-—2

——2 _(BlAC)) + B: WdeC.
n—2

(Note here that Tr 4CeA’® G. We could also have written
— [1/(n — 1)]B-Tr AC, meaning Tr ACeS? ® G by inclu-
sion.)
Finally, using the previous lemma,

(c) RAB®C = —RC®A4B= — RWC®[AB] — RC'[4B] — RC®((AB)) — RC® Tr AB
= —RWC®[AB] —R((C-[AB1) = RTr C-[4B] — RCs((4B)) — C(1/n)Tr AB
= —RWC®[AB] + [2/(n— 2)}((C-[4B1)) — [1/(n —2)]Tr A-BC — RCe((4B)) — C(1/n)Tr AB.

Then combining these results and comparing with the spin
decomposition (2.10) we see

(d) WAg[BC]
=2(18A?)(WA®B)-C— RWCe[A4B]
+B: WAe C — RB((AC))
—[2/(n—=2)][B((4C))],

1.e., we obtain the lemma. We see as a check that WA ® [ BC]
is contractionless. The second part (ii) follows easily from
(2.13) and (i) by adding cyclic permutations.

We are now able to complete the proof of Theorem 1(i).
Under the conditions of the theorem the last lemma (i) be-
comes, with 4,B,CeA’ & G,

WAe[BC]l= — (R/2)WBg&[AC]
—(R/2Q)WCe[AB]= wA9 [BC] =0,
(2.40)
using Lemma 3(i). Writinga = [2/(n — 2)] we have, from
Lemma 3(ii),
RwA®[BC] = — d’wBe® [AC]
+ awA® [BC) — a’wCes [AB].
Inserting cyclic permutations into (2.39) we have
2048 [BC] = (&> —a)wC® [BA ]
+(@*—a)wBe [CA] + 2c’°wA ® [BC].
So for n#4 we have
wA®[BC] + (1/n)wC® [BA] + (1/n)wB® [CA] =0
= (1-1/nwde[BC]=0,

which completes the proof of (2.22) and Theorem 1(i), where
[4],[B].[CleA? ® G as used in all our lemmas. Inn = 4 we
can only conclude that @4 ® [ BC] = 0, which is true for the
class of self-dual fields (2.16). One may be able to prove it
only assuming as much for 4® B, Be C, Co 4.

To prove Theorem 1(ii), since all the results of Theorem
1(i) hold we have W(4®A47?) =0. Now 4 %A’ ® G auto-
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matically by (2.13) and 4-4 ’e(A’ & A°) ® G, etc. We have
to show that the traces Tr 4-4 2 etc., all vanish. Using
Lemma 2(1),

def

Trd? ™A= TrA?" "™ (4-4""")
= —Trd-(4"~ 47~ ™)
~Trd™='-(47~"4).

We assume as an induction hypothesis that the result holds

forp—1,ie,

A™A™ =A™ "eN’9G, V2<m' + m"<p—1
(true for p — 1 =2). (2.41)

Thus for 1 < m <p, using Lemma 2(i),

a,=TrA?P "™ A" =TrA?~""F+4+Tr4?~m+qm"!

=a1+am_1_‘_=mal= _ap—m
by (2.41) assumption; therefore ma, = — (p — m)a,
= a, =0
Thus from Theorem 1(i)
AP AT = AP g = 4PeN? R G

This concludes the proof of Theorem 1.

We now investigate the case W(F,F)=0. From
Theorem 1(ii) we see that now F"F™ =F™*"ecA’® G
(anti-Hermitian in G) and
[

=[1/(n —2)1(g.Fs"*"
— g,,ﬂF;,"a*’ m_ gm,,l;"’,',',!+ "y gmgF:,':,[+ Yy, (2.42)

Theorem 2: For G finite dimensional, » > 4 and generi-
cally,

W(FF)=0
q
= H,=primitive holonomy = & SO(n)c, (2.43)

for some integer g. Except for singular points this integer ¢
should be constant over the manifold. (This will not be prov-

Shahn Majid 2308



en here; cf. Ref. 9.) The decomposition is over C.
def

Since the Lie algebra H, = {F,,}CG is finite dimen-

sional, there exists ¢ such that (with g, real for F anti-Her-
mitian in G)

F9+|=#qFG+...+”lE

EPOF)=Y e"F,

E®(F)-EO(F) =5"f(q— r%)m) | wEPF),

0 231

[y

Hq

represents F acting as the ring of polynomials in F,
Fa, F* = (Aa), F* and has eigenvalues 4 ‘° and eigen-
vectors e'” given by solutions of

0 #a

1
€= ”l(;)eq e

1 1 1
S O

A
Thus
q
ﬂ,q:Zﬂri’—l,
r=1
r q—r
e =A~"3 pA* =AY A
k=1 t=k—r=1

Then E “*(F) acts on E Y (F) as

esi)i(j)'_: i A9 (i)—r(z"’ 'uki(i)k—l)
k=1

r=1

—= i i /‘L(i)r/l(i)—rﬂk/l(i)k—l

k=1r=k

q q ,{(j)
_ (Vk—1,k r—k =
—Z”"’l a Z“ ’ a_/l("”
k=1 r=k

for
/10')#,1(1‘)._ i i“’k“ak(ﬂ)
'—k=l/‘k -
AV _AWe  ga+l g e
=,1(">_,1(1)—1_ak;1.“k1 =0,
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Define
q
P(y= Y etk

k=1

Explicitly in terms of the data (u, ) and independent of the
signature of g,

r

e?= A"y wAP* ! (nondegenerate case),

k=1

where A ¢ = p(A4) has solutions 4 ¢ over C. Complex
solutions give conjugate pairs E , E  for u, real.

(2.44)

[

AP =20 = 3 g AP g—k+1)

k=1

d
=(q—t5)P(t)|,=lu)-

It remains only to normalize the generators E° to ob-
tain generators of SO(n). (The degeneratecases A ” =1 ¥,
j#i, E? = E Y leave open a variety of exceptional spaces,
for example, A V=pu, =0, i.e, F7*'=0.)

This concludes our purely algebraic considerations.
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APPENDIX: EXISTENCE AND SOME EXAMPLES

(1) The prototypical example of a W(F,F) = 0 connec-
tion is, according to Theorem 2, the one-quasi-instanton
with curvature

F=[4A%/ (A2 4+ x1)?] Z;

(A1)

2= [V ] r} =26,

which, for n = 4, is an instanton and an anti-instanton in
each SO(3)=SU(2)/Z, factor. (For higher dimensions
they still play a vital role and have been termed quasi-instan-
tons.)* Here X in the Clifford algebra generates rotations in
SO(n), and the SO(n — 1) factors are picked out by the
projection

2, =[(1+£7T)/2]3,

(A2)

l'\:;ﬁ},l,__},n—l’ F2=(—1)"/2.
From this it is very easy to prove that in » = 4k dimensions
these obey the so-called generalized self-duality!® (chira-
lity),
A2 @ Cliff(R") D*IAZA---AZ

E‘En/l — r\zn/Z — i Ln/22n/2. (A3)

The above construction is well known for n = 4.'! One may
easily see that for n>4 the quasi-instanton instead extre-
mizes the action
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(A4)

[ e
M

and that in fact there is an O(n + 1) symmetry up to gauge
transformations.!* Typically, as checked for n = 8 in Ref.
10, they are also related to topological lower bounds.

(2) Let L [7°, meZ, denote the operators generating a
Kac-Moody algebra (n) defined by the structure rela-

tions L (7’ = — L and relations of the form
[L0 L] =1/ (n—2)1(g,L 5 "™
—8ual gt — gLt
+8usL ™)
+ ¢, (m,my)(8,08up — 8ua8up):

where ¢ is the central extension. From this we see that the
L fulfill all the requirements of Theorem 1(i). In accor-
dance with the theorem the L™ under the product © form
an almost commutative algebra. In the present case it is clear
that the noncommutativity is due to the presence of the cen-
tral extension ¢, and that the algebra is in fact associative
because the Tr terms are proportional to the identity. This is
central so it contributes nothing in (2.21).

Again, our “Liouville theorem” asserts this is the proto-
typical example in the infinite-dimensional case. Namely,
suppose instead we are given just three operator-valued ma-
trices L@, LY, and L =", obeying a relation of the general
form above—perhaps a more complicated operator in the
extension— and n > 4. Then define L (™ = (L ¢+ )™ By
Theorem 1(ii) these are all antisymmetric operator-valued
matrices and obey the same relation as the Kac-Moody alge-
bra above, except that the theorem does not predict anything
about the extension term, only that such trace terms are al-
lowed by the algebra.

(3) Finally, we give an intuitive estimate of how hard it
is to satisfy W(F,F) =0. For C°={F,, }CG let

dim[C°C°] =4 dim C°
as vector spaces in G. Then the dimension of the solution
space per dim C° is essentially [using (2.10) with
W(F,F) = a(F,F)]

dim F — dim W(F,F)

dim C°
=n(n—l) _ (n—=3Y(n—1Dn(n+2) 1
2 8
=n(n-—1){1_l1 (n——3)(n+2)).
2\ 4
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So the critical A above which there are no solutions is, for
example,

n=4 A=%
n=S5, A=}
n=6 A=}

So long as A > 0 there should be a class of sparse matrices for
which W(F,F) = 0 holds identically. For example, in n = 4

we have seen that the class of all F;;, with self-dual and anti-

self-dual parts decoupled, leaves behind in [C°,C°] just § of
the possible cases

[F+uv’F+aB]’[F—#V’F—aﬁ]’[FJruv’F—aﬂ] =0,

and is just the class for which W(F,F) =0 in n = 4. This
estimate shows quantitatively how W(F,F) generalizes self-
duality to higher dimensions where it involves G in a more
detailed way.
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A detailed study of the degenerate representations of the U(1) X U(1) conformal current
algebra and field-theoretical models based on it is presented. The main peculiarity of these
models is that they contain an infinite set of fields with unfixed anomalous dimensions. Simple
fusion rules for these fields are found, and their four-point functions are calculated explicitly.
The case of Thirring-like two-dimensional models is discussed in detail.

I. INTRODUCTION

The recent applications of the methods of the short-dis-
tance operator product expansions (OPE’s) to different
two-dimensional, field-theoretical, critical statistical and
string models'~'? are based on the specific properties of the
reducible representations of the Virasoro algebra.” The cru-
cial property is that for each value of the central charge
0 < c<1 and for special values of the conformal dimensions
there exist “null vectors” in the representation space.'?
Then as a consequence of the conformal invariance and the
null vector condition, only a finite number of conformal fam-
ilies contribute to the OPE of two degenerate representations
(giving rise to the so-called fusion rules'). It turns out that
because of the fusion rules, the associative OPE algebra of
the fields corresponding to these degenerate representations
is closed under the usual OPE multiplication. In this way,
for each value of 0 < ¢<1 we have a finite-dimensional asso-
ciative algebra of the conformal fields, which defines a so-
called minimal model. An important property of these mod-
els is that due to the existence of null vectors, the four-point
functions of the fields satisfy specific differential equations
and can be found explicitly’ (the same is true in principle
also for the n-point functions).

Inthecases wherec>1 (forc = 1, A#n*/4,n =0,1,...),
because of the absence of null vectors the infinite conformal
symmetry is not enough to find the exact solutions of the
corresponding models. This problem has a simple solution
for models (with ¢»1) possessing a symmetry larger than
the conformal one, such as the minimal models with
N = 1,2,3 extended superconformal symmetry*'®'3 and the
conformal current-algebra models.>>° In these cases the
null vectors of the larger algebra of symmetry (the confor-
mal subalgebra has no null vectors for ¢> 1) lead to corre-
sponding new fusion rules, which in turn provide equations
for the four-point functions.*!"!? For each fixed value of

2 On leave of absence from the Institute for Nuclear Research and Nuclear
Energy, Bulgarian Academy of Sciences, Sofia 1184, Bulgaria.
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¢ 1, the corresponding minimal model (with larger symme-
try) contains only a finite set of fields whose dimensions are
rational numbers given by Kac-type formulas.'4

Since many of the well-known iwo-dimensional models
with ¢>1 and based on the conformal current algebras such
as the Thirring model (¢ = 1) or the string models (¢ = D,
D = positive integer) contain fields with arbitrary (non-
quantized) anomalous dimensions, a natural question arises
as to whether these models have all the properties of the
minimal models, i.e., null vectors, fusion rules, and equa-
tions for four-point functions but without Kac? quantization
of the dimensions. The positive answer to this question is
based on the properties of the degenerate representations of
the U(1)°2®U(1) ®? chiral conformal current algebra.'®
In this case the only new property is that we do not have a
finite closed OPE algebra of the fields, but nevertheless, be-
cause of the existence of null vectors in the full algebra, we
have simple fusion rules for this infinite set of primary fields'
(of the full algebra), and the calculation of their four-point
functions is straightforward. The main part of these results
can be seen immediately from the “bosonization rules” for
the representations of the U(1) ®? conformal current alge-
bra.'?

In this paper we present a detailed study of minimal
models based on the representations of the conformal
U(1) XU(1) current algebra in two-dimensional Minkow-
ski space-time. This algebra can be written as a direct sum of
two ‘“‘one-dimensional” U(1) current algebras (CA’s)
(right: L,,J,; and left: L,, J,):

[L.Lp]=(n—m)L,, , + (c/12)n(n* = 1)6, , o>

(1.1a)
[Lodm]=—ml,, (1.1b)
[J'l’J"'] = n6n+m,0: m:nez9 (IIC)

and the same for L, , J,. We shall study the field-theoretical
models in the compactified Minkowski space-time M,
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H:S‘xs'={(z,z): (2)=((§)+i)/(1+i(§)),
E=x'—x% = —x' - x", (|;|)=1},

that are invariant under local reparametrizations
z-w=w(z) [Z-w=w(Z)] and local U(1) XU(1) gauge
transformations. Due to the splitting of the variables z and z
we can consider only the right counterpart of these models,
leaving two-dimensional constructions to the last section of
this paper.

The reparametrizations are generated by the symmetric,
conserved, and traceless stress-energy tensor @®,,, and
hence with two independent components ®(£) and @(£)
only.

In the compact picture we have

T(z) = — [87/(1 —iz)*1O[(z — )/1 —iz)],

dT(z) =0=JT(2),
and T'(z) transforms inhomogeneously under reparametri-

zation:
c

T(2)~T(2) = (' ()P T(w(2) + — (ﬂ - i(—ui)z) '

12 \w 2\w

(1.2)
The conserved current j#(x) and its dual j#(x) = £*%j, (x)
generate the U; (1) X Ug (1) local gauge transformations,
and in the light-cone variables we have
(-)(-) (- -

J (&) =Jo(x) +ji(x), d;(§) =0,

J(@2) = — [4mi/(1 —i2)? 1jl(z— D)/ (1 —i2) ], BJ(z) =0,
on the unit circle. The current J(z) has anomalous gauge
transformations,

J(2)=J(2) = J(2) + ¥'(2), (1.3)
and transforms homogeneously under reparametrizations:

J(2) —».7(2) =w'(z)J (w(2)). (1.4)

According to (1.2)—(1.4), for infinitesimal transformations
w(z) =z + e(z) and u(z) =1 4 v(z) we obtain

8,T(z) =(e(2)d + 26'(2))T(z) + ¢/126" (2),
6.J(z) = (e(2)d + €' ()M (2),
8,J(z2) =v'(2).

Equations (1.5) can be rewritten in the form of operator
product expansions>:

T(2)T(2;) = —S— + -2 T(z,) + —— T"(z,) + O(1),

(1.5)

2z, i, 212
(1.6a)
T(z,)J(2,) = (1/23,)J(2;) + (1/2:,)J'(2,) + O(1),
(1.6b)
J(z)J(zy) = 1/2, + 2T(2,) + O(z,,), (1.6¢c)

where the normalization of the c-number term in Eq. (1.6¢)
is due to our choice

(J(z)(z)) = 1/7,.
Using the standard definition of the normal product,
J(z): = lim_ {Jz)(zy) — Tz ()},
in Eq. (1.6¢c) and taking the limit, we get the well-known
Sugawara formula
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T(z) =1 J%(2):. (1.7)

Equations (1.6), written in terms of the Laurent coefficients
of the fields 7(z) and J(z),

L
T(z) = Z Tnz’ L, = § T(z)z"+ ! dz,
nez 2 c
J (1.8)
J(z)=Y —n:—l, J, = é‘J(z)z’l dz,
neZ Z c

take the form (1.1) of the U(1) conformal current algebra.
The Sugawara formula for the Laurent coefficients L, J,,

1

L, =—2—< Y +Z)J_,J,,+k,

k> —n k>1

(1.9)

demonstrates that the Virasoro algebra belongs to the envel-
oping algebra of the U(1) current algebra.

The main building blocks in the construction of the min-
imal models invariant under transformations of the algebra
(1.1) are the so-called primary fields.! They transform ho-
mogeneously under reparametrizations and local U(1)
gauge transformations,

O:Pa 4 (2) = (€(2)0 + AE'(2))By . (2),

8,84, (2) = — qu(2)d, 4 (2), (1.10)
or, equivalently, in terms of L, and J,,,
[Loag(2)] =("'0+ (n+ 1AZ), , (2), (1.11a)
[JnsPaq(2)] = —az"ds,(2), neL, (1.11b)

where each primary field ¢, , is completely determined by
its dimension A and by its U(1) charge ¢ for fixed c.

The Hermitian conjugate field ¢% , (z) has a charge op-
posite to ¢, , (2); so we have

[7.8%,(2)] = qz"¢% ,(2), nel. (1.11c)

We shall use also the following more compact form of these
commutation relations:
1 4d A
rom et = (-2 A Yo,
[ (2),4(2)1] papiewiy G_7) #(2)
[J¢8(2)] = — [¢/(z—2)14(2), (1.12)
where

]

T(-—)(Z) — 2 Ln

"_ozn+2

and

J&) = i J"

Aozt

1

The properties of both the primary states! [correspond-
ing to the primary fields (1.10)] and the null vectors pre-
sented in the next section are the basic tool in our examina-
tion of the U(1) conformal current-algebra fusion rules.
These rules determine the structure of the conformal field
OPE associative algebra (infinite dimensional in our case),
which defines the corresponding minimal model. Since the
Sugawara formula (1.7) implies that the central charge is
uniquely fixed to be ¢ = 1, it seems that we have only one (1-
D) minimal model corresponding to this value of c. But the
analogy with the minimal models of the Virasoro algebra,
where for each fixed ¢ we have only one model, does not
work in our case because of the absence of quantization of
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the dimensions. In fact, the only restriction we have is the
equality (2.4b)

A=g%/2.

Then following the fusion rules (2.13) and considering, for
example, a conformal field with integer charge, we see that it
creates an infinite set of fields with integer and half-integer
dimensions only. Starting with the half-integer value of the
charge we obtain another infinite set of fields with dimen-
sions and charges different from the first ones. So we shall
have many different models corresponding to ¢ = 1. Indeed,
if we want to have a model with arbitrary (unfixed) anoma-
lous dimension of the field, then we have only one infinite set
of fields whose dimensions and charges are parametrized by
the charge g of the initial (primary) field ¢, ,. The conclu-
sion is that the symmetries of the model are not enough to fix
some critical values of the charge and of the anomalous di-
mension.

All the four-point functions of the fields of the model are
calculated in Sec. III. The fourth section of the paper is de-
voted to the construction of two-dimensional models by dif-
ferent compositions of left and right one-dimensional mod-
els. We analyze in detail the case of the massless Thirring
model,'®'” where ¢ = 1 and |A — A| = J. In the last section
we present our investigation of the reduction of the U(1)
conformal CA representations to the representation of the
Virasoro subalgebra.

We will conclude this general discussion of the proper-
ties of U(1) ®? conformal CA minimal models with the case
¢ = D> 1 (say D = 26). As is shown in our recent paper,'®
the structure of the representations of the U(1) ®® confor-
mal current algebra is the same as in the case ¢ = 1. Then the
corresponding minimal models contain an infinite set of con-
formal fields with arbitrary anomalous dimensions parame-
trized by D arbitrary “charges” (or momenta) of the initial
field. The case D = 26 provided us with fusion rules for the
string vertex operators and simple differential equations for
the string vertices four-point functions.

The generalization of these results to the case of super-
symmetric minimal models of U(1) ®2 & CAR ®? supercon-
formal current algebra (CAR is the canonical anticommuta-
tion relation algebra {¥.,¥/} =36,, ,,67) seems to be
straightforward.

Il. NULL VECTORS AND FUSION RULES

The representations of the U(1) conformal current al-
gebra (1.1) can be characterized by three numbers: dimen-
sion A, charge ¢, and central charge c. Since the energy posi-
tivity implies positivity of the L,, we shall be interested only
in the lowest-weight representations of the algebra (1.1).
Each representation of this kind is generated by the primary
state |A,q) defined as follows (¢ is fixed):

LOIqu) = AIA’q)’ (213)
JolA,g) = q|Aq), (2.1b)
J.|Aq) =0=L,|Aq), n>0. (2.1¢)

Then the representation space (called the conformal family
of |A,q)) is spanned by the vectors
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L_,.L_,J_,.J_,l|Ag),
m>my>..>m; >0, n>n,>..>n, >0,
with charge g and dimension A, ; = A + N, ;, where
k 1
Nk,l = z n,- + z m‘-
i=1 i=1
is called “level” NV, ;. The correspondence between primary

fields (1.11) and primary states (2.1) is given by the follow-
ing almost obvious equality:

|A,9) = ¢,,(0)|0). (2.2)

The vacuum state |0) is a SL(2,R) @ U(1) ={L _ ,,L,,Jo}
invariant primary state with A = 0 = ¢. Therefore we have

L,|0)=0, n>-—1, J,|0)=0, n>0.

The reducible (or ‘“degenerate”) representations of
(1.1) are defined by the condition that there exists a state
|A + N,q) atlevel N that is again a primary state. Using the
definitions (2.1), (1.1), and the Hermiticity conditions
L*=L_,,J*=J_,,itiseasy toshow that |A + N,g) is
orthogonal to each vector in the representation space
spanned by |A,g), that it has zero norm, and therefore that it
can be consistently put equal to zero:

|A + N,g) =0. 2.3)

An important problem we have to solve is the explicit con-
struction of the null vectors (2.3). For the first level
(N =1), Egs. (2.1a), (2.1b), and (1.1a)-(1.1c) imply

|§“)> = (L_l + ap,_ 1 )lA,q).
Imposing that |£ (V) satisfies Eq. (2.1c) we get the relations

a,= —gq, (2.4a)

A =q%/2, (2.4b)
and finally

IEMy =(L_, —JpJ_1)|Agq) =0 (2.5)

iff A = ¢*/2. The same considerations at the second level
give us

™) =(L_, "%Jz__l —JoJ_2)]Aq) =0

iff c=1and A = ¢*/2.

In principle we can continue this construction to higher
levels, and at each level we find a new null vector without any
new restriction on the parameters of the model: ¢,A, ¢. This
means that the primary state |A,g) withc =1, A = ¢g*/2 is
degenerate at each level NeZ_ (contrary to the case of the
Virasoro degenerate primary states). In fact all these proper-
ties of degeneracy are coded within the Sugawara formula
(1.9). Using the definition (2.1) and Eq. (1.9) we get the
following general construction of the null vectors:

T =(L_,, _% z J_ka_")lA,q), n>0 (2.7)
k=0

(iff A =¢?/2 and ¢ = 1). The null vector condition (2.5)
can be written as an equation for the primary field ¢, ,(2)
corresponding to the primary state |A,g) via Eq. (2.2). Tak-
ing into account Eqgs. (1.11) we get for ¢, , the Thirring-like
equation

a
% $a,q4(2) = —q:J(2)Pa,(2):,

(2.6)

(2.8)
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where the normal product : : is given by

J(2)9(2): =T (2)d(2) + ¢(2)T 7 (2),

andJ (*(2) =J(2) = J7(2).

The key points in our construction of the fusion rules for
degenerate primary fields of the algebra (1.1) are the null
vector constructions (2.5) and (2.7) together with Eq.
(2.4b) and the U(1) charge conservation law. Let us consid-
er two degenerate primary fields y,(z), y,(z), with dimen-

(2.9)

sions A,, A, and nonzero charges ¢,,¢, related through Eq.
(2.4b):
Al,z =} ﬁ,z-

In principle many conformal U(1) current-algebra families
can contribute to the OPE of these fields. We denote by
0 (2), i = 1,2,..., the primary fields of each one of these
families, with dimension A‘” and charge ¢‘”. Because of the
Sugawara formula (1.9), for each primary field of the alge-
bra (1.1) we have

LolA®,g®) = 413A,g), (2.108)

or
AD = i(‘lm)z’ (2.10b)

which means that each primary field is degenerate at zero
level [i.e., Eq. (2.10) presents the O-level null vector.] Then
taking only the leading term contributions in the well-known
OPE formulas, '®

120 — A, —A,

N(') 12
X [00) (z,) + O(z,,) L

x1(z)x2(2) = (Xl(zl)Xz(zz)) + Z
(2.11)

we can analyze the charge conservation law, commuting
both sides of Eq. (2.11) and J, and using Eq. (1.11b), since
the 6 ¢V (z) fields are primary fields for the full algebra. We
obtain the identity

N(l’) . .
1\’1(2:'()J zlAz()_A'_Azl —(q +qz)6(')(7'2) + 0(z1,)]
i»1 [+
Nio ao_a_a g i
= 0) 7y ~ 0T 8[ =400 () + 0(z,)) ],
51 Ng

which proves the conservation of the U(1) charge, i.e.,
gP =¢q, +¢q, foreachi>l. (2.12)

Therefore only one primary field ¢,, with charge
g = ¢, + g, and dimension A = i(q, + g,)? contributes to
the OPE (2.11) of the fields y, and y,, and the fusion rule
can be written symbolically

xixk =[x "]

We denote with [y, ] the conformal family of the primary
field y,.

Let us suppose we have a model with only two basic
primary fields y,, [together with their Hermitian conju-
gates yT, with opposite U(1) charges]. Then we can write
the fusion rules as follows:
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xut=xxt=11]

xxi=1[8], g.=2q, A,= 243,

xx2=I[1l, g,=2q, A,=24, (2.13a)

x:=10), go=q1+q, Ap=1i(g+4)%

yti=lel, g=0—a B4,=iq—a)
Repeating the same procedure for the composite primary

fields £,7,... we have to introduce the new primary fields,
tri=I[E\), ¢z, =3q, A; =44,
Eva=12,1, 9z, =2q,+ 9 Az, =4(2¢,+ 2%
Ext= [gl]’ gz, =4 Aé. =%q%,
Ex: = [22]’ gz, = 29, — 4, Ai—, =1(2¢9, — %)2,
(2.13b)

and the corresponding ones for 7,0,¢ (indicated by E, @,
and ¢). We can continue this procedure, but already at this
level we can completely verify the characterizing features of
our model.

(i) At each step we must always introduce new compos-
ite primary fields; therefore we have an infinite set of them in
the full associative algebra.

(ii) Nevertheless we perfectly control their U(1) and
conformal properties.

(iii) Many of the families we find, going from level to
level, are identical to other families; for example,

E1=18,] =[] =[], [E]=16,]=I[x.],
0,1 =[], [@,]=IE] [®]=IE] (2.14)
[®,]=[xr], [®.0=[E2].

Ill. FOUR-POINT FUNCTIONS

In this section we shall show how conformal invariance,
U(1) charge conservation, and the existence of the null vec-
tor |£ (V) of Eq. (2.5) [together with the relations (2.4)]
allow us to calculate the four-point function of any four pri-
mary fields y,(z), with U(1) charges ¢; and dimensions
A, = 1q?, where i = 1,2,3,4.

The projective Ward identities, obtained by imposing
sl(2,R) invariance of the N-point functions,’ give us the gen-
eral form of the four-point function,

Olx1(20) x2(22) x3(23) x4(24) |0}

_ZA,+A — A, —AZZ 2A,ZA,+A,—A.—A.

Xzpy ~h TS A (), (3.1a)
where
N2 = 213224/ 212234 (3.1b)

and f (%) is a function to be determined. The relation
(Olx1 (20 x2(22)x3(25)Xa(24) o0} = O (3.2a)

with the help of Eq. (1.11b), leads to the U(1) charge con-
servation, i.e.,

4

z q,=0.

i=1

(3.2b)

Translational invariance and the null vector condition (2.5)
give us the relation
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(0'X1(214)X2(224)X3(7'34)(L-l + g4 1) |xa) =0, (3.3a)

which, using Egs. (1.11), provides us with the following
first-order differential equation for the four-point function
(3.1a):

( a " a + dJ _4144_4244_4344)
0z, Ozy 0z3, 2y, 224 234

X {0y 1(21)x2(22)x3(23) ¥4 (24)|0) = 0. (3.3b)
Inserting the expression (3.1a) into Eq. (3.3b) and making
use of Egs. (2.4b) and (3.2b), we transform Eq. (3.3b) into
a first-order differential equation for f (),

(9:95/ (1 — 1) — q3q) S () = 7./ (), (3.4)
which we easily solve, getting the final result for the four-
point function:

4
Olx1(20x2(2)x3(2)xa(2)[0) = C(g) [ z% (3.5)

icj=1
where C(g) is a constant possibly dependent on g,
i=1,2,3,4, and the g,’s are related to the conformal degrees
A, by Eq. (2.4b).

IV. TWO-DIMENSIONAL MODELS: THE THIRRING
MODEL

Let us consider a particular set of two-dimensional mod-
els (i.e., models in which fields are functions of both zand Z)
that can be “factorized” as products of two one-dimensional
models of the same kind we dealt with in the previous sec-
tion. To this end let us introduce two one-dimensional pri-
mary fields: y(z) with U(1) charge ¢ and dimension
A = 14, and ¥(Z) withg and A= 15°. We define the follow-
ing two-dimensional field (g and ¢ are supposed to be non-
Zero):

¥(z2) : = y(2)x(2). (4.1a)

It is immediately seen, using Eqs. (1.11) and the analogous
ones for the Z-dependent fields, that ¥(z,Z) is a primary field
under both the left and right current and Virasoro algebras
with dimensions

(AB) = (3¢°48) (4.1b)
and U(1) charges

(9,9). (4.1c)
Therefore its dimension is given by

d:=A+A=}(F+7), (4.2a)
while its helicity is given by

h:=A—A=}(g—7). (4.2b)

It is well known'>® that, in order to have a local theory,
fields must have integer or half-integer helicity (i.e., spin);
therefore we shall put this constraint on Eq. (4.2b) when we
shall deal with a concrete case in what follows.

The existence of the one-dimensional fusion rules of Sec.
IT and the complete factorization of the z and Z dependence
allow us to write down immediately the fusion rules for the
two-dimensional models we consider here. Let us suppose
we have two primary fields,

¥,(22) = x1(2)x:(2), (4.3a)
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with U(1) charges (4,,9,), and
¥:(2.2) = x,(2)¥2(2), (4.3b)

with U(1) charges (¢,,4,); their dimensions are given by Eq.
(4.1b). Then taking into account the results of Sec. II, we
have

¥:(22)¢,(22) = [Y*(22)],
¢l (Z’E)¢2 (Z’E) = [\Il“,Z) (212) ]a
¥ (2DY2(22) = [$9?(22)],

where the composite primary fields W are given by [see Egs.
(2.13a)]

VD (22) = £(2)E(2),
V2 (27) = 5(2)%(2),

i=12,
(44)

D (22) = (2)8(2), )
V2(27) = @(2)P(2).

Their U(1) charges are given by
Gyin = 2q;, qw(m =2q;, =12,
oo =q +4» Guun =G + 4o (4.6)
oo =q1 — Gy dgon =G — Gy,

while their dimensions are easily recovered from Eq. (4.6)
with the help of relation (4.1b).

Let us write, as an example, the OPE of ,1,; we have'®
¥1(2,2))¥2(22:2,)

= (P, (2,2, (2,,7,)) + 285 &~ 2B - &

i — - N n,m —
X Z z7 Z zn Al,z_,B '8, + n,8,+n)
n=0 m=0 nm

XB (6, 4+ mb, + m)

1
.J‘ du(] _u)5.+n—lu62+n—l
(]

1 -
J dU(l _v)5,+m—1v8,+m—1
(¢]

XWED, % o (2o + UZ12Z5 + UZ15), (4.7a)

where N,,,,, is the coefficient appearing in the three-point
function

('/’1'/’2‘1’2]42-)':2 +m )’
while NV, ,, is that appearing in the two-point function
(W(Alﬁ)n,x +m W(Alf)n..x +m ) ’

and the two-dimensional quasiprimary fields ¥§'? z , ,, are
given by (for definitions and more details see Ref. 16)

NlZn m
» 1,2 =
nml —=T WD o (22)

nm

= lim Lim D (4,,d,)D ®3(3,,3,)

213—27) 32

Ayt A R By (2,7 ¥,(2,7) ). (4.7b)
Taking into account factorization, we easily find that

le - N 2,,N _
SRR 1 (27) = =0y ()05 (D).
nm n‘'m
(4.8)
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If we now adopt the quasiprimary (one-dimensional) field
normalization'®

N12n = ANn’ n>0’ (493,)

supplemented by the analogous one for two-dimensional
fields, i.e.,

Niznm = AAN, ., (4.9b)
we get the complete factorization of the quasiprimary fields,

Yy o n5am(2Z) =05, ,(2)04, » (3), (4.10a)
together with the factorization of the coefficients,

Niwm = Ni2uNizm (4.10b)
and

N,,=N,N,,. (4.10c)

Using again factorization and Eq. (3.5), we can easily
get the explicit form of the four-point function of ¢ fields:

(U1(20,2))1,(22,2,) ¥3(23,25) Y4 (24,24) )
= <X1(zl)Xz(zz)X3(23)X4(z4)>
X1 Gy ))}2(22))}3(23);}4(24)>
4
=C(@C@) ]'[ EAl | A

i<j=1 kol=1

(4.11)

Let us now come to a concrete example: the Thirring
model.'®!” In our framework it is a two-dimensional model
with two primary fields having equal dimensions and oppo-
site fixed helicities + 1; let us denote them by

¥,(22), with helicity 2, = —,
¥,(2,z), with helicity h, = + 1.

From Eqs. (4.2) we see that the U(1) charges must obey the
following relations:
G +3 =0 +3, G —q=1

(4.12)
Therefore we can express all four charges in terms of only
one (positive) parameter A:

q%_qll,z -1,

G=q.=vJ24, qg=¢, =24+ 1. (4.13)
The conformal degrees are then
A=R,=4, A=A, =1+ (4.14)

The fields ¢, , can be identified with the fields appearing in
Eqgs. (4.3) once we fix the charges with Eq. (4.13). All fu-
sion rules (4.4) are valid again with

qw(l'l) = 2\12/1 ’ q\v(l.l) = 2\/2/1 + 1,
q\y(Z,Z) = 2\/2/1 + 1; aq;(ll) = 2\}% N
q\y(l.Z) = VM +V2/1 + ly a‘y(l,Z) =\/u +\/2/1 -+ 1,

dyan =\]u —VZ/{ +1, q@(u) =\/u+ 1 “‘VM .
(4.15)

We see that
h‘l’“” = ""h\l,(zz) - = 2 hw(u) = h~uz) ——0 (416)

i.e., WD together with W>* corresponds to spin 2, while
Y2 and W2 are scalar fields. From Egs. (4.6) and
(4.16) it is evident that while U(1) charge is conserved,
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there exists no ‘“helicity conservation” in the fusion
rules (4.4).

As already remarked in the general case, and as appears
from the first level’s analysis just outlined above, we have in
the Thirring model an infinite set of primary fields, but we
can have complete control of all fusion rules, going level by
level with the same kind of analysis we have exploited above.

Also, all four-point functions of primary fields are easily

made explicit using Eq. (4.11). For example,

(V1(2:,2) V2 (23,2,) ¥,(23,23) ¥ (24.24) )
=c(j,)(213224/212234)42/1(21+1) —2,12;2,1_1
X (Z13Z24/ Z1aZag) AT VZR Y 1257, (4.17a)
(fl}(u)(z Z ){i}(l,z)‘(z Z )\I/“’Z)(Z3,23)‘I/“'2) (24’24))
b(/l)(z Z(3224 )4,1+1—2,W(u+1)
12214223234 )

213224
215214223234

(4.17b)

Even if the factorization of the Thirring model greatly facili-
tates its understanding, as we have just seen, we can get the
same results using the two-dimensional formulation only.

Let us start from a massless spin-} field coupled to a
canonical U(1) vector current, which is conserved together
with its dual.>'¢!7 Let the fields ¢, and ¥, be the left and
right components of the spin-] field and g,, ¢,, §,, g, their
U(1) charges; i.e., we postulate that the following commuta-
tion relations hold (in the compact picture):

[Vt 2(22) ] = — q122"¢,,(2,2), (4.18a)
[7;; W2 (2,2) 1= -— G:22"Y,,(2,2), nel. (4.18b)

Furthermore we suppose that the fields ¢, , transform ho-
mogeneously under conformal transformations, i.e., that
they are primary conformal fields with dimensions (A ,A,)
and (A,,A,), satisfying the commutation relations

[Ln ’101,2 (Z,E)]
= zn(zi + (n+ I)Au)]pu (z.2),
0z
[L.tha2(22)]
o 2"(2—(?— + (n + 1)K1,2)¢1'2 (Z,E), nEZ . (4.19b)
gz

(4.19a)

The presence of zeroth-level and first-level null fields or,
equivalently, the existence of the Sugawara formula (1.7)
[or (1.9)] and the analogous one for T(Z) (or Z,,) again
constrains U(1) charges and conformal dimensions to be
linked by Eq. (4.1b), while %, , (2,Z) must obey the Thirring
equations

J Z —
M + qus J(2) Y, (22):
oz
3 z —_
—0= _.'p";;_z’z) +G12 TD Y, (27): . (4.20)

Since ¥, and ¥, have the same dimensions and their
helicities are ( — }) and ( + 1), respectively, we can state
Eqgs. (4.13) and (4.14) again. We can show here also that
there exists only one conformal family of the full algebra
contributing to the OPE of any two among the four chiral
fields ¥, ¢,, ¢¥¥, ¥¥. Let us take the case ¢, ¢/¥ as an example,
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and let us denote by ¢ ’(z,7), i>1, all primary fields that
contribute in principle (together with their descendants) to
their OPE; i.e., in analogy with Eq. (2.11),

N o i A
D(ZE)VE (227) = 3 o 2y V2R T
51 NG
X [¢ (i)(zz,zz) + 0(212) + 0(212)]-
(4.21)
Using (the global version of) Egs. (4.18) and taking
into account that all fields appearing in Eq. (4.21), being
primary, transform homogeneously under current algebra,
we get from Eq. (4.21)

[V (29 (22)]
=[(VA+T-V22)/(z-2)]@p®(2,Z), (4.22a)
[V @), P(2.2)]
=[(21 V2T +1)/E-2)]p (2 7). (4.22b)
Then using the Thirring equations (4.20) in the three-
point function (¢, ¥¥@ °*) together with commutation rela-

tions (4.22), we get the following first-order differential
equations:

(i+ V2AQA+ 1) +2,1—,/2/1(2/1+1))

0z, 23 Zy3
XA (20,2)¥2 (22,2,) @ V7 (23,25)) =0, (4.23a)
( a + V2A2A ¥ D) +2,1 +1_\/2/1(2/1+1))

dz, Zy 23
X (¥1(2,,2)) Y% (2,,2,) @ "*(z3,23)) =0, >l
(4.23b)

Inserting the explicit expression for the three-point function
(¢, y¥*@ "), dictated by conformal invariance, into Eqgs.
(4.23), we find at last that

AP =AD =20 +§ 2124 +1), i>L

We see that the conformal degrees of all primary fields ¢
coincide, signifying that we have only one conformal (and
current-algebra) family contributing to the OPE of ¢,¢%.
The same demonstration holds for the OPE of any other two
among our chiral fields ¢,, ¢,, ¥, V.

In reaching Eq. (4.24) we have intentionally stressed
the role played by the Thirring equations (4.20). We could
have started instead from the observation that relation
(4.1b) holds for a generic primary field; then the uniqueness
of U(1) charges for all fields ¢ °, shown by Egs. (4.22),
would have implied uniqueness of all conformal degrees
also.

The explicit form of the four-point functions can also be
easily recovered using the Thirring equations and the rela-
tions (4.13) and (4.14). Let us see how to obtain Eq.
(4.17a) again.

From conformal invariance we have that

(120,203 (2,,2,) (22,2, ) ¥ (24,2,) )
=2z - 121422; M-t Z; # Zs ! z; uf(ﬂ) .7(7_7)»
(4.25)

where f and f are unknown functions of % and 7, defined

(4.24)

)
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by Eq. (3.1b). Using the Thirring equation (4.20) in z, for
¥,(z,,Z;) and with the help of (the global version of) Eq.
(4.19a), we get the following first-order differential equa-
tion for £ (77):

[QA+1)/(p—1)

— V2221 + D] fp) +0f'(g) =0, (4.26a)
which can be easily solved, giving
S(n) =constX(n/ (g — 1)+ xpEA+D, (4.26b)

Proceeding in the same way for the z, dependence of
¥,(z,,Z,), we finally get Eq. (4.17a) again.

V. REDUCTION TO THE VIRASORO SUBALGEBRA

Until now we have always dealt with the representations
of the full algebra (1.1). Since the irreducible representa-
tions of the U(1) conformal CA are, in general, reducible
representations of the Virasoro subalgebra (1.1a), an inter-
esting problem for the description of the explicit reduction of
a given conformal CA Verma module into a sum of the Vira-
soro algebra’s representations arises.

Following the methods and the results of Refs. 19 and 20
for the character of the irreducible lowest-weight degenerate
(A = q*/2) representation of the algebra (1.1), we get

X, () =27(2), (5.1)
where the Dedekind function #7(#) is given by
p(ry =" [[ (=17,
n=1
In the case ¢ = 1 for the representations of the Virasoro alge-

bra (1.1a) one has to distinguish two different expressions
for the characters of the corresponding representations’'®-2°:

yir(r) =t%/n(t), for A#n?/4, nelZ, (5.2a)
XL (1) = ("4 — 1 D (),
for A = n%*/4, neZ. (5.2b)

Then for ¢ = n/y2 we can represent the character (5.1) in
terms of the Virasoro characters (5.2b),

Xoa (D) == § (g2 _yms 2o
() ¥=o

= z X?,ri:r+ 2ky274 (1), (5.3)
K=o

and consequently for these special values of the U(1) charge
g = n/V2the corresponding representations of the CA (1.1)
contain infinitely many Virasoro representations with di-
mensions

A, = (n+2k)/A=n*/4 + k(k+n), k=0,1,...

In the field-theoretical language this observation means that
the U(1) conformal current family [¢4_ /] splits into
infinite sets of Virasoro conformal families [ ¢ | generated
by Virasoro primary fields (states). We shall give as exam-
ples the explicit constructions of the simplest primary states

of Vir [they are not primary ones for the full algebra (1.1)]:
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g=0 k=1 J_,|0,0)

k=2 (4J_J_, =32, -2 ]|0,0)
g=1/V2 k=1 (J_p— V2 )|L,1/VI)
g=v2 k=1 (J_3=3NV2J_J_,+J> )[1,V2)
q=3/v2 k=1

In the general case (when A # n2/4), because of the co-
incidence of the characters (5.1) and (5.2a) only one Vira-
soro representation corresponds to each conformal U(1)
CA representation. Because of the fusion rules (2.13), even
in these models (g#n/v2) we need the family of the unity
operator [I] (g = 0), which contains infinitely many Vira-
soro conformal families:

Xo(t) = i XiF(0).
k=0

Here k = O corresponds to the family of the Virasoro unit
operator, k = 1 gives the family of the U(1) current, and
k =2 (A = 4) describes the new “conserved current” fam-
ily of the Virasoro primary field

Viz):= i V,z=" 4,
n=0

where the Laurent coefficients ¥, can be realized in terms of
the U(1) current modes J,,,

ro=( 3 + 3 )ike-ne-2)
k= —n

=1
+(n+k+D)(n+k+2)
+3k—D(n+k+ DV _ Tk

~4| $ ST L

k=11[=1

) o0

+23 S I iLeri

k=11=0
+ 5 3L adl.
k=01!=0
and ¥,|0,0) = 0, n> — 3. This current has rather compli-
cated transformation properties,
[L,,,,V,,] =0CBm-nV,, .
[JomsV] =2m[(m —1)(m —2)
+(m+n+1D)(m+n+2)
+3Im—-1D(m+n+ D, .,

— 16m i‘]—kL"”‘ + i Ln——k"k]’
k=1 k=0

with respect to the full algebra (1.1), and it has no simple
physical meaning as the U(1) current and the stress-energy
tensor do. The same is true for the currents with dimensions
k% (k=345,..).

The simplest fusion rule for two primary fields with op-
posite charges (2.13),

B =1 (=[e”]),
can be rewritten (with respect to the Virasoro algebra) in the
form

2318 J. Math. Phys., Vol. 29, No. 10, October 1988

(— WA _ +8J_J_, + 3T, —6VII_J | +27% )[33/V2).

I

o0

v 8o =3 (921,

k=0
and, together with the other fusion rules (2.13), gives the
multiplication laws of the infinite associative algebra of the
Virasoro conformal fields describing the corresponding
¢ = 1 model.

Note added: After the completion of the manuscript we
received the preprint by Bagger et al.>! where results similar
to ours connected with the treatment of the Thirring model
appear.
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ERRATA

Erratum: New classes of symmetries for partial differential equations
[J. Math. Phys. 29, 806 (1988)]

G. W. Bluman and G. J. Reid
Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Y4,
Canada

Sukeyuki Kumei
Faculty of Textile Science, Shinsu University, Ueda, Nagano-ken 386, Japan

(Received 28 June 1988; accepted for publication 13 July 1988)

The following corrections should be made. Li= —x[(¢+xx)>+ 24t ]__ + 442 = 9
(i) In Eq. (4.6) 3 /9t should be replaced by d /du. Equa- ot
tion (4.9) should be replaced by + (u + &) [6A1 + (¢ + Kkx)?
. a
+ 2x(u + ) (¢ + kx) | —
L4=xi+l(u+x)i+[(1+i)¢+—]—. 2z
ox v du v v 10¢ 3
+ [kx(P + kx)? + 241(2¢4 + 3Kx) ]35 ,  (4.10b)
(ii) Result 3 on p. 810 should read as follows. Zw = e(w,t)ai — (u+«)? G.La(w_:}l ai
3.K(u) = A(u + k) ~2, {A,x} arbitrary constants. Here x w u
Gr is an wo-parameter group with infinitesimal generators _ a 4.10¢
L,, L,, and L, given by (4.8), L, given by (4.9), and KO w,1) a (4.10c)
Here w = ¢ + «xx and v = O(w,?) is an arbitrary solution of
3 3 the linear differential equation
L=-— = 2 = 2
2 x(¢+xx)ax+(u+x)[¢+ Kx+xu]au 19 v _ 411
owr It
(iii) In result 4 on p. 810 condition (a) should be re-
+ (248 + wx(g + o) |2 (410 PN
KX Kkx)]— .10a
3¢ (a) p>—4g— P =0, p*—4¢>0.

Erratum: The Vaidya-Patel solution with Robertson-Walker metric as a
rotating inflationary scenario [J. Math. Phys. 29, 1514 (1988)]

Oyvind Gron
Oslo College of Engineering, Cort Adelers gt. 30, N-0254 Oslo 2, Norway and Institute of Physics,
University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo 3, Norway

Harald H. Soleng
Institute of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo 3, Norway

(Received 13 July 1988; accepted for publication 20 July 1988)

In Sec. IIL, p. 1516, left column, it is stated that the —CyCYh —CyClh —C3HCo
structure coefficients in an orthonormal basis satisfy the re- ) 2 \2 . 3 \2
lations C#,, = — C",, . This is not correct in general. Ac- +4[(Cor +Ca1)* + (Cos + Car)
cordingly the general expression for the shear scalar ex- +(C3% + C3)?). (3.11)

pressed in terms of the structure coefficients of a comoving In the particular model under consideration, C*,, = 0,

tetrad basis, Eq. (3.11), should read when p #v, and the cross terms of Eq. (3.11) are zero.
A =4[(CH)+ (CEL)* + (CH)? Hence the error does not affect the results obtained.
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